yuzu-emu
/
yuzu-mainline
Archived
1
0
Fork 0

Merge pull request #1409 from DarkLordZach/key-derivation

crypto: Add support for full key derivation
This commit is contained in:
bunnei 2018-10-12 22:55:49 -04:00 committed by GitHub
commit 1584fb6b38
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 1664 additions and 75 deletions

2
externals/mbedtls vendored

@ -1 +1 @@
Subproject commit d409b75a4cf75a5b358b352c75826ddbca44db54
Subproject commit a280e602f3a4ae001d3a83cbc3e6e04c99c22277

View File

@ -18,6 +18,8 @@ add_library(core STATIC
crypto/encryption_layer.h
crypto/key_manager.cpp
crypto/key_manager.h
crypto/partition_data_manager.cpp
crypto/partition_data_manager.h
crypto/ctr_encryption_layer.cpp
crypto/ctr_encryption_layer.h
crypto/xts_encryption_layer.cpp
@ -70,6 +72,7 @@ add_library(core STATIC
file_sys/vfs_real.cpp
file_sys/vfs_real.h
file_sys/vfs_static.h
file_sys/vfs_types.h
file_sys/vfs_vector.cpp
file_sys/vfs_vector.h
file_sys/xts_archive.cpp

View File

@ -4,23 +4,56 @@
#include <algorithm>
#include <array>
#include <bitset>
#include <cctype>
#include <fstream>
#include <locale>
#include <map>
#include <sstream>
#include <string_view>
#include <tuple>
#include <vector>
#include <mbedtls/bignum.h>
#include <mbedtls/cipher.h>
#include <mbedtls/cmac.h>
#include <mbedtls/sha256.h>
#include "common/common_funcs.h"
#include "common/common_paths.h"
#include "common/file_util.h"
#include "common/hex_util.h"
#include "common/logging/log.h"
#include "core/crypto/aes_util.h"
#include "core/crypto/key_manager.h"
#include "core/crypto/partition_data_manager.h"
#include "core/file_sys/content_archive.h"
#include "core/file_sys/nca_metadata.h"
#include "core/file_sys/partition_filesystem.h"
#include "core/file_sys/registered_cache.h"
#include "core/hle/service/filesystem/filesystem.h"
#include "core/loader/loader.h"
#include "core/settings.h"
namespace Core::Crypto {
constexpr u64 CURRENT_CRYPTO_REVISION = 0x5;
using namespace Common;
const std::array<SHA256Hash, 2> eticket_source_hashes{
"B71DB271DC338DF380AA2C4335EF8873B1AFD408E80B3582D8719FC81C5E511C"_array32, // eticket_rsa_kek_source
"E8965A187D30E57869F562D04383C996DE487BBA5761363D2D4D32391866A85C"_array32, // eticket_rsa_kekek_source
};
const std::map<std::pair<S128KeyType, u64>, std::string> KEYS_VARIABLE_LENGTH{
{{S128KeyType::Master, 0}, "master_key_"},
{{S128KeyType::Package1, 0}, "package1_key_"},
{{S128KeyType::Package2, 0}, "package2_key_"},
{{S128KeyType::Titlekek, 0}, "titlekek_"},
{{S128KeyType::Source, static_cast<u64>(SourceKeyType::Keyblob)}, "keyblob_key_source_"},
{{S128KeyType::Keyblob, 0}, "keyblob_key_"},
{{S128KeyType::KeyblobMAC, 0}, "keyblob_mac_key_"},
};
Key128 GenerateKeyEncryptionKey(Key128 source, Key128 master, Key128 kek_seed, Key128 key_seed) {
Key128 out{};
@ -37,6 +70,77 @@ Key128 GenerateKeyEncryptionKey(Key128 source, Key128 master, Key128 kek_seed, K
return out;
}
Key128 DeriveKeyblobKey(const Key128& sbk, const Key128& tsec, Key128 source) {
AESCipher<Key128> sbk_cipher(sbk, Mode::ECB);
AESCipher<Key128> tsec_cipher(tsec, Mode::ECB);
tsec_cipher.Transcode(source.data(), source.size(), source.data(), Op::Decrypt);
sbk_cipher.Transcode(source.data(), source.size(), source.data(), Op::Decrypt);
return source;
}
Key128 DeriveMasterKey(const std::array<u8, 0x90>& keyblob, const Key128& master_source) {
Key128 master_root;
std::memcpy(master_root.data(), keyblob.data(), sizeof(Key128));
AESCipher<Key128> master_cipher(master_root, Mode::ECB);
Key128 master{};
master_cipher.Transcode(master_source.data(), master_source.size(), master.data(), Op::Decrypt);
return master;
}
std::array<u8, 144> DecryptKeyblob(const std::array<u8, 176>& encrypted_keyblob,
const Key128& key) {
std::array<u8, 0x90> keyblob;
AESCipher<Key128> cipher(key, Mode::CTR);
cipher.SetIV(std::vector<u8>(encrypted_keyblob.data() + 0x10, encrypted_keyblob.data() + 0x20));
cipher.Transcode(encrypted_keyblob.data() + 0x20, keyblob.size(), keyblob.data(), Op::Decrypt);
return keyblob;
}
void KeyManager::DeriveGeneralPurposeKeys(u8 crypto_revision) {
const auto kek_generation_source =
GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKekGeneration));
const auto key_generation_source =
GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKeyGeneration));
if (HasKey(S128KeyType::Master, crypto_revision)) {
for (auto kak_type :
{KeyAreaKeyType::Application, KeyAreaKeyType::Ocean, KeyAreaKeyType::System}) {
if (HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(kak_type))) {
const auto source =
GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(kak_type));
const auto kek =
GenerateKeyEncryptionKey(source, GetKey(S128KeyType::Master, crypto_revision),
kek_generation_source, key_generation_source);
SetKey(S128KeyType::KeyArea, kek, crypto_revision, static_cast<u64>(kak_type));
}
}
AESCipher<Key128> master_cipher(GetKey(S128KeyType::Master, crypto_revision), Mode::ECB);
for (auto key_type : {SourceKeyType::Titlekek, SourceKeyType::Package2}) {
if (HasKey(S128KeyType::Source, static_cast<u64>(key_type))) {
Key128 key{};
master_cipher.Transcode(
GetKey(S128KeyType::Source, static_cast<u64>(key_type)).data(), key.size(),
key.data(), Op::Decrypt);
SetKey(key_type == SourceKeyType::Titlekek ? S128KeyType::Titlekek
: S128KeyType::Package2,
key, crypto_revision);
}
}
}
}
Key128 DeriveKeyblobMACKey(const Key128& keyblob_key, const Key128& mac_source) {
AESCipher<Key128> mac_cipher(keyblob_key, Mode::ECB);
Key128 mac_key{};
mac_cipher.Transcode(mac_source.data(), mac_key.size(), mac_key.data(), Op::Decrypt);
return mac_key;
}
boost::optional<Key128> DeriveSDSeed() {
const FileUtil::IOFile save_43(FileUtil::GetUserPath(FileUtil::UserPath::NANDDir) +
"/system/save/8000000000000043",
@ -71,23 +175,24 @@ boost::optional<Key128> DeriveSDSeed() {
return seed;
}
Loader::ResultStatus DeriveSDKeys(std::array<Key256, 2>& sd_keys, const KeyManager& keys) {
if (!keys.HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::SDKEK)))
Loader::ResultStatus DeriveSDKeys(std::array<Key256, 2>& sd_keys, KeyManager& keys) {
if (!keys.HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::SDKek)))
return Loader::ResultStatus::ErrorMissingSDKEKSource;
if (!keys.HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKEKGeneration)))
if (!keys.HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKekGeneration)))
return Loader::ResultStatus::ErrorMissingAESKEKGenerationSource;
if (!keys.HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKeyGeneration)))
return Loader::ResultStatus::ErrorMissingAESKeyGenerationSource;
const auto sd_kek_source =
keys.GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::SDKEK));
keys.GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::SDKek));
const auto aes_kek_gen =
keys.GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKEKGeneration));
keys.GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKekGeneration));
const auto aes_key_gen =
keys.GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKeyGeneration));
const auto master_00 = keys.GetKey(S128KeyType::Master);
const auto sd_kek =
GenerateKeyEncryptionKey(sd_kek_source, master_00, aes_kek_gen, aes_key_gen);
keys.SetKey(S128KeyType::SDKek, sd_kek);
if (!keys.HasKey(S128KeyType::SDSeed))
return Loader::ResultStatus::ErrorMissingSDSeed;
@ -118,9 +223,141 @@ Loader::ResultStatus DeriveSDKeys(std::array<Key256, 2>& sd_keys, const KeyManag
return source; ///< Return unaltered source to satisfy output requirement.
});
keys.SetKey(S256KeyType::SDKey, sd_keys[0], static_cast<u64>(SDKeyType::Save));
keys.SetKey(S256KeyType::SDKey, sd_keys[1], static_cast<u64>(SDKeyType::NCA));
return Loader::ResultStatus::Success;
}
std::vector<TicketRaw> GetTicketblob(const FileUtil::IOFile& ticket_save) {
if (!ticket_save.IsOpen())
return {};
std::vector<u8> buffer(ticket_save.GetSize());
ticket_save.ReadBytes(buffer.data(), buffer.size());
std::vector<TicketRaw> out;
u32 magic{};
for (std::size_t offset = 0; offset + 0x4 < buffer.size(); ++offset) {
if (buffer[offset] == 0x4 && buffer[offset + 1] == 0x0 && buffer[offset + 2] == 0x1 &&
buffer[offset + 3] == 0x0) {
out.emplace_back();
auto& next = out.back();
std::memcpy(&next, buffer.data() + offset, sizeof(TicketRaw));
offset += next.size();
}
}
return out;
}
template <size_t size>
static std::array<u8, size> operator^(const std::array<u8, size>& lhs,
const std::array<u8, size>& rhs) {
std::array<u8, size> out{};
std::transform(lhs.begin(), lhs.end(), rhs.begin(), out.begin(), std::bit_xor<>());
return out;
}
template <size_t target_size, size_t in_size>
static std::array<u8, target_size> MGF1(const std::array<u8, in_size>& seed) {
std::array<u8, in_size + 4> seed_exp{};
std::memcpy(seed_exp.data(), seed.data(), in_size);
std::vector<u8> out;
size_t i = 0;
while (out.size() < target_size) {
out.resize(out.size() + 0x20);
seed_exp[in_size + 3] = i;
mbedtls_sha256(seed_exp.data(), seed_exp.size(), out.data() + out.size() - 0x20, 0);
++i;
}
std::array<u8, target_size> target;
std::memcpy(target.data(), out.data(), target_size);
return target;
}
template <size_t size>
static boost::optional<u64> FindTicketOffset(const std::array<u8, size>& data) {
u64 offset = 0;
for (size_t i = 0x20; i < data.size() - 0x10; ++i) {
if (data[i] == 0x1) {
offset = i + 1;
break;
} else if (data[i] != 0x0) {
return boost::none;
}
}
return offset;
}
boost::optional<std::pair<Key128, Key128>> ParseTicket(const TicketRaw& ticket,
const RSAKeyPair<2048>& key) {
u32 cert_authority;
std::memcpy(&cert_authority, ticket.data() + 0x140, sizeof(cert_authority));
if (cert_authority == 0)
return boost::none;
if (cert_authority != Common::MakeMagic('R', 'o', 'o', 't'))
LOG_INFO(Crypto,
"Attempting to parse ticket with non-standard certificate authority {:08X}.",
cert_authority);
Key128 rights_id;
std::memcpy(rights_id.data(), ticket.data() + 0x2A0, sizeof(Key128));
if (rights_id == Key128{})
return boost::none;
Key128 key_temp{};
if (!std::any_of(ticket.begin() + 0x190, ticket.begin() + 0x280, [](u8 b) { return b != 0; })) {
std::memcpy(key_temp.data(), ticket.data() + 0x180, key_temp.size());
return std::make_pair(rights_id, key_temp);
}
mbedtls_mpi D; // RSA Private Exponent
mbedtls_mpi N; // RSA Modulus
mbedtls_mpi S; // Input
mbedtls_mpi M; // Output
mbedtls_mpi_init(&D);
mbedtls_mpi_init(&N);
mbedtls_mpi_init(&S);
mbedtls_mpi_init(&M);
mbedtls_mpi_read_binary(&D, key.decryption_key.data(), key.decryption_key.size());
mbedtls_mpi_read_binary(&N, key.modulus.data(), key.modulus.size());
mbedtls_mpi_read_binary(&S, ticket.data() + 0x180, 0x100);
mbedtls_mpi_exp_mod(&M, &S, &D, &N, nullptr);
std::array<u8, 0x100> rsa_step;
mbedtls_mpi_write_binary(&M, rsa_step.data(), rsa_step.size());
u8 m_0 = rsa_step[0];
std::array<u8, 0x20> m_1;
std::memcpy(m_1.data(), rsa_step.data() + 0x01, m_1.size());
std::array<u8, 0xDF> m_2;
std::memcpy(m_2.data(), rsa_step.data() + 0x21, m_2.size());
if (m_0 != 0)
return boost::none;
m_1 = m_1 ^ MGF1<0x20>(m_2);
m_2 = m_2 ^ MGF1<0xDF>(m_1);
const auto offset = FindTicketOffset(m_2);
if (offset == boost::none)
return boost::none;
ASSERT(offset.get() > 0);
std::memcpy(key_temp.data(), m_2.data() + offset.get(), key_temp.size());
return std::make_pair(rights_id, key_temp);
}
KeyManager::KeyManager() {
// Initialize keys
const std::string hactool_keys_dir = FileUtil::GetHactoolConfigurationPath();
@ -137,6 +374,15 @@ KeyManager::KeyManager() {
AttemptLoadKeyFile(yuzu_keys_dir, hactool_keys_dir, "title.keys", true);
AttemptLoadKeyFile(yuzu_keys_dir, yuzu_keys_dir, "title.keys_autogenerated", true);
AttemptLoadKeyFile(yuzu_keys_dir, hactool_keys_dir, "console.keys", false);
AttemptLoadKeyFile(yuzu_keys_dir, yuzu_keys_dir, "console.keys_autogenerated", false);
}
static bool ValidCryptoRevisionString(std::string_view base, size_t begin, size_t length) {
if (base.size() < begin + length)
return false;
return std::all_of(base.begin() + begin, base.begin() + begin + length,
[](u8 c) { return std::isdigit(c); });
}
void KeyManager::LoadFromFile(const std::string& filename, bool is_title_keys) {
@ -158,6 +404,9 @@ void KeyManager::LoadFromFile(const std::string& filename, bool is_title_keys) {
out[0].erase(std::remove(out[0].begin(), out[0].end(), ' '), out[0].end());
out[1].erase(std::remove(out[1].begin(), out[1].end(), ' '), out[1].end());
if (out[0].compare(0, 1, "#") == 0)
continue;
if (is_title_keys) {
auto rights_id_raw = Common::HexStringToArray<16>(out[0]);
u128 rights_id{};
@ -174,6 +423,50 @@ void KeyManager::LoadFromFile(const std::string& filename, bool is_title_keys) {
const auto index = s256_file_id.at(out[0]);
Key256 key = Common::HexStringToArray<32>(out[1]);
s256_keys[{index.type, index.field1, index.field2}] = key;
} else if (out[0].compare(0, 8, "keyblob_") == 0 &&
out[0].compare(0, 9, "keyblob_k") != 0) {
if (!ValidCryptoRevisionString(out[0], 8, 2))
continue;
const auto index = std::stoul(out[0].substr(8, 2), nullptr, 16);
keyblobs[index] = Common::HexStringToArray<0x90>(out[1]);
} else if (out[0].compare(0, 18, "encrypted_keyblob_") == 0) {
if (!ValidCryptoRevisionString(out[0], 18, 2))
continue;
const auto index = std::stoul(out[0].substr(18, 2), nullptr, 16);
encrypted_keyblobs[index] = Common::HexStringToArray<0xB0>(out[1]);
} else {
for (const auto& kv : KEYS_VARIABLE_LENGTH) {
if (!ValidCryptoRevisionString(out[0], kv.second.size(), 2))
continue;
if (out[0].compare(0, kv.second.size(), kv.second) == 0) {
const auto index =
std::stoul(out[0].substr(kv.second.size(), 2), nullptr, 16);
const auto sub = kv.first.second;
if (sub == 0) {
s128_keys[{kv.first.first, index, 0}] =
Common::HexStringToArray<16>(out[1]);
} else {
s128_keys[{kv.first.first, kv.first.second, index}] =
Common::HexStringToArray<16>(out[1]);
}
break;
}
}
static constexpr std::array<const char*, 3> kak_names = {
"key_area_key_application_", "key_area_key_ocean_", "key_area_key_system_"};
for (size_t j = 0; j < kak_names.size(); ++j) {
const auto& match = kak_names[j];
if (out[0].compare(0, std::strlen(match), match) == 0) {
const auto index =
std::stoul(out[0].substr(std::strlen(match), 2), nullptr, 16);
s128_keys[{S128KeyType::KeyArea, index, j}] =
Common::HexStringToArray<16>(out[1]);
}
}
}
}
}
@ -187,6 +480,28 @@ void KeyManager::AttemptLoadKeyFile(const std::string& dir1, const std::string&
LoadFromFile(dir2 + DIR_SEP + filename, title);
}
bool KeyManager::BaseDeriveNecessary() const {
const auto check_key_existence = [this](auto key_type, u64 index1 = 0, u64 index2 = 0) {
return !HasKey(key_type, index1, index2);
};
if (check_key_existence(S256KeyType::Header))
return true;
for (size_t i = 0; i < CURRENT_CRYPTO_REVISION; ++i) {
if (check_key_existence(S128KeyType::Master, i) ||
check_key_existence(S128KeyType::KeyArea, i,
static_cast<u64>(KeyAreaKeyType::Application)) ||
check_key_existence(S128KeyType::KeyArea, i, static_cast<u64>(KeyAreaKeyType::Ocean)) ||
check_key_existence(S128KeyType::KeyArea, i,
static_cast<u64>(KeyAreaKeyType::System)) ||
check_key_existence(S128KeyType::Titlekek, i))
return true;
}
return false;
}
bool KeyManager::HasKey(S128KeyType id, u64 field1, u64 field2) const {
return s128_keys.find({id, field1, field2}) != s128_keys.end();
}
@ -207,13 +522,30 @@ Key256 KeyManager::GetKey(S256KeyType id, u64 field1, u64 field2) const {
return s256_keys.at({id, field1, field2});
}
template <std::size_t Size>
void KeyManager::WriteKeyToFile(bool title_key, std::string_view keyname,
Key256 KeyManager::GetBISKey(u8 partition_id) const {
Key256 out{};
for (const auto& bis_type : {BISKeyType::Crypto, BISKeyType::Tweak}) {
if (HasKey(S128KeyType::BIS, partition_id, static_cast<u64>(bis_type))) {
std::memcpy(
out.data() + sizeof(Key128) * static_cast<u64>(bis_type),
s128_keys.at({S128KeyType::BIS, partition_id, static_cast<u64>(bis_type)}).data(),
sizeof(Key128));
}
}
return out;
}
template <size_t Size>
void KeyManager::WriteKeyToFile(KeyCategory category, std::string_view keyname,
const std::array<u8, Size>& key) {
const std::string yuzu_keys_dir = FileUtil::GetUserPath(FileUtil::UserPath::KeysDir);
std::string filename = "title.keys_autogenerated";
if (!title_key)
if (category == KeyCategory::Standard)
filename = dev_mode ? "dev.keys_autogenerated" : "prod.keys_autogenerated";
else if (category == KeyCategory::Console)
filename = "console.keys_autogenerated";
const auto add_info_text = !FileUtil::Exists(yuzu_keys_dir + DIR_SEP + filename);
FileUtil::CreateFullPath(yuzu_keys_dir + DIR_SEP + filename);
std::ofstream file(yuzu_keys_dir + DIR_SEP + filename, std::ios::app);
@ -227,7 +559,7 @@ void KeyManager::WriteKeyToFile(bool title_key, std::string_view keyname,
}
file << fmt::format("\n{} = {}", keyname, Common::HexArrayToString(key));
AttemptLoadKeyFile(yuzu_keys_dir, yuzu_keys_dir, filename, title_key);
AttemptLoadKeyFile(yuzu_keys_dir, yuzu_keys_dir, filename, category == KeyCategory::Title);
}
void KeyManager::SetKey(S128KeyType id, Key128 key, u64 field1, u64 field2) {
@ -237,8 +569,15 @@ void KeyManager::SetKey(S128KeyType id, Key128 key, u64 field1, u64 field2) {
Key128 rights_id;
std::memcpy(rights_id.data(), &field2, sizeof(u64));
std::memcpy(rights_id.data() + sizeof(u64), &field1, sizeof(u64));
WriteKeyToFile(true, Common::HexArrayToString(rights_id), key);
WriteKeyToFile(KeyCategory::Title, Common::HexArrayToString(rights_id), key);
}
auto category = KeyCategory::Standard;
if (id == S128KeyType::Keyblob || id == S128KeyType::KeyblobMAC || id == S128KeyType::TSEC ||
id == S128KeyType::SecureBoot || id == S128KeyType::SDSeed || id == S128KeyType::BIS) {
category = KeyCategory::Console;
}
const auto iter2 = std::find_if(
s128_file_id.begin(), s128_file_id.end(),
[&id, &field1, &field2](const std::pair<std::string, KeyIndex<S128KeyType>> elem) {
@ -246,7 +585,30 @@ void KeyManager::SetKey(S128KeyType id, Key128 key, u64 field1, u64 field2) {
std::tie(id, field1, field2);
});
if (iter2 != s128_file_id.end())
WriteKeyToFile(false, iter2->first, key);
WriteKeyToFile(category, iter2->first, key);
// Variable cases
if (id == S128KeyType::KeyArea) {
static constexpr std::array<const char*, 3> kak_names = {"key_area_key_application_{:02X}",
"key_area_key_ocean_{:02X}",
"key_area_key_system_{:02X}"};
WriteKeyToFile(category, fmt::format(kak_names.at(field2), field1), key);
} else if (id == S128KeyType::Master) {
WriteKeyToFile(category, fmt::format("master_key_{:02X}", field1), key);
} else if (id == S128KeyType::Package1) {
WriteKeyToFile(category, fmt::format("package1_key_{:02X}", field1), key);
} else if (id == S128KeyType::Package2) {
WriteKeyToFile(category, fmt::format("package2_key_{:02X}", field1), key);
} else if (id == S128KeyType::Titlekek) {
WriteKeyToFile(category, fmt::format("titlekek_{:02X}", field1), key);
} else if (id == S128KeyType::Keyblob) {
WriteKeyToFile(category, fmt::format("keyblob_key_{:02X}", field1), key);
} else if (id == S128KeyType::KeyblobMAC) {
WriteKeyToFile(category, fmt::format("keyblob_mac_key_{:02X}", field1), key);
} else if (id == S128KeyType::Source && field1 == static_cast<u64>(SourceKeyType::Keyblob)) {
WriteKeyToFile(category, fmt::format("keyblob_key_source_{:02X}", field2), key);
}
s128_keys[{id, field1, field2}] = key;
}
@ -260,7 +622,7 @@ void KeyManager::SetKey(S256KeyType id, Key256 key, u64 field1, u64 field2) {
std::tie(id, field1, field2);
});
if (iter != s256_file_id.end())
WriteKeyToFile(false, iter->first, key);
WriteKeyToFile(KeyCategory::Standard, iter->first, key);
s256_keys[{id, field1, field2}] = key;
}
@ -290,59 +652,388 @@ void KeyManager::DeriveSDSeedLazy() {
SetKey(S128KeyType::SDSeed, res.get());
}
static Key128 CalculateCMAC(const u8* source, size_t size, const Key128& key) {
Key128 out{};
mbedtls_cipher_cmac(mbedtls_cipher_info_from_type(MBEDTLS_CIPHER_AES_128_ECB), key.data(),
key.size() * 8, source, size, out.data());
return out;
}
void KeyManager::DeriveBase() {
if (!BaseDeriveNecessary())
return;
if (!HasKey(S128KeyType::SecureBoot) || !HasKey(S128KeyType::TSEC))
return;
const auto has_bis = [this](u64 id) {
return HasKey(S128KeyType::BIS, id, static_cast<u64>(BISKeyType::Crypto)) &&
HasKey(S128KeyType::BIS, id, static_cast<u64>(BISKeyType::Tweak));
};
const auto copy_bis = [this](u64 id_from, u64 id_to) {
SetKey(S128KeyType::BIS,
GetKey(S128KeyType::BIS, id_from, static_cast<u64>(BISKeyType::Crypto)), id_to,
static_cast<u64>(BISKeyType::Crypto));
SetKey(S128KeyType::BIS,
GetKey(S128KeyType::BIS, id_from, static_cast<u64>(BISKeyType::Tweak)), id_to,
static_cast<u64>(BISKeyType::Tweak));
};
if (has_bis(2) && !has_bis(3))
copy_bis(2, 3);
else if (has_bis(3) && !has_bis(2))
copy_bis(3, 2);
std::bitset<32> revisions(0xFFFFFFFF);
for (size_t i = 0; i < revisions.size(); ++i) {
if (!HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::Keyblob), i) ||
encrypted_keyblobs[i] == std::array<u8, 0xB0>{}) {
revisions.reset(i);
}
}
if (!revisions.any())
return;
const auto sbk = GetKey(S128KeyType::SecureBoot);
const auto tsec = GetKey(S128KeyType::TSEC);
const auto master_source = GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::Master));
for (size_t i = 0; i < revisions.size(); ++i) {
if (!revisions[i])
continue;
// Derive keyblob key
const auto key = DeriveKeyblobKey(
sbk, tsec, GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::Keyblob), i));
SetKey(S128KeyType::Keyblob, key, i);
// Derive keyblob MAC key
if (!HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyblobMAC)))
continue;
const auto mac_key = DeriveKeyblobMACKey(
key, GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyblobMAC)));
SetKey(S128KeyType::KeyblobMAC, mac_key, i);
Key128 cmac = CalculateCMAC(encrypted_keyblobs[i].data() + 0x10, 0xA0, mac_key);
if (std::memcmp(cmac.data(), encrypted_keyblobs[i].data(), cmac.size()) != 0)
continue;
// Decrypt keyblob
if (keyblobs[i] == std::array<u8, 0x90>{}) {
keyblobs[i] = DecryptKeyblob(encrypted_keyblobs[i], key);
WriteKeyToFile<0x90>(KeyCategory::Console, fmt::format("keyblob_{:02X}", i),
keyblobs[i]);
}
Key128 package1;
std::memcpy(package1.data(), keyblobs[i].data() + 0x80, sizeof(Key128));
SetKey(S128KeyType::Package1, package1, i);
// Derive master key
if (HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::Master))) {
SetKey(S128KeyType::Master,
DeriveMasterKey(keyblobs[i], GetKey(S128KeyType::Source,
static_cast<u64>(SourceKeyType::Master))),
i);
}
}
revisions.set();
for (size_t i = 0; i < revisions.size(); ++i) {
if (!HasKey(S128KeyType::Master, i))
revisions.reset(i);
}
if (!revisions.any())
return;
for (size_t i = 0; i < revisions.size(); ++i) {
if (!revisions[i])
continue;
// Derive general purpose keys
DeriveGeneralPurposeKeys(i);
}
if (HasKey(S128KeyType::Master, 0) &&
HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKeyGeneration)) &&
HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKekGeneration)) &&
HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::HeaderKek)) &&
HasKey(S256KeyType::HeaderSource)) {
const auto header_kek = GenerateKeyEncryptionKey(
GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::HeaderKek)),
GetKey(S128KeyType::Master, 0),
GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKekGeneration)),
GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKeyGeneration)));
SetKey(S128KeyType::HeaderKek, header_kek);
AESCipher<Key128> header_cipher(header_kek, Mode::ECB);
Key256 out = GetKey(S256KeyType::HeaderSource);
header_cipher.Transcode(out.data(), out.size(), out.data(), Op::Decrypt);
SetKey(S256KeyType::Header, out);
}
}
void KeyManager::DeriveETicket(PartitionDataManager& data) {
// ETicket keys
const auto es = Service::FileSystem::GetUnionContents()->GetEntry(
0x0100000000000033, FileSys::ContentRecordType::Program);
if (es == nullptr)
return;
const auto exefs = es->GetExeFS();
if (exefs == nullptr)
return;
const auto main = exefs->GetFile("main");
if (main == nullptr)
return;
const auto bytes = main->ReadAllBytes();
const auto eticket_kek = FindKeyFromHex16(bytes, eticket_source_hashes[0]);
const auto eticket_kekek = FindKeyFromHex16(bytes, eticket_source_hashes[1]);
const auto seed3 = data.GetRSAKekSeed3();
const auto mask0 = data.GetRSAKekMask0();
if (eticket_kek != Key128{})
SetKey(S128KeyType::Source, eticket_kek, static_cast<size_t>(SourceKeyType::ETicketKek));
if (eticket_kekek != Key128{}) {
SetKey(S128KeyType::Source, eticket_kekek,
static_cast<size_t>(SourceKeyType::ETicketKekek));
}
if (seed3 != Key128{})
SetKey(S128KeyType::RSAKek, seed3, static_cast<size_t>(RSAKekType::Seed3));
if (mask0 != Key128{})
SetKey(S128KeyType::RSAKek, mask0, static_cast<size_t>(RSAKekType::Mask0));
if (eticket_kek == Key128{} || eticket_kekek == Key128{} || seed3 == Key128{} ||
mask0 == Key128{}) {
return;
}
Key128 rsa_oaep_kek{};
std::transform(seed3.begin(), seed3.end(), mask0.begin(), rsa_oaep_kek.begin(),
std::bit_xor<>());
if (rsa_oaep_kek == Key128{})
return;
SetKey(S128KeyType::Source, rsa_oaep_kek,
static_cast<u64>(SourceKeyType::RSAOaepKekGeneration));
Key128 temp_kek{};
Key128 temp_kekek{};
Key128 eticket_final{};
// Derive ETicket RSA Kek
AESCipher<Key128> es_master(GetKey(S128KeyType::Master), Mode::ECB);
es_master.Transcode(rsa_oaep_kek.data(), rsa_oaep_kek.size(), temp_kek.data(), Op::Decrypt);
AESCipher<Key128> es_kekek(temp_kek, Mode::ECB);
es_kekek.Transcode(eticket_kekek.data(), eticket_kekek.size(), temp_kekek.data(), Op::Decrypt);
AESCipher<Key128> es_kek(temp_kekek, Mode::ECB);
es_kek.Transcode(eticket_kek.data(), eticket_kek.size(), eticket_final.data(), Op::Decrypt);
if (eticket_final == Key128{})
return;
SetKey(S128KeyType::ETicketRSAKek, eticket_final);
// Titlekeys
data.DecryptProdInfo(GetBISKey(0));
const auto eticket_extended_kek = data.GetETicketExtendedKek();
std::vector<u8> extended_iv(0x10);
std::memcpy(extended_iv.data(), eticket_extended_kek.data(), extended_iv.size());
std::array<u8, 0x230> extended_dec{};
AESCipher<Key128> rsa_1(eticket_final, Mode::CTR);
rsa_1.SetIV(extended_iv);
rsa_1.Transcode(eticket_extended_kek.data() + 0x10, eticket_extended_kek.size() - 0x10,
extended_dec.data(), Op::Decrypt);
RSAKeyPair<2048> rsa_key{};
std::memcpy(rsa_key.decryption_key.data(), extended_dec.data(), rsa_key.decryption_key.size());
std::memcpy(rsa_key.modulus.data(), extended_dec.data() + 0x100, rsa_key.modulus.size());
std::memcpy(rsa_key.exponent.data(), extended_dec.data() + 0x200, rsa_key.exponent.size());
const FileUtil::IOFile save1(FileUtil::GetUserPath(FileUtil::UserPath::NANDDir) +
"/system/save/80000000000000e1",
"rb+");
const FileUtil::IOFile save2(FileUtil::GetUserPath(FileUtil::UserPath::NANDDir) +
"/system/save/80000000000000e2",
"rb+");
auto res = GetTicketblob(save1);
const auto res2 = GetTicketblob(save2);
std::copy(res2.begin(), res2.end(), std::back_inserter(res));
for (const auto& raw : res) {
const auto pair = ParseTicket(raw, rsa_key);
if (pair == boost::none)
continue;
const auto& [rid, key] = pair.value();
u128 rights_id;
std::memcpy(rights_id.data(), rid.data(), rid.size());
SetKey(S128KeyType::Titlekey, key, rights_id[1], rights_id[0]);
}
}
void KeyManager::SetKeyWrapped(S128KeyType id, Key128 key, u64 field1, u64 field2) {
if (key == Key128{})
return;
SetKey(id, key, field1, field2);
}
void KeyManager::SetKeyWrapped(S256KeyType id, Key256 key, u64 field1, u64 field2) {
if (key == Key256{})
return;
SetKey(id, key, field1, field2);
}
void KeyManager::PopulateFromPartitionData(PartitionDataManager& data) {
if (!BaseDeriveNecessary())
return;
if (!data.HasBoot0())
return;
for (size_t i = 0; i < encrypted_keyblobs.size(); ++i) {
if (encrypted_keyblobs[i] != std::array<u8, 0xB0>{})
continue;
encrypted_keyblobs[i] = data.GetEncryptedKeyblob(i);
WriteKeyToFile<0xB0>(KeyCategory::Console, fmt::format("encrypted_keyblob_{:02X}", i),
encrypted_keyblobs[i]);
}
SetKeyWrapped(S128KeyType::Source, data.GetPackage2KeySource(),
static_cast<u64>(SourceKeyType::Package2));
SetKeyWrapped(S128KeyType::Source, data.GetAESKekGenerationSource(),
static_cast<u64>(SourceKeyType::AESKekGeneration));
SetKeyWrapped(S128KeyType::Source, data.GetTitlekekSource(),
static_cast<u64>(SourceKeyType::Titlekek));
SetKeyWrapped(S128KeyType::Source, data.GetMasterKeySource(),
static_cast<u64>(SourceKeyType::Master));
SetKeyWrapped(S128KeyType::Source, data.GetKeyblobMACKeySource(),
static_cast<u64>(SourceKeyType::KeyblobMAC));
for (size_t i = 0; i < PartitionDataManager::MAX_KEYBLOB_SOURCE_HASH; ++i) {
SetKeyWrapped(S128KeyType::Source, data.GetKeyblobKeySource(i),
static_cast<u64>(SourceKeyType::Keyblob), i);
}
if (data.HasFuses())
SetKeyWrapped(S128KeyType::SecureBoot, data.GetSecureBootKey());
DeriveBase();
Key128 latest_master{};
for (s8 i = 0x1F; i >= 0; --i) {
if (GetKey(S128KeyType::Master, static_cast<u8>(i)) != Key128{}) {
latest_master = GetKey(S128KeyType::Master, static_cast<u8>(i));
break;
}
}
const auto masters = data.GetTZMasterKeys(latest_master);
for (size_t i = 0; i < masters.size(); ++i) {
if (masters[i] != Key128{} && !HasKey(S128KeyType::Master, i))
SetKey(S128KeyType::Master, masters[i], i);
}
DeriveBase();
if (!data.HasPackage2())
return;
std::array<Key128, 0x20> package2_keys{};
for (size_t i = 0; i < package2_keys.size(); ++i) {
if (HasKey(S128KeyType::Package2, i))
package2_keys[i] = GetKey(S128KeyType::Package2, i);
}
data.DecryptPackage2(package2_keys, Package2Type::NormalMain);
SetKeyWrapped(S128KeyType::Source, data.GetKeyAreaKeyApplicationSource(),
static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(KeyAreaKeyType::Application));
SetKeyWrapped(S128KeyType::Source, data.GetKeyAreaKeyOceanSource(),
static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(KeyAreaKeyType::Ocean));
SetKeyWrapped(S128KeyType::Source, data.GetKeyAreaKeySystemSource(),
static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(KeyAreaKeyType::System));
SetKeyWrapped(S128KeyType::Source, data.GetSDKekSource(),
static_cast<u64>(SourceKeyType::SDKek));
SetKeyWrapped(S256KeyType::SDKeySource, data.GetSDSaveKeySource(),
static_cast<u64>(SDKeyType::Save));
SetKeyWrapped(S256KeyType::SDKeySource, data.GetSDNCAKeySource(),
static_cast<u64>(SDKeyType::NCA));
SetKeyWrapped(S128KeyType::Source, data.GetHeaderKekSource(),
static_cast<u64>(SourceKeyType::HeaderKek));
SetKeyWrapped(S256KeyType::HeaderSource, data.GetHeaderKeySource());
SetKeyWrapped(S128KeyType::Source, data.GetAESKeyGenerationSource(),
static_cast<u64>(SourceKeyType::AESKeyGeneration));
DeriveBase();
}
const boost::container::flat_map<std::string, KeyIndex<S128KeyType>> KeyManager::s128_file_id = {
{"master_key_00", {S128KeyType::Master, 0, 0}},
{"master_key_01", {S128KeyType::Master, 1, 0}},
{"master_key_02", {S128KeyType::Master, 2, 0}},
{"master_key_03", {S128KeyType::Master, 3, 0}},
{"master_key_04", {S128KeyType::Master, 4, 0}},
{"package1_key_00", {S128KeyType::Package1, 0, 0}},
{"package1_key_01", {S128KeyType::Package1, 1, 0}},
{"package1_key_02", {S128KeyType::Package1, 2, 0}},
{"package1_key_03", {S128KeyType::Package1, 3, 0}},
{"package1_key_04", {S128KeyType::Package1, 4, 0}},
{"package2_key_00", {S128KeyType::Package2, 0, 0}},
{"package2_key_01", {S128KeyType::Package2, 1, 0}},
{"package2_key_02", {S128KeyType::Package2, 2, 0}},
{"package2_key_03", {S128KeyType::Package2, 3, 0}},
{"package2_key_04", {S128KeyType::Package2, 4, 0}},
{"titlekek_00", {S128KeyType::Titlekek, 0, 0}},
{"titlekek_01", {S128KeyType::Titlekek, 1, 0}},
{"titlekek_02", {S128KeyType::Titlekek, 2, 0}},
{"titlekek_03", {S128KeyType::Titlekek, 3, 0}},
{"titlekek_04", {S128KeyType::Titlekek, 4, 0}},
{"eticket_rsa_kek", {S128KeyType::ETicketRSAKek, 0, 0}},
{"key_area_key_application_00",
{S128KeyType::KeyArea, 0, static_cast<u64>(KeyAreaKeyType::Application)}},
{"key_area_key_application_01",
{S128KeyType::KeyArea, 1, static_cast<u64>(KeyAreaKeyType::Application)}},
{"key_area_key_application_02",
{S128KeyType::KeyArea, 2, static_cast<u64>(KeyAreaKeyType::Application)}},
{"key_area_key_application_03",
{S128KeyType::KeyArea, 3, static_cast<u64>(KeyAreaKeyType::Application)}},
{"key_area_key_application_04",
{S128KeyType::KeyArea, 4, static_cast<u64>(KeyAreaKeyType::Application)}},
{"key_area_key_ocean_00", {S128KeyType::KeyArea, 0, static_cast<u64>(KeyAreaKeyType::Ocean)}},
{"key_area_key_ocean_01", {S128KeyType::KeyArea, 1, static_cast<u64>(KeyAreaKeyType::Ocean)}},
{"key_area_key_ocean_02", {S128KeyType::KeyArea, 2, static_cast<u64>(KeyAreaKeyType::Ocean)}},
{"key_area_key_ocean_03", {S128KeyType::KeyArea, 3, static_cast<u64>(KeyAreaKeyType::Ocean)}},
{"key_area_key_ocean_04", {S128KeyType::KeyArea, 4, static_cast<u64>(KeyAreaKeyType::Ocean)}},
{"key_area_key_system_00", {S128KeyType::KeyArea, 0, static_cast<u64>(KeyAreaKeyType::System)}},
{"key_area_key_system_01", {S128KeyType::KeyArea, 1, static_cast<u64>(KeyAreaKeyType::System)}},
{"key_area_key_system_02", {S128KeyType::KeyArea, 2, static_cast<u64>(KeyAreaKeyType::System)}},
{"key_area_key_system_03", {S128KeyType::KeyArea, 3, static_cast<u64>(KeyAreaKeyType::System)}},
{"key_area_key_system_04", {S128KeyType::KeyArea, 4, static_cast<u64>(KeyAreaKeyType::System)}},
{"sd_card_kek_source", {S128KeyType::Source, static_cast<u64>(SourceKeyType::SDKEK), 0}},
{"eticket_rsa_kek_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::ETicketKek), 0}},
{"eticket_rsa_kekek_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::ETicketKekek), 0}},
{"rsa_kek_mask_0", {S128KeyType::RSAKek, static_cast<u64>(RSAKekType::Mask0), 0}},
{"rsa_kek_seed_3", {S128KeyType::RSAKek, static_cast<u64>(RSAKekType::Seed3), 0}},
{"rsa_oaep_kek_generation_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::RSAOaepKekGeneration), 0}},
{"sd_card_kek_source", {S128KeyType::Source, static_cast<u64>(SourceKeyType::SDKek), 0}},
{"aes_kek_generation_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKEKGeneration), 0}},
{S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKekGeneration), 0}},
{"aes_key_generation_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKeyGeneration), 0}},
{"package2_key_source", {S128KeyType::Source, static_cast<u64>(SourceKeyType::Package2), 0}},
{"master_key_source", {S128KeyType::Source, static_cast<u64>(SourceKeyType::Master), 0}},
{"header_kek_source", {S128KeyType::Source, static_cast<u64>(SourceKeyType::HeaderKek), 0}},
{"key_area_key_application_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(KeyAreaKeyType::Application)}},
{"key_area_key_ocean_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(KeyAreaKeyType::Ocean)}},
{"key_area_key_system_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(KeyAreaKeyType::System)}},
{"titlekek_source", {S128KeyType::Source, static_cast<u64>(SourceKeyType::Titlekek), 0}},
{"keyblob_mac_key_source", {S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyblobMAC)}},
{"tsec_key", {S128KeyType::TSEC, 0, 0}},
{"secure_boot_key", {S128KeyType::SecureBoot, 0, 0}},
{"sd_seed", {S128KeyType::SDSeed, 0, 0}},
{"bis_key_0_crypt", {S128KeyType::BIS, 0, static_cast<u64>(BISKeyType::Crypto)}},
{"bis_key_0_tweak", {S128KeyType::BIS, 0, static_cast<u64>(BISKeyType::Tweak)}},
{"bis_key_1_crypt", {S128KeyType::BIS, 1, static_cast<u64>(BISKeyType::Crypto)}},
{"bis_key_1_tweak", {S128KeyType::BIS, 1, static_cast<u64>(BISKeyType::Tweak)}},
{"bis_key_2_crypt", {S128KeyType::BIS, 2, static_cast<u64>(BISKeyType::Crypto)}},
{"bis_key_2_tweak", {S128KeyType::BIS, 2, static_cast<u64>(BISKeyType::Tweak)}},
{"bis_key_3_crypt", {S128KeyType::BIS, 3, static_cast<u64>(BISKeyType::Crypto)}},
{"bis_key_3_tweak", {S128KeyType::BIS, 3, static_cast<u64>(BISKeyType::Tweak)}},
{"header_kek", {S128KeyType::HeaderKek, 0, 0}},
{"sd_card_kek", {S128KeyType::SDKek, 0, 0}},
};
const boost::container::flat_map<std::string, KeyIndex<S256KeyType>> KeyManager::s256_file_id = {
{"header_key", {S256KeyType::Header, 0, 0}},
{"sd_card_save_key_source", {S256KeyType::SDKeySource, static_cast<u64>(SDKeyType::Save), 0}},
{"sd_card_nca_key_source", {S256KeyType::SDKeySource, static_cast<u64>(SDKeyType::NCA), 0}},
{"header_key_source", {S256KeyType::HeaderSource, 0, 0}},
{"sd_card_save_key", {S256KeyType::SDKey, static_cast<u64>(SDKeyType::Save), 0}},
{"sd_card_nca_key", {S256KeyType::SDKey, static_cast<u64>(SDKeyType::NCA), 0}},
};
} // namespace Core::Crypto

View File

@ -5,11 +5,18 @@
#pragma once
#include <array>
#include <map>
#include <string>
#include <boost/container/flat_map.hpp>
#include <boost/optional.hpp>
#include <fmt/format.h>
#include "common/common_types.h"
#include "core/crypto/partition_data_manager.h"
#include "core/file_sys/vfs_types.h"
namespace FileUtil {
class IOFile;
}
namespace Loader {
enum class ResultStatus : u16;
@ -22,13 +29,30 @@ constexpr u64 TICKET_FILE_TITLEKEY_OFFSET = 0x180;
using Key128 = std::array<u8, 0x10>;
using Key256 = std::array<u8, 0x20>;
using SHA256Hash = std::array<u8, 0x20>;
using TicketRaw = std::array<u8, 0x400>;
static_assert(sizeof(Key128) == 16, "Key128 must be 128 bytes big.");
static_assert(sizeof(Key256) == 32, "Key128 must be 128 bytes big.");
static_assert(sizeof(Key256) == 32, "Key256 must be 256 bytes big.");
template <size_t bit_size, size_t byte_size = (bit_size >> 3)>
struct RSAKeyPair {
std::array<u8, byte_size> encryption_key;
std::array<u8, byte_size> decryption_key;
std::array<u8, byte_size> modulus;
std::array<u8, 4> exponent;
};
enum class KeyCategory : u8 {
Standard,
Title,
Console,
};
enum class S256KeyType : u64 {
Header, //
SDKeySource, // f1=SDKeyType
SDKey, // f1=SDKeyType
Header, //
SDKeySource, // f1=SDKeyType
HeaderSource, //
};
enum class S128KeyType : u64 {
@ -41,6 +65,14 @@ enum class S128KeyType : u64 {
SDSeed, //
Titlekey, // f1=rights id LSB f2=rights id MSB
Source, // f1=source type, f2= sub id
Keyblob, // f1=crypto revision
KeyblobMAC, // f1=crypto revision
TSEC, //
SecureBoot, //
BIS, // f1=partition (0-3), f2=type {crypt, tweak}
HeaderKek, //
SDKek, //
RSAKek, //
};
enum class KeyAreaKeyType : u8 {
@ -50,9 +82,19 @@ enum class KeyAreaKeyType : u8 {
};
enum class SourceKeyType : u8 {
SDKEK,
AESKEKGeneration,
AESKeyGeneration,
SDKek, //
AESKekGeneration, //
AESKeyGeneration, //
RSAOaepKekGeneration, //
Master, //
Keyblob, // f2=crypto revision
KeyAreaKey, // f2=KeyAreaKeyType
Titlekek, //
Package2, //
HeaderKek, //
KeyblobMAC, //
ETicketKek, //
ETicketKekek, //
};
enum class SDKeyType : u8 {
@ -60,6 +102,16 @@ enum class SDKeyType : u8 {
NCA,
};
enum class BISKeyType : u8 {
Crypto,
Tweak,
};
enum class RSAKekType : u8 {
Mask0,
Seed3,
};
template <typename KeyType>
struct KeyIndex {
KeyType type;
@ -91,6 +143,8 @@ public:
Key128 GetKey(S128KeyType id, u64 field1 = 0, u64 field2 = 0) const;
Key256 GetKey(S256KeyType id, u64 field1 = 0, u64 field2 = 0) const;
Key256 GetBISKey(u8 partition_id) const;
void SetKey(S128KeyType id, Key128 key, u64 field1 = 0, u64 field2 = 0);
void SetKey(S256KeyType id, Key256 key, u64 field1 = 0, u64 field2 = 0);
@ -100,23 +154,51 @@ public:
// 8*43 and the private file to exist.
void DeriveSDSeedLazy();
bool BaseDeriveNecessary() const;
void DeriveBase();
void DeriveETicket(PartitionDataManager& data);
void PopulateFromPartitionData(PartitionDataManager& data);
private:
boost::container::flat_map<KeyIndex<S128KeyType>, Key128> s128_keys;
boost::container::flat_map<KeyIndex<S256KeyType>, Key256> s256_keys;
std::map<KeyIndex<S128KeyType>, Key128> s128_keys;
std::map<KeyIndex<S256KeyType>, Key256> s256_keys;
std::array<std::array<u8, 0xB0>, 0x20> encrypted_keyblobs{};
std::array<std::array<u8, 0x90>, 0x20> keyblobs{};
bool dev_mode;
void LoadFromFile(const std::string& filename, bool is_title_keys);
void AttemptLoadKeyFile(const std::string& dir1, const std::string& dir2,
const std::string& filename, bool title);
template <std::size_t Size>
void WriteKeyToFile(bool title_key, std::string_view keyname, const std::array<u8, Size>& key);
template <size_t Size>
void WriteKeyToFile(KeyCategory category, std::string_view keyname,
const std::array<u8, Size>& key);
void DeriveGeneralPurposeKeys(u8 crypto_revision);
void SetKeyWrapped(S128KeyType id, Key128 key, u64 field1 = 0, u64 field2 = 0);
void SetKeyWrapped(S256KeyType id, Key256 key, u64 field1 = 0, u64 field2 = 0);
static const boost::container::flat_map<std::string, KeyIndex<S128KeyType>> s128_file_id;
static const boost::container::flat_map<std::string, KeyIndex<S256KeyType>> s256_file_id;
};
Key128 GenerateKeyEncryptionKey(Key128 source, Key128 master, Key128 kek_seed, Key128 key_seed);
Key128 DeriveKeyblobKey(const Key128& sbk, const Key128& tsec, Key128 source);
Key128 DeriveKeyblobMACKey(const Key128& keyblob_key, const Key128& mac_source);
Key128 DeriveMasterKey(const std::array<u8, 0x90>& keyblob, const Key128& master_source);
std::array<u8, 0x90> DecryptKeyblob(const std::array<u8, 0xB0>& encrypted_keyblob,
const Key128& key);
boost::optional<Key128> DeriveSDSeed();
Loader::ResultStatus DeriveSDKeys(std::array<Key256, 2>& sd_keys, const KeyManager& keys);
Loader::ResultStatus DeriveSDKeys(std::array<Key256, 2>& sd_keys, KeyManager& keys);
std::vector<TicketRaw> GetTicketblob(const FileUtil::IOFile& ticket_save);
// Returns a pair of {rights_id, titlekey}. Fails if the ticket has no certificate authority (offset
// 0x140-0x144 is zero)
boost::optional<std::pair<Key128, Key128>> ParseTicket(
const TicketRaw& ticket, const RSAKeyPair<2048>& eticket_extended_key);
} // namespace Core::Crypto

View File

@ -0,0 +1,601 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
// NOTE TO FUTURE MAINTAINERS:
// When a new version of switch cryptography is released,
// hash the new keyblob source and master key and add the hashes to
// the arrays below.
#include <algorithm>
#include <array>
#include <cctype>
#include <cstring>
#include <boost/optional/optional.hpp>
#include <mbedtls/sha256.h>
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/hex_util.h"
#include "common/logging/log.h"
#include "common/string_util.h"
#include "core/crypto/ctr_encryption_layer.h"
#include "core/crypto/key_manager.h"
#include "core/crypto/partition_data_manager.h"
#include "core/crypto/xts_encryption_layer.h"
#include "core/file_sys/vfs.h"
#include "core/file_sys/vfs_offset.h"
using namespace Common;
namespace Core::Crypto {
struct Package2Header {
std::array<u8, 0x100> signature;
Key128 header_ctr;
std::array<Key128, 4> section_ctr;
u32_le magic;
u32_le base_offset;
INSERT_PADDING_BYTES(4);
u8 version_max;
u8 version_min;
INSERT_PADDING_BYTES(2);
std::array<u32_le, 4> section_size;
std::array<u32_le, 4> section_offset;
std::array<SHA256Hash, 4> section_hash;
};
static_assert(sizeof(Package2Header) == 0x200, "Package2Header has incorrect size.");
struct INIHeader {
u32_le magic;
u32_le size;
u32_le process_count;
INSERT_PADDING_BYTES(4);
};
static_assert(sizeof(INIHeader) == 0x10, "INIHeader has incorrect size.");
struct SectionHeader {
u32_le offset;
u32_le size_decompressed;
u32_le size_compressed;
u32_le attribute;
};
static_assert(sizeof(SectionHeader) == 0x10, "SectionHeader has incorrect size.");
struct KIPHeader {
u32_le magic;
std::array<char, 12> name;
u64_le title_id;
u32_le category;
u8 priority;
u8 core;
INSERT_PADDING_BYTES(1);
u8 flags;
std::array<SectionHeader, 6> sections;
std::array<u32, 0x20> capabilities;
};
static_assert(sizeof(KIPHeader) == 0x100, "KIPHeader has incorrect size.");
const std::array<SHA256Hash, 0x10> source_hashes{
"B24BD293259DBC7AC5D63F88E60C59792498E6FC5443402C7FFE87EE8B61A3F0"_array32, // keyblob_mac_key_source
"7944862A3A5C31C6720595EFD302245ABD1B54CCDCF33000557681E65C5664A4"_array32, // master_key_source
"21E2DF100FC9E094DB51B47B9B1D6E94ED379DB8B547955BEF8FE08D8DD35603"_array32, // package2_key_source
"FC02B9D37B42D7A1452E71444F1F700311D1132E301A83B16062E72A78175085"_array32, // aes_kek_generation_source
"FBD10056999EDC7ACDB96098E47E2C3606230270D23281E671F0F389FC5BC585"_array32, // aes_key_generation_source
"C48B619827986C7F4E3081D59DB2B460C84312650E9A8E6B458E53E8CBCA4E87"_array32, // titlekek_source
"04AD66143C726B2A139FB6B21128B46F56C553B2B3887110304298D8D0092D9E"_array32, // key_area_key_application_source
"FD434000C8FF2B26F8E9A9D2D2C12F6BE5773CBB9DC86300E1BD99F8EA33A417"_array32, // key_area_key_ocean_source
"1F17B1FD51AD1C2379B58F152CA4912EC2106441E51722F38700D5937A1162F7"_array32, // key_area_key_system_source
"6B2ED877C2C52334AC51E59ABFA7EC457F4A7D01E46291E9F2EAA45F011D24B7"_array32, // sd_card_kek_source
"D482743563D3EA5DCDC3B74E97C9AC8A342164FA041A1DC80F17F6D31E4BC01C"_array32, // sd_card_save_key_source
"2E751CECF7D93A2B957BD5FFCB082FD038CC2853219DD3092C6DAB9838F5A7CC"_array32, // sd_card_nca_key_source
"1888CAED5551B3EDE01499E87CE0D86827F80820EFB275921055AA4E2ABDFFC2"_array32, // header_kek_source
"8F783E46852DF6BE0BA4E19273C4ADBAEE16380043E1B8C418C4089A8BD64AA6"_array32, // header_key_source
"D1757E52F1AE55FA882EC690BC6F954AC46A83DC22F277F8806BD55577C6EED7"_array32, // rsa_kek_seed3
"FC02B9D37B42D7A1452E71444F1F700311D1132E301A83B16062E72A78175085"_array32, // rsa_kek_mask0
};
const std::array<SHA256Hash, 0x20> keyblob_source_hashes{
"8A06FE274AC491436791FDB388BCDD3AB9943BD4DEF8094418CDAC150FD73786"_array32, // keyblob_key_source_00
"2D5CAEB2521FEF70B47E17D6D0F11F8CE2C1E442A979AD8035832C4E9FBCCC4B"_array32, // keyblob_key_source_01
"61C5005E713BAE780641683AF43E5F5C0E03671117F702F401282847D2FC6064"_array32, // keyblob_key_source_02
"8E9795928E1C4428E1B78F0BE724D7294D6934689C11B190943923B9D5B85903"_array32, // keyblob_key_source_03
"95FA33AF95AFF9D9B61D164655B32710ED8D615D46C7D6CC3CC70481B686B402"_array32, // keyblob_key_source_04
"3F5BE7B3C8B1ABD8C10B4B703D44766BA08730562C172A4FE0D6B866B3E2DB3E"_array32, // keyblob_key_source_05
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_06
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_07
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_08
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_09
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_0A
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_0B
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_0C
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_0D
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_0E
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_0F
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_10
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_11
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_12
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_13
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_14
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_15
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_16
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_17
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_18
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_19
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_1A
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_1B
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_1C
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_1D
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_1E
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_1F
};
const std::array<SHA256Hash, 0x20> master_key_hashes{
"0EE359BE3C864BB0782E1D70A718A0342C551EED28C369754F9C4F691BECF7CA"_array32, // master_key_00
"4FE707B7E4ABDAF727C894AAF13B1351BFE2AC90D875F73B2E20FA94B9CC661E"_array32, // master_key_01
"79277C0237A2252EC3DFAC1F7C359C2B3D121E9DB15BB9AB4C2B4408D2F3AE09"_array32, // master_key_02
"4F36C565D13325F65EE134073C6A578FFCB0008E02D69400836844EAB7432754"_array32, // master_key_03
"75FF1D95D26113550EE6FCC20ACB58E97EDEB3A2FF52543ED5AEC63BDCC3DA50"_array32, // master_key_04
"EBE2BCD6704673EC0F88A187BB2AD9F1CC82B718C389425941BDC194DC46B0DD"_array32, // master_key_05
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_06
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_07
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_08
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_09
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_0A
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_0B
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_0C
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_0D
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_0E
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_0F
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_10
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_11
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_12
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_13
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_14
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_15
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_16
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_17
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_18
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_19
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_1A
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_1B
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_1C
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_1D
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_1E
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_1F
};
static std::vector<u8> DecompressBLZ(const std::vector<u8>& in) {
const auto data_size = in.size() - 0xC;
u32 compressed_size{};
u32 init_index{};
u32 additional_size{};
std::memcpy(&compressed_size, in.data() + data_size, sizeof(u32));
std::memcpy(&init_index, in.data() + data_size + 0x4, sizeof(u32));
std::memcpy(&additional_size, in.data() + data_size + 0x8, sizeof(u32));
std::vector<u8> out(in.size() + additional_size);
if (compressed_size == in.size())
std::memcpy(out.data(), in.data() + in.size() - compressed_size, compressed_size);
else
std::memcpy(out.data(), in.data(), compressed_size);
auto index = in.size() - init_index;
auto out_index = out.size();
while (out_index > 0) {
--index;
auto control = in[index];
for (size_t i = 0; i < 8; ++i) {
if ((control & 0x80) > 0) {
ASSERT(index >= 2);
index -= 2;
u64 segment_offset = in[index] | in[index + 1] << 8;
u64 segment_size = ((segment_offset >> 12) & 0xF) + 3;
segment_offset &= 0xFFF;
segment_offset += 3;
if (out_index < segment_size)
segment_size = out_index;
ASSERT(out_index >= segment_size);
out_index -= segment_size;
for (size_t j = 0; j < segment_size; ++j) {
ASSERT(out_index + j + segment_offset < out.size());
out[out_index + j] = out[out_index + j + segment_offset];
}
} else {
ASSERT(out_index >= 1);
--out_index;
--index;
out[out_index] = in[index];
}
control <<= 1;
if (out_index == 0)
return out;
}
}
return out;
}
static u8 CalculateMaxKeyblobSourceHash() {
for (s8 i = 0x1F; i >= 0; --i) {
if (keyblob_source_hashes[i] != SHA256Hash{})
return static_cast<u8>(i + 1);
}
return 0;
}
const u8 PartitionDataManager::MAX_KEYBLOB_SOURCE_HASH = CalculateMaxKeyblobSourceHash();
template <size_t key_size = 0x10>
std::array<u8, key_size> FindKeyFromHex(const std::vector<u8>& binary,
const std::array<u8, 0x20>& hash) {
if (binary.size() < key_size)
return {};
std::array<u8, 0x20> temp{};
for (size_t i = 0; i < binary.size() - key_size; ++i) {
mbedtls_sha256(binary.data() + i, key_size, temp.data(), 0);
if (temp != hash)
continue;
std::array<u8, key_size> out{};
std::memcpy(out.data(), binary.data() + i, key_size);
return out;
}
return {};
}
std::array<u8, 16> FindKeyFromHex16(const std::vector<u8>& binary, std::array<u8, 32> hash) {
return FindKeyFromHex<0x10>(binary, hash);
}
static std::array<Key128, 0x20> FindEncryptedMasterKeyFromHex(const std::vector<u8>& binary,
const Key128& key) {
if (binary.size() < 0x10)
return {};
SHA256Hash temp{};
Key128 dec_temp{};
std::array<Key128, 0x20> out{};
AESCipher<Key128> cipher(key, Mode::ECB);
for (size_t i = 0; i < binary.size() - 0x10; ++i) {
cipher.Transcode(binary.data() + i, dec_temp.size(), dec_temp.data(), Op::Decrypt);
mbedtls_sha256(dec_temp.data(), dec_temp.size(), temp.data(), 0);
for (size_t k = 0; k < out.size(); ++k) {
if (temp == master_key_hashes[k]) {
out[k] = dec_temp;
break;
}
}
}
return out;
}
FileSys::VirtualFile FindFileInDirWithNames(const FileSys::VirtualDir& dir,
const std::string& name) {
auto upper = name;
std::transform(upper.begin(), upper.end(), upper.begin(), [](u8 c) { return std::toupper(c); });
for (const auto& fname : {name, name + ".bin", upper, upper + ".BIN"}) {
if (dir->GetFile(fname) != nullptr)
return dir->GetFile(fname);
}
return nullptr;
}
PartitionDataManager::PartitionDataManager(FileSys::VirtualDir sysdata_dir)
: boot0(FindFileInDirWithNames(sysdata_dir, "BOOT0")),
fuses(FindFileInDirWithNames(sysdata_dir, "fuse")),
kfuses(FindFileInDirWithNames(sysdata_dir, "kfuse")),
package2({
FindFileInDirWithNames(sysdata_dir, "BCPKG2-1-Normal-Main"),
FindFileInDirWithNames(sysdata_dir, "BCPKG2-2-Normal-Sub"),
FindFileInDirWithNames(sysdata_dir, "BCPKG2-3-SafeMode-Main"),
FindFileInDirWithNames(sysdata_dir, "BCPKG2-4-SafeMode-Sub"),
FindFileInDirWithNames(sysdata_dir, "BCPKG2-5-Repair-Main"),
FindFileInDirWithNames(sysdata_dir, "BCPKG2-6-Repair-Sub"),
}),
secure_monitor(FindFileInDirWithNames(sysdata_dir, "secmon")),
package1_decrypted(FindFileInDirWithNames(sysdata_dir, "pkg1_decr")),
secure_monitor_bytes(secure_monitor == nullptr ? std::vector<u8>{}
: secure_monitor->ReadAllBytes()),
package1_decrypted_bytes(package1_decrypted == nullptr ? std::vector<u8>{}
: package1_decrypted->ReadAllBytes()),
prodinfo(FindFileInDirWithNames(sysdata_dir, "PRODINFO")) {}
PartitionDataManager::~PartitionDataManager() = default;
bool PartitionDataManager::HasBoot0() const {
return boot0 != nullptr;
}
FileSys::VirtualFile PartitionDataManager::GetBoot0Raw() const {
return boot0;
}
std::array<u8, 176> PartitionDataManager::GetEncryptedKeyblob(u8 index) const {
if (HasBoot0() && index < 32)
return GetEncryptedKeyblobs()[index];
return {};
}
std::array<std::array<u8, 176>, 32> PartitionDataManager::GetEncryptedKeyblobs() const {
if (!HasBoot0())
return {};
std::array<std::array<u8, 176>, 32> out{};
for (size_t i = 0; i < 0x20; ++i)
boot0->Read(out[i].data(), out[i].size(), 0x180000 + i * 0x200);
return out;
}
std::vector<u8> PartitionDataManager::GetSecureMonitor() const {
return secure_monitor_bytes;
}
std::array<u8, 16> PartitionDataManager::GetPackage2KeySource() const {
return FindKeyFromHex(secure_monitor_bytes, source_hashes[2]);
}
std::array<u8, 16> PartitionDataManager::GetAESKekGenerationSource() const {
return FindKeyFromHex(secure_monitor_bytes, source_hashes[3]);
}
std::array<u8, 16> PartitionDataManager::GetTitlekekSource() const {
return FindKeyFromHex(secure_monitor_bytes, source_hashes[5]);
}
std::array<std::array<u8, 16>, 32> PartitionDataManager::GetTZMasterKeys(
std::array<u8, 0x10> master_key) const {
return FindEncryptedMasterKeyFromHex(secure_monitor_bytes, master_key);
}
std::array<u8, 16> PartitionDataManager::GetRSAKekSeed3() const {
return FindKeyFromHex(secure_monitor_bytes, source_hashes[14]);
}
std::array<u8, 16> PartitionDataManager::GetRSAKekMask0() const {
return FindKeyFromHex(secure_monitor_bytes, source_hashes[15]);
}
std::vector<u8> PartitionDataManager::GetPackage1Decrypted() const {
return package1_decrypted_bytes;
}
std::array<u8, 16> PartitionDataManager::GetMasterKeySource() const {
return FindKeyFromHex(package1_decrypted_bytes, source_hashes[1]);
}
std::array<u8, 16> PartitionDataManager::GetKeyblobMACKeySource() const {
return FindKeyFromHex(package1_decrypted_bytes, source_hashes[0]);
}
std::array<u8, 16> PartitionDataManager::GetKeyblobKeySource(u8 revision) const {
if (keyblob_source_hashes[revision] == SHA256Hash{}) {
LOG_WARNING(Crypto,
"No keyblob source hash for crypto revision {:02X}! Cannot derive keys...",
revision);
}
return FindKeyFromHex(package1_decrypted_bytes, keyblob_source_hashes[revision]);
}
bool PartitionDataManager::HasFuses() const {
return fuses != nullptr;
}
FileSys::VirtualFile PartitionDataManager::GetFusesRaw() const {
return fuses;
}
std::array<u8, 16> PartitionDataManager::GetSecureBootKey() const {
if (!HasFuses())
return {};
Key128 out{};
fuses->Read(out.data(), out.size(), 0xA4);
return out;
}
bool PartitionDataManager::HasKFuses() const {
return kfuses != nullptr;
}
FileSys::VirtualFile PartitionDataManager::GetKFusesRaw() const {
return kfuses;
}
bool PartitionDataManager::HasPackage2(Package2Type type) const {
return package2.at(static_cast<size_t>(type)) != nullptr;
}
FileSys::VirtualFile PartitionDataManager::GetPackage2Raw(Package2Type type) const {
return package2.at(static_cast<size_t>(type));
}
bool AttemptDecrypt(const std::array<u8, 16>& key, Package2Header& header) {
const std::vector<u8> iv(header.header_ctr.begin(), header.header_ctr.end());
Package2Header temp = header;
AESCipher<Key128> cipher(key, Mode::CTR);
cipher.SetIV(iv);
cipher.Transcode(&temp.header_ctr, sizeof(Package2Header) - 0x100, &temp.header_ctr,
Op::Decrypt);
if (temp.magic == Common::MakeMagic('P', 'K', '2', '1')) {
header = temp;
return true;
}
return false;
}
void PartitionDataManager::DecryptPackage2(std::array<std::array<u8, 16>, 0x20> package2_keys,
Package2Type type) {
FileSys::VirtualFile file = std::make_shared<FileSys::OffsetVfsFile>(
package2[static_cast<size_t>(type)],
package2[static_cast<size_t>(type)]->GetSize() - 0x4000, 0x4000);
Package2Header header{};
if (file->ReadObject(&header) != sizeof(Package2Header))
return;
u8 revision = 0xFF;
if (header.magic != Common::MakeMagic('P', 'K', '2', '1')) {
for (size_t i = 0; i < package2_keys.size(); ++i) {
if (AttemptDecrypt(package2_keys[i], header))
revision = i;
}
}
if (header.magic != Common::MakeMagic('P', 'K', '2', '1'))
return;
const std::vector<u8> s1_iv(header.section_ctr[1].begin(), header.section_ctr[1].end());
const auto a = std::make_shared<FileSys::OffsetVfsFile>(
file, header.section_size[1], header.section_size[0] + sizeof(Package2Header));
auto c = a->ReadAllBytes();
AESCipher<Key128> cipher(package2_keys[revision], Mode::CTR);
cipher.SetIV(s1_iv);
cipher.Transcode(c.data(), c.size(), c.data(), Op::Decrypt);
// package2_decrypted[static_cast<size_t>(type)] = s1;
INIHeader ini;
std::memcpy(&ini, c.data(), sizeof(INIHeader));
if (ini.magic != Common::MakeMagic('I', 'N', 'I', '1'))
return;
std::map<u64, KIPHeader> kips{};
u64 offset = sizeof(INIHeader);
for (size_t i = 0; i < ini.process_count; ++i) {
KIPHeader kip;
std::memcpy(&kip, c.data() + offset, sizeof(KIPHeader));
if (kip.magic != Common::MakeMagic('K', 'I', 'P', '1'))
return;
kips.emplace(offset, kip);
const auto name =
Common::StringFromFixedZeroTerminatedBuffer(kip.name.data(), kip.name.size());
if (name != "FS" && name != "spl") {
offset += sizeof(KIPHeader) + kip.sections[0].size_compressed +
kip.sections[1].size_compressed + kip.sections[2].size_compressed;
continue;
}
std::vector<u8> text(kip.sections[0].size_compressed);
std::vector<u8> rodata(kip.sections[1].size_compressed);
std::vector<u8> data(kip.sections[2].size_compressed);
u64 offset_sec = sizeof(KIPHeader) + offset;
std::memcpy(text.data(), c.data() + offset_sec, text.size());
offset_sec += text.size();
std::memcpy(rodata.data(), c.data() + offset_sec, rodata.size());
offset_sec += rodata.size();
std::memcpy(data.data(), c.data() + offset_sec, data.size());
offset += sizeof(KIPHeader) + kip.sections[0].size_compressed +
kip.sections[1].size_compressed + kip.sections[2].size_compressed;
text = DecompressBLZ(text);
rodata = DecompressBLZ(rodata);
data = DecompressBLZ(data);
std::vector<u8> out(text.size() + rodata.size() + data.size());
std::memcpy(out.data(), text.data(), text.size());
std::memcpy(out.data() + text.size(), rodata.data(), rodata.size());
std::memcpy(out.data() + text.size() + rodata.size(), data.data(), data.size());
if (name == "FS")
package2_fs[static_cast<size_t>(type)] = out;
else if (name == "spl")
package2_spl[static_cast<size_t>(type)] = out;
}
}
const std::vector<u8>& PartitionDataManager::GetPackage2FSDecompressed(Package2Type type) const {
return package2_fs.at(static_cast<size_t>(type));
}
std::array<u8, 16> PartitionDataManager::GetKeyAreaKeyApplicationSource(Package2Type type) const {
return FindKeyFromHex(package2_fs.at(static_cast<size_t>(type)), source_hashes[6]);
}
std::array<u8, 16> PartitionDataManager::GetKeyAreaKeyOceanSource(Package2Type type) const {
return FindKeyFromHex(package2_fs.at(static_cast<size_t>(type)), source_hashes[7]);
}
std::array<u8, 16> PartitionDataManager::GetKeyAreaKeySystemSource(Package2Type type) const {
return FindKeyFromHex(package2_fs.at(static_cast<size_t>(type)), source_hashes[8]);
}
std::array<u8, 16> PartitionDataManager::GetSDKekSource(Package2Type type) const {
return FindKeyFromHex(package2_fs.at(static_cast<size_t>(type)), source_hashes[9]);
}
std::array<u8, 32> PartitionDataManager::GetSDSaveKeySource(Package2Type type) const {
return FindKeyFromHex<0x20>(package2_fs.at(static_cast<size_t>(type)), source_hashes[10]);
}
std::array<u8, 32> PartitionDataManager::GetSDNCAKeySource(Package2Type type) const {
return FindKeyFromHex<0x20>(package2_fs.at(static_cast<size_t>(type)), source_hashes[11]);
}
std::array<u8, 16> PartitionDataManager::GetHeaderKekSource(Package2Type type) const {
return FindKeyFromHex(package2_fs.at(static_cast<size_t>(type)), source_hashes[12]);
}
std::array<u8, 32> PartitionDataManager::GetHeaderKeySource(Package2Type type) const {
return FindKeyFromHex<0x20>(package2_fs.at(static_cast<size_t>(type)), source_hashes[13]);
}
const std::vector<u8>& PartitionDataManager::GetPackage2SPLDecompressed(Package2Type type) const {
return package2_spl.at(static_cast<size_t>(type));
}
std::array<u8, 16> PartitionDataManager::GetAESKeyGenerationSource(Package2Type type) const {
return FindKeyFromHex(package2_spl.at(static_cast<size_t>(type)), source_hashes[4]);
}
bool PartitionDataManager::HasProdInfo() const {
return prodinfo != nullptr;
}
FileSys::VirtualFile PartitionDataManager::GetProdInfoRaw() const {
return prodinfo;
}
void PartitionDataManager::DecryptProdInfo(std::array<u8, 0x20> bis_key) {
if (prodinfo == nullptr)
return;
prodinfo_decrypted = std::make_shared<XTSEncryptionLayer>(prodinfo, bis_key);
}
std::array<u8, 576> PartitionDataManager::GetETicketExtendedKek() const {
std::array<u8, 0x240> out{};
if (prodinfo_decrypted != nullptr)
prodinfo_decrypted->Read(out.data(), out.size(), 0x3890);
return out;
}
} // namespace Core::Crypto

View File

@ -0,0 +1,105 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <vector>
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/swap.h"
#include "core/file_sys/vfs_types.h"
namespace Core::Crypto {
enum class Package2Type {
NormalMain,
NormalSub,
SafeModeMain,
SafeModeSub,
RepairMain,
RepairSub,
};
class PartitionDataManager {
public:
static const u8 MAX_KEYBLOB_SOURCE_HASH;
explicit PartitionDataManager(FileSys::VirtualDir sysdata_dir);
~PartitionDataManager();
// BOOT0
bool HasBoot0() const;
FileSys::VirtualFile GetBoot0Raw() const;
std::array<u8, 0xB0> GetEncryptedKeyblob(u8 index) const;
std::array<std::array<u8, 0xB0>, 0x20> GetEncryptedKeyblobs() const;
std::vector<u8> GetSecureMonitor() const;
std::array<u8, 0x10> GetPackage2KeySource() const;
std::array<u8, 0x10> GetAESKekGenerationSource() const;
std::array<u8, 0x10> GetTitlekekSource() const;
std::array<std::array<u8, 0x10>, 0x20> GetTZMasterKeys(std::array<u8, 0x10> master_key) const;
std::array<u8, 0x10> GetRSAKekSeed3() const;
std::array<u8, 0x10> GetRSAKekMask0() const;
std::vector<u8> GetPackage1Decrypted() const;
std::array<u8, 0x10> GetMasterKeySource() const;
std::array<u8, 0x10> GetKeyblobMACKeySource() const;
std::array<u8, 0x10> GetKeyblobKeySource(u8 revision) const;
// Fuses
bool HasFuses() const;
FileSys::VirtualFile GetFusesRaw() const;
std::array<u8, 0x10> GetSecureBootKey() const;
// K-Fuses
bool HasKFuses() const;
FileSys::VirtualFile GetKFusesRaw() const;
// Package2
bool HasPackage2(Package2Type type = Package2Type::NormalMain) const;
FileSys::VirtualFile GetPackage2Raw(Package2Type type = Package2Type::NormalMain) const;
void DecryptPackage2(std::array<std::array<u8, 16>, 0x20> package2, Package2Type type);
const std::vector<u8>& GetPackage2FSDecompressed(
Package2Type type = Package2Type::NormalMain) const;
std::array<u8, 0x10> GetKeyAreaKeyApplicationSource(
Package2Type type = Package2Type::NormalMain) const;
std::array<u8, 0x10> GetKeyAreaKeyOceanSource(
Package2Type type = Package2Type::NormalMain) const;
std::array<u8, 0x10> GetKeyAreaKeySystemSource(
Package2Type type = Package2Type::NormalMain) const;
std::array<u8, 0x10> GetSDKekSource(Package2Type type = Package2Type::NormalMain) const;
std::array<u8, 0x20> GetSDSaveKeySource(Package2Type type = Package2Type::NormalMain) const;
std::array<u8, 0x20> GetSDNCAKeySource(Package2Type type = Package2Type::NormalMain) const;
std::array<u8, 0x10> GetHeaderKekSource(Package2Type type = Package2Type::NormalMain) const;
std::array<u8, 0x20> GetHeaderKeySource(Package2Type type = Package2Type::NormalMain) const;
const std::vector<u8>& GetPackage2SPLDecompressed(
Package2Type type = Package2Type::NormalMain) const;
std::array<u8, 0x10> GetAESKeyGenerationSource(
Package2Type type = Package2Type::NormalMain) const;
// PRODINFO
bool HasProdInfo() const;
FileSys::VirtualFile GetProdInfoRaw() const;
void DecryptProdInfo(std::array<u8, 0x20> bis_key);
std::array<u8, 0x240> GetETicketExtendedKek() const;
private:
FileSys::VirtualFile boot0;
FileSys::VirtualFile fuses;
FileSys::VirtualFile kfuses;
std::array<FileSys::VirtualFile, 6> package2;
FileSys::VirtualFile prodinfo;
FileSys::VirtualFile secure_monitor;
FileSys::VirtualFile package1_decrypted;
// Processed
std::array<FileSys::VirtualFile, 6> package2_decrypted;
FileSys::VirtualFile prodinfo_decrypted;
std::vector<u8> secure_monitor_bytes;
std::vector<u8> package1_decrypted_bytes;
std::array<std::vector<u8>, 6> package2_fs;
std::array<std::vector<u8>, 6> package2_spl;
};
std::array<u8, 0x10> FindKeyFromHex16(const std::vector<u8>& binary, std::array<u8, 0x20> hash);
} // namespace Core::Crypto

View File

@ -12,20 +12,12 @@
#include <vector>
#include <boost/optional.hpp>
#include "common/common_types.h"
#include "core/file_sys/vfs_types.h"
namespace FileSys {
class VfsDirectory;
class VfsFile;
class VfsFilesystem;
enum class Mode : u32;
// Convenience typedefs to use Vfs* interfaces
using VirtualFilesystem = std::shared_ptr<VfsFilesystem>;
using VirtualDir = std::shared_ptr<VfsDirectory>;
using VirtualFile = std::shared_ptr<VfsFile>;
// An enumeration representing what can be at the end of a path in a VfsFilesystem
enum class VfsEntryType {
None,

View File

@ -0,0 +1,21 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
namespace FileSys {
class VfsDirectory;
class VfsFile;
class VfsFilesystem;
// Declarations for Vfs* pointer types
using VirtualDir = std::shared_ptr<VfsDirectory>;
using VirtualFile = std::shared_ptr<VfsFile>;
using VirtualFilesystem = std::shared_ptr<VfsFilesystem>;
} // namespace FileSys

View File

@ -31,6 +31,7 @@ static FileSys::VirtualFile VfsDirectoryCreateFileWrapper(const FileSys::Virtual
#include <QDialogButtonBox>
#include <QFileDialog>
#include <QMessageBox>
#include <QtConcurrent/QtConcurrent>
#include <QtGui>
#include <QtWidgets>
#include <fmt/format.h>
@ -171,6 +172,9 @@ GMainWindow::GMainWindow()
.arg(Common::g_build_fullname, Common::g_scm_branch, Common::g_scm_desc));
show();
// Gen keys if necessary
OnReinitializeKeys(ReinitializeKeyBehavior::NoWarning);
// Necessary to load titles from nand in gamelist.
Service::FileSystem::CreateFactories(vfs);
game_list->LoadCompatibilityList();
@ -443,6 +447,8 @@ void GMainWindow::ConnectMenuEvents() {
connect(ui.action_Fullscreen, &QAction::triggered, this, &GMainWindow::ToggleFullscreen);
// Help
connect(ui.action_Rederive, &QAction::triggered, this,
std::bind(&GMainWindow::OnReinitializeKeys, this, ReinitializeKeyBehavior::Warning));
connect(ui.action_About, &QAction::triggered, this, &GMainWindow::OnAbout);
}
@ -1375,6 +1381,82 @@ void GMainWindow::OnCoreError(Core::System::ResultStatus result, std::string det
}
}
void GMainWindow::OnReinitializeKeys(ReinitializeKeyBehavior behavior) {
if (behavior == ReinitializeKeyBehavior::Warning) {
const auto res = QMessageBox::information(
this, tr("Confirm Key Rederivation"),
tr("You are about to force rederive all of your keys. \nIf you do not know what this "
"means or what you are doing, \nthis is a potentially destructive action. \nPlease "
"make "
"sure this is what you want \nand optionally make backups.\n\nThis will delete your "
"autogenerated key files and re-run the key derivation module."),
QMessageBox::StandardButtons{QMessageBox::Ok, QMessageBox::Cancel});
if (res == QMessageBox::Cancel)
return;
FileUtil::Delete(FileUtil::GetUserPath(FileUtil::UserPath::KeysDir) +
"prod.keys_autogenerated");
FileUtil::Delete(FileUtil::GetUserPath(FileUtil::UserPath::KeysDir) +
"console.keys_autogenerated");
FileUtil::Delete(FileUtil::GetUserPath(FileUtil::UserPath::KeysDir) +
"title.keys_autogenerated");
}
Core::Crypto::KeyManager keys{};
if (keys.BaseDeriveNecessary()) {
Core::Crypto::PartitionDataManager pdm{vfs->OpenDirectory(
FileUtil::GetUserPath(FileUtil::UserPath::SysDataDir), FileSys::Mode::Read)};
const auto function = [this, &keys, &pdm] {
keys.PopulateFromPartitionData(pdm);
Service::FileSystem::CreateFactories(vfs);
keys.DeriveETicket(pdm);
};
QString errors;
if (!pdm.HasFuses())
errors += tr("- Missing fuses - Cannot derive SBK\n");
if (!pdm.HasBoot0())
errors += tr("- Missing BOOT0 - Cannot derive master keys\n");
if (!pdm.HasPackage2())
errors += tr("- Missing BCPKG2-1-Normal-Main - Cannot derive general keys\n");
if (!pdm.HasProdInfo())
errors += tr("- Missing PRODINFO - Cannot derive title keys\n");
if (!errors.isEmpty()) {
QMessageBox::warning(
this, tr("Warning Missing Derivation Components"),
tr("The following are missing from your configuration that may hinder key "
"derivation. It will be attempted but may not complete.\n\n") +
errors);
}
QProgressDialog prog;
prog.setRange(0, 0);
prog.setLabelText(tr("Deriving keys...\nThis may take up to a minute depending \non your "
"system's performance."));
prog.setWindowTitle(tr("Deriving Keys"));
prog.show();
auto future = QtConcurrent::run(function);
while (!future.isFinished()) {
QCoreApplication::processEvents();
}
prog.close();
}
Service::FileSystem::CreateFactories(vfs);
if (behavior == ReinitializeKeyBehavior::Warning) {
game_list->PopulateAsync(UISettings::values.gamedir, UISettings::values.gamedir_deepscan);
}
}
bool GMainWindow::ConfirmClose() {
if (emu_thread == nullptr || !UISettings::values.confirm_before_closing)
return true;

View File

@ -41,6 +41,11 @@ enum class EmulatedDirectoryTarget {
SDMC,
};
enum class ReinitializeKeyBehavior {
NoWarning,
Warning,
};
namespace DiscordRPC {
class DiscordInterface;
}
@ -167,6 +172,7 @@ private slots:
void HideFullscreen();
void ToggleWindowMode();
void OnCoreError(Core::System::ResultStatus, std::string);
void OnReinitializeKeys(ReinitializeKeyBehavior behavior);
private:
void UpdateStatusBar();

View File

@ -103,6 +103,7 @@
</property>
<addaction name="action_Report_Compatibility"/>
<addaction name="separator"/>
<addaction name="action_Rederive"/>
<addaction name="action_About"/>
</widget>
<addaction name="menu_File"/>
@ -159,6 +160,11 @@
<string>&amp;Stop</string>
</property>
</action>
<action name="action_Rederive">
<property name="text">
<string>Reinitialize keys...</string>
</property>
</action>
<action name="action_About">
<property name="text">
<string>About yuzu</string>