citra-emu
/
citra-canary
Archived
1
0
Fork 0

OpenGL Cache: Split CachedSurface

Breaks CachedSurface into two classes, the parameters used to create or
find a cached surface, and the actual cached surface. This also adds a
few helper methods for getting surfaces from cache
This commit is contained in:
James Rowe 2017-11-17 10:27:51 -07:00
parent 0b98b768f5
commit 3e1cbb7d14
3 changed files with 649 additions and 290 deletions

View File

@ -342,6 +342,231 @@ static bool BlitTextures(GLuint src_tex, const MathUtil::Rectangle<u32>& src_rec
return true; return true;
} }
SurfaceParams SurfaceParams::FromInterval(SurfaceInterval interval) const {
SurfaceParams params = *this;
const u32 stride_tiled_bytes = BytesInPixels(stride * (is_tiled ? 8 : 1));
PAddr aligned_start =
addr + Common::AlignDown(boost::icl::first(interval) - addr, stride_tiled_bytes);
PAddr aligned_end =
addr + Common::AlignUp(boost::icl::last_next(interval) - addr, stride_tiled_bytes);
if (aligned_end - aligned_start > stride_tiled_bytes) {
params.addr = aligned_start;
params.height = (aligned_end - aligned_start) / BytesInPixels(stride);
} else {
// 1 row
ASSERT(aligned_end - aligned_start == stride_tiled_bytes);
const u32 tiled_alignment = BytesInPixels(is_tiled ? 8 * 8 : 1);
aligned_start =
addr + Common::AlignDown(boost::icl::first(interval) - addr, tiled_alignment);
aligned_end =
addr + Common::AlignUp(boost::icl::last_next(interval) - addr, tiled_alignment);
params.addr = aligned_start;
params.width = PixelsInBytes(aligned_end - aligned_start) / (is_tiled ? 8 : 1);
params.height = is_tiled ? 8 : 1;
}
params.UpdateParams();
return params;
}
SurfaceInterval SurfaceParams::GetSubRectInterval(MathUtil::Rectangle<u32> unscaled_rect) const {
if (unscaled_rect.GetHeight() == 0 || unscaled_rect.GetWidth() == 0) {
return {};
}
if (unscaled_rect.bottom > unscaled_rect.top) {
std::swap(unscaled_rect.top, unscaled_rect.bottom);
}
if (is_tiled) {
unscaled_rect.left = Common::AlignDown(unscaled_rect.left, 8) * 8;
unscaled_rect.bottom = Common::AlignDown(unscaled_rect.bottom, 8) / 8;
unscaled_rect.right = Common::AlignUp(unscaled_rect.right, 8) * 8;
unscaled_rect.top = Common::AlignUp(unscaled_rect.top, 8) / 8;
}
const u32 stride_tiled = (!is_tiled ? stride : stride * 8);
const u32 pixel_offset =
stride_tiled * (!is_tiled ? unscaled_rect.bottom : (height / 8) - unscaled_rect.top) +
unscaled_rect.left;
const u32 pixels = (unscaled_rect.GetHeight() - 1) * stride_tiled + unscaled_rect.GetWidth();
return {addr + BytesInPixels(pixel_offset), addr + BytesInPixels(pixel_offset + pixels)};
}
MathUtil::Rectangle<u32> SurfaceParams::GetSubRect(const SurfaceParams& sub_surface) const {
const u32 begin_pixel_index = PixelsInBytes(sub_surface.addr - addr);
if (is_tiled) {
const int x0 = (begin_pixel_index % (stride * 8)) / 8;
const int y0 = (begin_pixel_index / (stride * 8)) * 8;
return MathUtil::Rectangle<u32>(x0, height - y0, x0 + sub_surface.width,
height - (y0 + sub_surface.height)); // Top to bottom
}
const int x0 = begin_pixel_index % stride;
const int y0 = begin_pixel_index / stride;
return MathUtil::Rectangle<u32>(x0, y0 + sub_surface.height, x0 + sub_surface.width,
y0); // Bottom to top
}
MathUtil::Rectangle<u32> SurfaceParams::GetScaledSubRect(const SurfaceParams& sub_surface) const {
auto rect = GetSubRect(sub_surface);
rect.left = rect.left * res_scale;
rect.right = rect.right * res_scale;
rect.top = rect.top * res_scale;
rect.bottom = rect.bottom * res_scale;
return rect;
}
bool SurfaceParams::ExactMatch(const SurfaceParams& other_surface) const {
return (other_surface.addr == addr && other_surface.width == width &&
other_surface.height == height && other_surface.stride == stride &&
other_surface.pixel_format == pixel_format && other_surface.is_tiled == is_tiled);
}
bool SurfaceParams::CanSubRect(const SurfaceParams& sub_surface) const {
if (sub_surface.addr < addr || sub_surface.end > end || sub_surface.stride != stride ||
sub_surface.pixel_format != pixel_format || sub_surface.is_tiled != is_tiled ||
(sub_surface.addr - addr) * 8 % GetFormatBpp() != 0)
return false;
auto rect = GetSubRect(sub_surface);
if (rect.left + sub_surface.width > stride) {
return false;
}
if (is_tiled) {
return PixelsInBytes(sub_surface.addr - addr) % 64 == 0 && sub_surface.height % 8 == 0 &&
sub_surface.width % 8 == 0;
}
return true;
}
bool SurfaceParams::CanExpand(const SurfaceParams& expanded_surface) const {
if (pixel_format == PixelFormat::Invalid || pixel_format != expanded_surface.pixel_format ||
is_tiled != expanded_surface.is_tiled || addr > expanded_surface.end ||
expanded_surface.addr > end || stride != expanded_surface.stride)
return false;
const u32 byte_offset =
std::max(expanded_surface.addr, addr) - std::min(expanded_surface.addr, addr);
const int x0 = byte_offset % BytesInPixels(stride);
const int y0 = byte_offset / BytesInPixels(stride);
return x0 == 0 && (!is_tiled || y0 % 8 == 0);
}
bool SurfaceParams::CanTexCopy(const SurfaceParams& texcopy_params) const {
if (pixel_format == PixelFormat::Invalid || addr > texcopy_params.addr ||
end < texcopy_params.end || ((texcopy_params.addr - addr) * 8) % GetFormatBpp() != 0 ||
(texcopy_params.width * 8) % GetFormatBpp() != 0 ||
(texcopy_params.stride * 8) % GetFormatBpp() != 0)
return false;
const u32 begin_pixel_index = PixelsInBytes(texcopy_params.addr - addr);
const int x0 = begin_pixel_index % stride;
const int y0 = begin_pixel_index / stride;
if (!is_tiled)
return ((texcopy_params.height == 1 || PixelsInBytes(texcopy_params.stride) == stride) &&
x0 + PixelsInBytes(texcopy_params.width) <= stride);
return (PixelsInBytes(texcopy_params.addr - addr) % 64 == 0 &&
PixelsInBytes(texcopy_params.width) % 64 == 0 &&
(texcopy_params.height == 1 || PixelsInBytes(texcopy_params.stride) == stride * 8) &&
x0 + PixelsInBytes(texcopy_params.width / 8) <= stride);
}
bool CachedSurface::CanFill(const SurfaceParams& dest_surface,
SurfaceInterval fill_interval) const {
if (type == SurfaceType::Fill && IsRegionValid(fill_interval) &&
boost::icl::first(fill_interval) >= addr &&
boost::icl::last_next(fill_interval) <= end && // dest_surface is within our fill range
dest_surface.FromInterval(fill_interval).GetInterval() ==
fill_interval) { // make sure interval is a rectangle in dest surface
if (fill_size * 8 != dest_surface.GetFormatBpp()) {
// Check if bits repeat for our fill_size
const u32 dest_bytes_per_pixel = std::max(dest_surface.GetFormatBpp() / 8, 1u);
std::vector<u8> fill_test(fill_size * dest_bytes_per_pixel);
for (u32 i = 0; i < dest_bytes_per_pixel; ++i)
std::memcpy(&fill_test[i * fill_size], &fill_data[0], fill_size);
for (u32 i = 0; i < fill_size; ++i)
if (std::memcmp(&fill_test[dest_bytes_per_pixel * i], &fill_test[0],
dest_bytes_per_pixel) != 0)
return false;
if (dest_surface.GetFormatBpp() == 4 && (fill_test[0] & 0xF) != (fill_test[0] >> 4))
return false;
}
return true;
}
return false;
}
bool CachedSurface::CanCopy(const SurfaceParams& dest_surface,
SurfaceInterval copy_interval) const {
SurfaceParams subrect_params = dest_surface.FromInterval(copy_interval);
ASSERT(subrect_params.GetInterval() == copy_interval);
if (CanSubRect(subrect_params))
return true;
if (CanFill(dest_surface, copy_interval))
return true;
return false;
}
SurfaceInterval SurfaceParams::GetCopyableInterval(const Surface& src_surface) const {
SurfaceInterval result{};
const auto valid_regions =
SurfaceRegions(GetInterval() & src_surface->GetInterval()) - src_surface->invalid_regions;
for (auto& valid_interval : valid_regions) {
const SurfaceInterval aligned_interval{
addr + Common::AlignUp(boost::icl::first(valid_interval) - addr,
BytesInPixels(is_tiled ? 8 * 8 : 1)),
addr + Common::AlignDown(boost::icl::last_next(valid_interval) - addr,
BytesInPixels(is_tiled ? 8 * 8 : 1))};
if (BytesInPixels(is_tiled ? 8 * 8 : 1) > boost::icl::length(valid_interval) ||
boost::icl::length(aligned_interval) == 0) {
continue;
}
// Get the rectangle within aligned_interval
const u32 stride_bytes = BytesInPixels(stride) * (is_tiled ? 8 : 1);
SurfaceInterval rect_interval{
addr + Common::AlignUp(boost::icl::first(aligned_interval) - addr, stride_bytes),
addr + Common::AlignDown(boost::icl::last_next(aligned_interval) - addr, stride_bytes),
};
if (boost::icl::first(rect_interval) > boost::icl::last_next(rect_interval)) {
// 1 row
rect_interval = aligned_interval;
} else if (boost::icl::length(rect_interval) == 0) {
// 2 rows that do not make a rectangle, return the larger one
const SurfaceInterval row1{boost::icl::first(aligned_interval),
boost::icl::first(rect_interval)};
const SurfaceInterval row2{boost::icl::first(rect_interval),
boost::icl::last_next(aligned_interval)};
rect_interval = (boost::icl::length(row1) > boost::icl::length(row2)) ? row1 : row2;
}
if (boost::icl::length(rect_interval) > boost::icl::length(result)) {
result = rect_interval;
}
}
return result;
}
bool RasterizerCacheOpenGL::TryBlitSurfaces(CachedSurface* src_surface, bool RasterizerCacheOpenGL::TryBlitSurfaces(CachedSurface* src_surface,
const MathUtil::Rectangle<int>& src_rect, const MathUtil::Rectangle<int>& src_rect,
CachedSurface* dst_surface, CachedSurface* dst_surface,
@ -381,201 +606,61 @@ static void AllocateSurfaceTexture(GLuint texture, const FormatTuple& format_tup
cur_state.Apply(); cur_state.Apply();
} }
MICROPROFILE_DEFINE(OpenGL_SurfaceUpload, "OpenGL", "Surface Upload", MP_RGB(128, 64, 192)); MICROPROFILE_DEFINE(OpenGL_SurfaceLoad, "OpenGL", "Surface Load", MP_RGB(128, 64, 192));
CachedSurface* RasterizerCacheOpenGL::GetSurface(const CachedSurface& params, bool match_res_scale, void CachedSurface::LoadGLBuffer(PAddr load_start, PAddr load_end) {
bool load_if_create) { ASSERT(type != SurfaceType::Fill);
using PixelFormat = CachedSurface::PixelFormat;
using SurfaceType = CachedSurface::SurfaceType;
if (params.addr == 0) { const u8* const texture_src_data = Memory::GetPhysicalPointer(addr);
return nullptr; if (texture_src_data == nullptr)
return;
if (gl_buffer == nullptr) {
gl_buffer_size = width * height * GetGLBytesPerPixel(pixel_format);
gl_buffer.reset(new u8[gl_buffer_size]);
} }
u32 params_size = // TODO: Should probably be done in ::Memory:: and check for other regions too
params.width * params.height * CachedSurface::GetFormatBpp(params.pixel_format) / 8; if (load_start < Memory::VRAM_VADDR_END && load_end > Memory::VRAM_VADDR_END)
load_end = Memory::VRAM_VADDR_END;
// Check for an exact match in existing surfaces if (load_start < Memory::VRAM_VADDR && load_end > Memory::VRAM_VADDR)
CachedSurface* best_exact_surface = nullptr; load_start = Memory::VRAM_VADDR;
float exact_surface_goodness = -1.f;
auto surface_interval = MICROPROFILE_SCOPE(OpenGL_SurfaceLoad);
boost::icl::interval<PAddr>::right_open(params.addr, params.addr + params_size);
auto range = surface_cache.equal_range(surface_interval);
for (auto it = range.first; it != range.second; ++it) {
for (auto it2 = it->second.begin(); it2 != it->second.end(); ++it2) {
CachedSurface* surface = it2->get();
// Check if the request matches the surface exactly ASSERT(load_start >= addr && load_end <= end);
if (params.addr == surface->addr && params.width == surface->width && const u32 start_offset = load_start - addr;
params.height == surface->height && params.pixel_format == surface->pixel_format) {
// Make sure optional param-matching criteria are fulfilled
bool tiling_match = (params.is_tiled == surface->is_tiled);
bool res_scale_match = (params.res_scale_width == surface->res_scale_width &&
params.res_scale_height == surface->res_scale_height);
if (!match_res_scale || res_scale_match) {
// Prioritize same-tiling and highest resolution surfaces
float match_goodness =
(float)tiling_match + surface->res_scale_width * surface->res_scale_height;
if (match_goodness > exact_surface_goodness || surface->dirty) {
exact_surface_goodness = match_goodness;
best_exact_surface = surface;
}
}
}
}
}
// Return the best exact surface if found if (!is_tiled) {
if (best_exact_surface != nullptr) { ASSERT(type == SurfaceType::Color);
return best_exact_surface; std::memcpy(&gl_buffer[start_offset], texture_src_data + start_offset,
} load_end - load_start);
// No matching surfaces found, so create a new one
u8* texture_src_data = Memory::GetPhysicalPointer(params.addr);
if (texture_src_data == nullptr) {
return nullptr;
}
MICROPROFILE_SCOPE(OpenGL_SurfaceUpload);
// Stride only applies to linear images.
ASSERT(params.pixel_stride == 0 || !params.is_tiled);
std::shared_ptr<CachedSurface> new_surface = std::make_shared<CachedSurface>();
new_surface->addr = params.addr;
new_surface->size = params_size;
new_surface->texture.Create();
new_surface->width = params.width;
new_surface->height = params.height;
new_surface->pixel_stride = params.pixel_stride;
new_surface->res_scale_width = params.res_scale_width;
new_surface->res_scale_height = params.res_scale_height;
new_surface->is_tiled = params.is_tiled;
new_surface->pixel_format = params.pixel_format;
new_surface->dirty = false;
if (!load_if_create) {
// Don't load any data; just allocate the surface's texture
AllocateSurfaceTexture(new_surface->texture.handle, new_surface->pixel_format,
new_surface->GetScaledWidth(), new_surface->GetScaledHeight());
} else { } else {
// TODO: Consider attempting subrect match in existing surfaces and direct blit here instead if (type == SurfaceType::Texture) {
// of memory upload below if that's a common scenario in some game Pica::Texture::TextureInfo tex_info{};
tex_info.width = width;
Memory::RasterizerFlushRegion(params.addr, params_size); tex_info.height = height;
tex_info.format = static_cast<Pica::TexturingRegs::TextureFormat>(pixel_format);
// Load data from memory to the new surface
OpenGLState cur_state = OpenGLState::GetCurState();
GLuint old_tex = cur_state.texture_units[0].texture_2d;
cur_state.texture_units[0].texture_2d = new_surface->texture.handle;
cur_state.Apply();
glActiveTexture(GL_TEXTURE0);
if (!new_surface->is_tiled) {
// TODO: Ensure this will always be a color format, not a depth or other format
ASSERT((size_t)new_surface->pixel_format < fb_format_tuples.size());
const FormatTuple& tuple = fb_format_tuples[(unsigned int)params.pixel_format];
glPixelStorei(GL_UNPACK_ROW_LENGTH, (GLint)new_surface->pixel_stride);
glTexImage2D(GL_TEXTURE_2D, 0, tuple.internal_format, params.width, params.height, 0,
tuple.format, tuple.type, texture_src_data);
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
} else {
SurfaceType type = CachedSurface::GetFormatType(new_surface->pixel_format);
if (type != SurfaceType::Depth && type != SurfaceType::DepthStencil) {
FormatTuple tuple;
if ((size_t)params.pixel_format < fb_format_tuples.size()) {
tuple = fb_format_tuples[(unsigned int)params.pixel_format];
} else {
// Texture
tuple = {GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE};
}
std::vector<Math::Vec4<u8>> tex_buffer(params.width * params.height);
Pica::Texture::TextureInfo tex_info;
tex_info.width = params.width;
tex_info.height = params.height;
tex_info.format = (Pica::TexturingRegs::TextureFormat)params.pixel_format;
tex_info.SetDefaultStride(); tex_info.SetDefaultStride();
tex_info.physical_address = params.addr; tex_info.physical_address = addr;
for (unsigned y = 0; y < params.height; ++y) { const auto load_interval = SurfaceInterval(load_start, load_end);
for (unsigned x = 0; x < params.width; ++x) { const auto rect = GetSubRect(FromInterval(load_interval));
tex_buffer[x + params.width * y] = Pica::Texture::LookupTexture( ASSERT(FromInterval(load_interval).GetInterval() == load_interval);
texture_src_data, x, params.height - 1 - y, tex_info);
for (unsigned y = rect.bottom; y < rect.top; ++y) {
for (unsigned x = rect.left; x < rect.right; ++x) {
auto vec4 =
Pica::Texture::LookupTexture(texture_src_data, x, height - 1 - y, tex_info);
const size_t offset = (x + (width * y)) * 4;
std::memcpy(&gl_buffer[offset], vec4.AsArray(), 4);
} }
} }
glTexImage2D(GL_TEXTURE_2D, 0, tuple.internal_format, params.width, params.height,
0, GL_RGBA, GL_UNSIGNED_BYTE, tex_buffer.data());
} else { } else {
// Depth/Stencil formats need special treatment since they aren't sampleable using morton_to_gl_fns[static_cast<size_t>(pixel_format)](stride, height, &gl_buffer[0], addr,
// LookupTexture and can't use RGBA format load_start, load_end);
size_t tuple_idx = (size_t)params.pixel_format - 14;
ASSERT(tuple_idx < depth_format_tuples.size());
const FormatTuple& tuple = depth_format_tuples[tuple_idx];
u32 bytes_per_pixel = CachedSurface::GetFormatBpp(params.pixel_format) / 8;
// OpenGL needs 4 bpp alignment for D24 since using GL_UNSIGNED_INT as type
bool use_4bpp = (params.pixel_format == PixelFormat::D24);
u32 gl_bytes_per_pixel = use_4bpp ? 4 : bytes_per_pixel;
std::vector<u8> temp_fb_depth_buffer(params.width * params.height *
gl_bytes_per_pixel);
u8* temp_fb_depth_buffer_ptr =
use_4bpp ? temp_fb_depth_buffer.data() + 1 : temp_fb_depth_buffer.data();
MortonCopyPixels(params.pixel_format, params.width, params.height, bytes_per_pixel,
gl_bytes_per_pixel, texture_src_data, temp_fb_depth_buffer_ptr,
true);
glTexImage2D(GL_TEXTURE_2D, 0, tuple.internal_format, params.width, params.height,
0, tuple.format, tuple.type, temp_fb_depth_buffer.data());
} }
} }
// If not 1x scale, blit 1x texture to a new scaled texture and replace texture in surface
if (new_surface->res_scale_width != 1.f || new_surface->res_scale_height != 1.f) {
OGLTexture scaled_texture;
scaled_texture.Create();
AllocateSurfaceTexture(scaled_texture.handle, new_surface->pixel_format,
new_surface->GetScaledWidth(), new_surface->GetScaledHeight());
BlitTextures(new_surface->texture.handle, scaled_texture.handle,
CachedSurface::GetFormatType(new_surface->pixel_format),
MathUtil::Rectangle<int>(0, 0, new_surface->width, new_surface->height),
MathUtil::Rectangle<int>(0, 0, new_surface->GetScaledWidth(),
new_surface->GetScaledHeight()));
new_surface->texture.Release();
new_surface->texture.handle = scaled_texture.handle;
scaled_texture.handle = 0;
cur_state.texture_units[0].texture_2d = new_surface->texture.handle;
cur_state.Apply();
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
cur_state.texture_units[0].texture_2d = old_tex;
cur_state.Apply();
}
Memory::RasterizerMarkRegionCached(new_surface->addr, new_surface->size, 1);
surface_cache.add(std::make_pair(boost::icl::interval<PAddr>::right_open(
new_surface->addr, new_surface->addr + new_surface->size),
std::set<std::shared_ptr<CachedSurface>>({new_surface})));
return new_surface.get();
} }
CachedSurface* RasterizerCacheOpenGL::GetSurfaceRect(const CachedSurface& params, CachedSurface* RasterizerCacheOpenGL::GetSurfaceRect(const CachedSurface& params,
@ -826,102 +911,272 @@ CachedSurface* RasterizerCacheOpenGL::TryGetFillSurface(const GPU::Regs::MemoryF
return nullptr; return nullptr;
} }
MICROPROFILE_DEFINE(OpenGL_SurfaceDownload, "OpenGL", "Surface Download", MP_RGB(128, 192, 64)); MICROPROFILE_DEFINE(OpenGL_SurfaceFlush, "OpenGL", "Surface Flush", MP_RGB(128, 192, 64));
void RasterizerCacheOpenGL::FlushSurface(CachedSurface* surface) { void CachedSurface::FlushGLBuffer(PAddr flush_start, PAddr flush_end) {
using PixelFormat = CachedSurface::PixelFormat; u8* const dst_buffer = Memory::GetPhysicalPointer(addr);
using SurfaceType = CachedSurface::SurfaceType; if (dst_buffer == nullptr)
if (!surface->dirty) {
return; return;
ASSERT(gl_buffer_size == width * height * GetGLBytesPerPixel(pixel_format));
// TODO: Should probably be done in ::Memory:: and check for other regions too
// same as loadglbuffer()
if (flush_start < Memory::VRAM_VADDR_END && flush_end > Memory::VRAM_VADDR_END)
flush_end = Memory::VRAM_VADDR_END;
if (flush_start < Memory::VRAM_VADDR && flush_end > Memory::VRAM_VADDR)
flush_start = Memory::VRAM_VADDR;
MICROPROFILE_SCOPE(OpenGL_SurfaceFlush);
ASSERT(flush_start >= addr && flush_end <= end);
const u32 start_offset = flush_start - addr;
const u32 end_offset = flush_end - addr;
if (type == SurfaceType::Fill) {
const u32 coarse_start_offset = start_offset - (start_offset % fill_size);
const u32 backup_bytes = start_offset % fill_size;
std::array<u8, 4> backup_data;
if (backup_bytes)
std::memcpy(&backup_data[0], &dst_buffer[coarse_start_offset], backup_bytes);
for (u32 offset = coarse_start_offset; offset < end_offset; offset += fill_size)
std::memcpy(&dst_buffer[offset], &fill_data[0],
std::min(fill_size, end_offset - offset));
if (backup_bytes)
std::memcpy(&dst_buffer[coarse_start_offset], &backup_data[0], backup_bytes);
} else if (!is_tiled) {
ASSERT(type == SurfaceType::Color);
std::memcpy(dst_buffer + start_offset, &gl_buffer[start_offset], flush_end - flush_start);
} else {
gl_to_morton_fns[static_cast<size_t>(pixel_format)](stride, height, &gl_buffer[0], addr,
flush_start, flush_end);
} }
}
MICROPROFILE_SCOPE(OpenGL_SurfaceDownload); void CachedSurface::UploadGLTexture(const MathUtil::Rectangle<u32>& rect) {
if (type == SurfaceType::Fill)
u8* dst_buffer = Memory::GetPhysicalPointer(surface->addr);
if (dst_buffer == nullptr) {
return; return;
ASSERT(gl_buffer_size == width * height * GetGLBytesPerPixel(pixel_format));
// Load data from memory to the surface
GLint x0 = static_cast<GLint>(rect.left);
GLint y0 = static_cast<GLint>(rect.bottom);
size_t buffer_offset = (y0 * stride + x0) * GetGLBytesPerPixel(pixel_format);
const FormatTuple& tuple = GetFormatTuple(pixel_format);
GLuint target_tex = texture.handle;
// If not 1x scale, create 1x texture that we will blit from to replace texture subrect in
// surface
OGLTexture unscaled_tex;
if (res_scale != 1) {
x0 = 0;
y0 = 0;
unscaled_tex.Create();
AllocateSurfaceTexture(unscaled_tex.handle, tuple, rect.GetWidth(), rect.GetHeight());
target_tex = unscaled_tex.handle;
} }
OpenGLState cur_state = OpenGLState::GetCurState(); OpenGLState cur_state = OpenGLState::GetCurState();
GLuint old_tex = cur_state.texture_units[0].texture_2d; GLuint old_tex = cur_state.texture_units[0].texture_2d;
cur_state.texture_units[0].texture_2d = target_tex;
OGLTexture unscaled_tex;
GLuint texture_to_flush = surface->texture.handle;
// If not 1x scale, blit scaled texture to a new 1x texture and use that to flush
if (surface->res_scale_width != 1.f || surface->res_scale_height != 1.f) {
unscaled_tex.Create();
AllocateSurfaceTexture(unscaled_tex.handle, surface->pixel_format, surface->width,
surface->height);
BlitTextures(
surface->texture.handle, unscaled_tex.handle,
CachedSurface::GetFormatType(surface->pixel_format),
MathUtil::Rectangle<int>(0, 0, surface->GetScaledWidth(), surface->GetScaledHeight()),
MathUtil::Rectangle<int>(0, 0, surface->width, surface->height));
texture_to_flush = unscaled_tex.handle;
}
cur_state.texture_units[0].texture_2d = texture_to_flush;
cur_state.Apply(); cur_state.Apply();
// Ensure no bad interactions with GL_UNPACK_ALIGNMENT
ASSERT(stride * GetGLBytesPerPixel(pixel_format) % 4 == 0);
glPixelStorei(GL_UNPACK_ROW_LENGTH, static_cast<GLint>(stride));
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0);
glTexSubImage2D(GL_TEXTURE_2D, 0, x0, y0, static_cast<GLsizei>(rect.GetWidth()),
static_cast<GLsizei>(rect.GetHeight()), tuple.format, tuple.type,
&gl_buffer[buffer_offset]);
if (!surface->is_tiled) { glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
// TODO: Ensure this will always be a color format, not a depth or other format
ASSERT((size_t)surface->pixel_format < fb_format_tuples.size());
const FormatTuple& tuple = fb_format_tuples[(unsigned int)surface->pixel_format];
glPixelStorei(GL_PACK_ROW_LENGTH, (GLint)surface->pixel_stride);
glGetTexImage(GL_TEXTURE_2D, 0, tuple.format, tuple.type, dst_buffer);
glPixelStorei(GL_PACK_ROW_LENGTH, 0);
} else {
SurfaceType type = CachedSurface::GetFormatType(surface->pixel_format);
if (type != SurfaceType::Depth && type != SurfaceType::DepthStencil) {
ASSERT((size_t)surface->pixel_format < fb_format_tuples.size());
const FormatTuple& tuple = fb_format_tuples[(unsigned int)surface->pixel_format];
u32 bytes_per_pixel = CachedSurface::GetFormatBpp(surface->pixel_format) / 8;
std::vector<u8> temp_gl_buffer(surface->width * surface->height * bytes_per_pixel);
glGetTexImage(GL_TEXTURE_2D, 0, tuple.format, tuple.type, temp_gl_buffer.data());
// Directly copy pixels. Internal OpenGL color formats are consistent so no conversion
// is necessary.
MortonCopyPixels(surface->pixel_format, surface->width, surface->height,
bytes_per_pixel, bytes_per_pixel, dst_buffer, temp_gl_buffer.data(),
false);
} else {
// Depth/Stencil formats need special treatment since they aren't sampleable using
// LookupTexture and can't use RGBA format
size_t tuple_idx = (size_t)surface->pixel_format - 14;
ASSERT(tuple_idx < depth_format_tuples.size());
const FormatTuple& tuple = depth_format_tuples[tuple_idx];
u32 bytes_per_pixel = CachedSurface::GetFormatBpp(surface->pixel_format) / 8;
// OpenGL needs 4 bpp alignment for D24 since using GL_UNSIGNED_INT as type
bool use_4bpp = (surface->pixel_format == PixelFormat::D24);
u32 gl_bytes_per_pixel = use_4bpp ? 4 : bytes_per_pixel;
std::vector<u8> temp_gl_buffer(surface->width * surface->height * gl_bytes_per_pixel);
glGetTexImage(GL_TEXTURE_2D, 0, tuple.format, tuple.type, temp_gl_buffer.data());
u8* temp_gl_buffer_ptr = use_4bpp ? temp_gl_buffer.data() + 1 : temp_gl_buffer.data();
MortonCopyPixels(surface->pixel_format, surface->width, surface->height,
bytes_per_pixel, gl_bytes_per_pixel, dst_buffer, temp_gl_buffer_ptr,
false);
}
}
surface->dirty = false;
cur_state.texture_units[0].texture_2d = old_tex; cur_state.texture_units[0].texture_2d = old_tex;
cur_state.Apply(); cur_state.Apply();
if (res_scale != 1) {
auto scaled_rect = rect;
scaled_rect.left *= res_scale;
scaled_rect.top *= res_scale;
scaled_rect.right *= res_scale;
scaled_rect.bottom *= res_scale;
BlitTextures(unscaled_tex.handle, {0, rect.GetHeight(), rect.GetWidth(), 0}, texture.handle,
scaled_rect, type);
}
}
void CachedSurface::DownloadGLTexture(const MathUtil::Rectangle<u32>& rect) {
if (type == SurfaceType::Fill)
return;
if (gl_buffer == nullptr) {
gl_buffer_size = width * height * GetGLBytesPerPixel(pixel_format);
gl_buffer.reset(new u8[gl_buffer_size]);
}
OpenGLState state = OpenGLState::GetCurState();
OpenGLState prev_state = state;
SCOPE_EXIT({ prev_state.Apply(); });
const FormatTuple& tuple = GetFormatTuple(pixel_format);
// Ensure no bad interactions with GL_PACK_ALIGNMENT
ASSERT(stride * GetGLBytesPerPixel(pixel_format) % 4 == 0);
glPixelStorei(GL_PACK_ROW_LENGTH, static_cast<GLint>(stride));
size_t buffer_offset = (rect.bottom * stride + rect.left) * GetGLBytesPerPixel(pixel_format);
// If not 1x scale, blit scaled texture to a new 1x texture and use that to flush
OGLTexture unscaled_tex;
if (res_scale != 1) {
auto scaled_rect = rect;
scaled_rect.left *= res_scale;
scaled_rect.top *= res_scale;
scaled_rect.right *= res_scale;
scaled_rect.bottom *= res_scale;
unscaled_tex.Create();
AllocateSurfaceTexture(unscaled_tex.handle, tuple, rect.GetWidth(), rect.GetHeight());
BlitTextures(texture.handle, scaled_rect, unscaled_tex.handle, rect, type);
state.texture_units[0].texture_2d = unscaled_tex.handle;
state.Apply();
glActiveTexture(GL_TEXTURE0);
glGetTexImage(GL_TEXTURE_2D, 0, tuple.format, tuple.type, &gl_buffer[buffer_offset]);
} else {
state.ResetTexture(texture.handle);
state.draw.read_framebuffer = transfer_framebuffers[0].handle;
state.Apply();
if (type == SurfaceType::Color || type == SurfaceType::Texture) {
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
texture.handle, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
0, 0);
} else if (type == SurfaceType::Depth) {
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,
texture.handle, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
} else {
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
texture.handle, 0);
}
glReadPixels(static_cast<GLint>(rect.left), static_cast<GLint>(rect.bottom),
static_cast<GLsizei>(rect.GetWidth()), static_cast<GLsizei>(rect.GetHeight()),
tuple.format, tuple.type, &gl_buffer[buffer_offset]);
}
glPixelStorei(GL_PACK_ROW_LENGTH, 0);
}
enum MatchFlags {
Invalid = 1, // Flag that can be applied to other match types, invalid matches require
// validation before they can be used
Exact = 1 << 1, // Surfaces perfectly match
SubRect = 1 << 2, // Surface encompasses params
Copy = 1 << 3, // Surface we can copy from
Expand = 1 << 4, // Surface that can expand params
TexCopy = 1 << 5 // Surface that will match a display transfer "texture copy" parameters
};
constexpr MatchFlags operator|(MatchFlags lhs, MatchFlags rhs) {
return static_cast<MatchFlags>(static_cast<int>(lhs) | static_cast<int>(rhs));
}
/// Get the best surface match (and its match type) for the given flags
template <MatchFlags find_flags>
Surface FindMatch(const SurfaceCache& surface_cache, const SurfaceParams& params,
ScaleMatch match_scale_type,
boost::optional<SurfaceInterval> validate_interval = boost::none) {
Surface match_surface = nullptr;
bool match_valid = false;
u32 match_scale = 0;
SurfaceInterval match_interval{};
for (auto& pair : RangeFromInterval(surface_cache, params.GetInterval())) {
for (auto& surface : pair.second) {
const bool res_scale_matched = match_scale_type == ScaleMatch::Exact
? (params.res_scale == surface->res_scale)
: (params.res_scale <= surface->res_scale);
bool is_valid =
find_flags & MatchFlags::Copy ? true
: // validity will be checked in GetCopyableInterval
surface->IsRegionValid(validate_interval.value_or(params.GetInterval()));
if (!(find_flags & MatchFlags::Invalid) && !is_valid)
continue;
auto IsMatch_Helper = [&](auto check_type, auto match_fn) {
if (!(find_flags & check_type))
return;
bool matched;
SurfaceInterval surface_interval;
std::tie(matched, surface_interval) = match_fn();
if (!matched)
return;
if (!res_scale_matched && match_scale_type != ScaleMatch::Ignore &&
surface->type != SurfaceType::Fill)
return;
// Found a match, update only if this is better than the previous one
auto UpdateMatch = [&] {
match_surface = surface;
match_valid = is_valid;
match_scale = surface->res_scale;
match_interval = surface_interval;
};
if (surface->res_scale > match_scale) {
UpdateMatch();
return;
} else if (surface->res_scale < match_scale) {
return;
}
if (is_valid && !match_valid) {
UpdateMatch();
return;
} else if (is_valid != match_valid) {
return;
}
if (boost::icl::length(surface_interval) > boost::icl::length(match_interval)) {
UpdateMatch();
}
};
IsMatch_Helper(std::integral_constant<MatchFlags, MatchFlags::Exact>{}, [&] {
return std::make_pair(surface->ExactMatch(params), surface->GetInterval());
});
IsMatch_Helper(std::integral_constant<MatchFlags, MatchFlags::SubRect>{}, [&] {
return std::make_pair(surface->CanSubRect(params), surface->GetInterval());
});
IsMatch_Helper(std::integral_constant<MatchFlags, MatchFlags::Copy>{}, [&] {
auto copy_interval =
params.FromInterval(*validate_interval).GetCopyableInterval(surface);
bool matched = boost::icl::length(copy_interval & *validate_interval) != 0 &&
surface->CanCopy(params, copy_interval);
return std::make_pair(matched, copy_interval);
});
IsMatch_Helper(std::integral_constant<MatchFlags, MatchFlags::Expand>{}, [&] {
return std::make_pair(surface->CanExpand(params), surface->GetInterval());
});
IsMatch_Helper(std::integral_constant<MatchFlags, MatchFlags::TexCopy>{}, [&] {
return std::make_pair(surface->CanTexCopy(params), surface->GetInterval());
});
}
}
return match_surface;
} }
void RasterizerCacheOpenGL::FlushRegion(PAddr addr, u32 size, const CachedSurface* skip_surface, void RasterizerCacheOpenGL::FlushRegion(PAddr addr, u32 size, const CachedSurface* skip_surface,

View File

@ -13,6 +13,7 @@
#pragma GCC diagnostic ignored "-Wunused-local-typedefs" #pragma GCC diagnostic ignored "-Wunused-local-typedefs"
#endif #endif
#include <boost/icl/interval_map.hpp> #include <boost/icl/interval_map.hpp>
#include <boost/icl/interval_set.hpp>
#ifdef __GNUC__ #ifdef __GNUC__
#pragma GCC diagnostic pop #pragma GCC diagnostic pop
#endif #endif
@ -20,21 +21,37 @@
#include "common/assert.h" #include "common/assert.h"
#include "common/common_funcs.h" #include "common/common_funcs.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "common/math_util.h"
#include "core/hw/gpu.h" #include "core/hw/gpu.h"
#include "video_core/regs_framebuffer.h" #include "video_core/regs_framebuffer.h"
#include "video_core/regs_texturing.h" #include "video_core/regs_texturing.h"
#include "video_core/renderer_opengl/gl_resource_manager.h" #include "video_core/renderer_opengl/gl_resource_manager.h"
namespace MathUtil {
template <class T>
struct Rectangle;
}
struct CachedSurface; struct CachedSurface;
using Surface = std::shared_ptr<CachedSurface>;
using SurfaceSet = std::set<Surface>;
using SurfaceCache = boost::icl::interval_map<PAddr, std::set<std::shared_ptr<CachedSurface>>>; using SurfaceRegions = boost::icl::interval_set<PAddr>;
using SurfaceMap = boost::icl::interval_map<PAddr, Surface>;
using SurfaceCache = boost::icl::interval_map<PAddr, SurfaceSet>;
struct CachedSurface { using SurfaceInterval = SurfaceCache::interval_type;
static_assert(std::is_same<SurfaceRegions::interval_type, SurfaceCache::interval_type>() &&
std::is_same<SurfaceMap::interval_type, SurfaceCache::interval_type>(),
"incorrect interval types");
using SurfaceRect_Tuple = std::tuple<Surface, MathUtil::Rectangle<u32>>;
using SurfaceSurfaceRect_Tuple = std::tuple<Surface, Surface, MathUtil::Rectangle<u32>>;
using PageMap = boost::icl::interval_map<u32, int>;
enum class ScaleMatch {
Exact, // only accept same res scale
Upscale, // only allow higher scale than params
Ignore // accept every scaled res
};
struct SurfaceParams {
enum class PixelFormat { enum class PixelFormat {
// First 5 formats are shared between textures and color buffers // First 5 formats are shared between textures and color buffers
RGBA8 = 0, RGBA8 = 0,
@ -68,10 +85,11 @@ struct CachedSurface {
Texture = 1, Texture = 1,
Depth = 2, Depth = 2,
DepthStencil = 3, DepthStencil = 3,
Invalid = 4, Fill = 4,
Invalid = 5
}; };
static constexpr unsigned int GetFormatBpp(CachedSurface::PixelFormat format) { static constexpr unsigned int GetFormatBpp(PixelFormat format) {
constexpr std::array<unsigned int, 18> bpp_table = { constexpr std::array<unsigned int, 18> bpp_table = {
32, // RGBA8 32, // RGBA8
24, // RGB8 24, // RGB8
@ -93,8 +111,11 @@ struct CachedSurface {
32, // D24S8 32, // D24S8
}; };
ASSERT((unsigned int)format < ARRAY_SIZE(bpp_table)); ASSERT(static_cast<size_t>(format) < bpp_table.size());
return bpp_table[(unsigned int)format]; return bpp_table[static_cast<size_t>(format)];
}
unsigned int GetFormatBpp() const {
return GetFormatBpp(pixel_format);
} }
static PixelFormat PixelFormatFromTextureFormat(Pica::TexturingRegs::TextureFormat format) { static PixelFormat PixelFormatFromTextureFormat(Pica::TexturingRegs::TextureFormat format) {
@ -162,31 +183,114 @@ struct CachedSurface {
return SurfaceType::Invalid; return SurfaceType::Invalid;
} }
/// Update the params "size", "end" and "type" from the already set "addr", "width", "height"
/// and "pixel_format"
void UpdateParams() {
if (stride == 0) {
stride = width;
}
type = GetFormatType(pixel_format);
size = !is_tiled ? BytesInPixels(stride * (height - 1) + width)
: BytesInPixels(stride * 8 * (height / 8 - 1) + width * 8);
end = addr + size;
}
SurfaceInterval GetInterval() const {
return SurfaceInterval::right_open(addr, end);
}
// Returns the outer rectangle containing "interval"
SurfaceParams FromInterval(SurfaceInterval interval) const;
SurfaceInterval GetSubRectInterval(MathUtil::Rectangle<u32> unscaled_rect) const;
// Returns the region of the biggest valid rectange within interval
SurfaceInterval GetCopyableInterval(const Surface& src_surface) const;
u32 GetScaledWidth() const { u32 GetScaledWidth() const {
return (u32)(width * res_scale_width); return width * res_scale;
} }
u32 GetScaledHeight() const { u32 GetScaledHeight() const {
return (u32)(height * res_scale_height); return height * res_scale;
} }
PAddr addr; MathUtil::Rectangle<u32> GetRect() const {
u32 size; return {0, height, width, 0};
}
PAddr min_valid; MathUtil::Rectangle<u32> GetScaledRect() const {
PAddr max_valid; return {0, GetScaledHeight(), GetScaledWidth(), 0};
}
u32 PixelsInBytes(u32 size) const {
return size * 8 / GetFormatBpp(pixel_format);
}
u32 BytesInPixels(u32 pixels) const {
return pixels * GetFormatBpp(pixel_format) / 8;
}
bool ExactMatch(const SurfaceParams& other_surface) const;
bool CanSubRect(const SurfaceParams& sub_surface) const;
bool CanExpand(const SurfaceParams& expanded_surface) const;
bool CanTexCopy(const SurfaceParams& texcopy_params) const;
MathUtil::Rectangle<u32> GetSubRect(const SurfaceParams& sub_surface) const;
MathUtil::Rectangle<u32> GetScaledSubRect(const SurfaceParams& sub_surface) const;
PAddr addr = 0;
PAddr end = 0;
u32 size = 0;
u32 width = 0;
u32 height = 0;
u32 stride = 0;
u16 res_scale = 1;
bool is_tiled = false;
PixelFormat pixel_format = PixelFormat::Invalid;
SurfaceType type = SurfaceType::Invalid;
};
struct CachedSurface : SurfaceParams {
bool CanFill(const SurfaceParams& dest_surface, SurfaceInterval fill_interval) const;
bool CanCopy(const SurfaceParams& dest_surface, SurfaceInterval copy_interval) const;
bool IsRegionValid(SurfaceInterval interval) const {
return (invalid_regions.find(interval) == invalid_regions.end());
}
bool IsSurfaceFullyInvalid() const {
return (invalid_regions & GetInterval()) == SurfaceRegions(GetInterval());
}
SurfaceRegions invalid_regions;
u32 fill_size = 0; /// Number of bytes to read from fill_data
std::array<u8, 4> fill_data;
OGLTexture texture; OGLTexture texture;
u32 width;
u32 height;
/// Stride between lines, in pixels. Only valid for images in linear format.
u32 pixel_stride = 0;
float res_scale_width = 1.f;
float res_scale_height = 1.f;
bool is_tiled; static constexpr unsigned int GetGLBytesPerPixel(PixelFormat format) {
PixelFormat pixel_format; // OpenGL needs 4 bpp alignment for D24 since using GL_UNSIGNED_INT as type
bool dirty; return format == PixelFormat::Invalid
? 0
: (format == PixelFormat::D24 || GetFormatType(format) == SurfaceType::Texture)
? 4
: SurfaceParams::GetFormatBpp(format) / 8;
}
std::unique_ptr<u8[]> gl_buffer;
size_t gl_buffer_size = 0;
// Read/Write data in 3DS memory to/from gl_buffer
void LoadGLBuffer(PAddr load_start, PAddr load_end);
void FlushGLBuffer(PAddr flush_start, PAddr flush_end);
// Upload/Download data in gl_buffer in/to this surface's texture
void UploadGLTexture(const MathUtil::Rectangle<u32>& rect);
void DownloadGLTexture(const MathUtil::Rectangle<u32>& rect);
}; };
class RasterizerCacheOpenGL : NonCopyable { class RasterizerCacheOpenGL : NonCopyable {

View File

@ -144,7 +144,7 @@ public:
OpenGLState(); OpenGLState();
/// Get the currently active OpenGL state /// Get the currently active OpenGL state
static OpenGLState& GetCurState() { static OpenGLState GetCurState() {
return cur_state; return cur_state;
} }