yuzu-emu
/
yuzu-mainline
Archived
1
0
Fork 0

Pica: Create 'State' structure and move state memory there.

This commit is contained in:
bunnei 2015-05-13 23:29:27 -04:00
parent 4c207798b4
commit 1b42d55a9d
15 changed files with 461 additions and 438 deletions

View File

@ -228,7 +228,7 @@ void GPUCommandListModel::OnPicaTraceFinished(const Pica::DebugUtils::PicaTrace&
#define COMMAND_IN_RANGE(cmd_id, reg_name) \ #define COMMAND_IN_RANGE(cmd_id, reg_name) \
(cmd_id >= PICA_REG_INDEX(reg_name) && \ (cmd_id >= PICA_REG_INDEX(reg_name) && \
cmd_id < PICA_REG_INDEX(reg_name) + sizeof(decltype(Pica::registers.reg_name)) / 4) cmd_id < PICA_REG_INDEX(reg_name) + sizeof(decltype(Pica::g_state.regs.reg_name)) / 4)
void GPUCommandListWidget::OnCommandDoubleClicked(const QModelIndex& index) { void GPUCommandListWidget::OnCommandDoubleClicked(const QModelIndex& index) {
const unsigned int command_id = list_widget->model()->data(index, GPUCommandListModel::CommandIdRole).toUInt(); const unsigned int command_id = list_widget->model()->data(index, GPUCommandListModel::CommandIdRole).toUInt();
@ -244,8 +244,8 @@ void GPUCommandListWidget::OnCommandDoubleClicked(const QModelIndex& index) {
} else { } else {
index = 2; index = 2;
} }
auto config = Pica::registers.GetTextures()[index].config; auto config = Pica::g_state.regs.GetTextures()[index].config;
auto format = Pica::registers.GetTextures()[index].format; auto format = Pica::g_state.regs.GetTextures()[index].format;
auto info = Pica::DebugUtils::TextureInfo::FromPicaRegister(config, format); auto info = Pica::DebugUtils::TextureInfo::FromPicaRegister(config, format);
// TODO: Instead, emit a signal here to be caught by the main window widget. // TODO: Instead, emit a signal here to be caught by the main window widget.
@ -270,8 +270,8 @@ void GPUCommandListWidget::SetCommandInfo(const QModelIndex& index) {
} else { } else {
index = 2; index = 2;
} }
auto config = Pica::registers.GetTextures()[index].config; auto config = Pica::g_state.regs.GetTextures()[index].config;
auto format = Pica::registers.GetTextures()[index].format; auto format = Pica::g_state.regs.GetTextures()[index].format;
auto info = Pica::DebugUtils::TextureInfo::FromPicaRegister(config, format); auto info = Pica::DebugUtils::TextureInfo::FromPicaRegister(config, format);
u8* src = Memory::GetPhysicalPointer(config.GetPhysicalAddress()); u8* src = Memory::GetPhysicalPointer(config.GetPhysicalAddress());

View File

@ -178,7 +178,7 @@ void GraphicsFramebufferWidget::OnUpdate()
{ {
// TODO: Store a reference to the registers in the debug context instead of accessing them directly... // TODO: Store a reference to the registers in the debug context instead of accessing them directly...
const auto& framebuffer = Pica::registers.framebuffer; const auto& framebuffer = Pica::g_state.regs.framebuffer;
framebuffer_address = framebuffer.GetColorBufferPhysicalAddress(); framebuffer_address = framebuffer.GetColorBufferPhysicalAddress();
framebuffer_width = framebuffer.GetWidth(); framebuffer_width = framebuffer.GetWidth();
@ -191,7 +191,7 @@ void GraphicsFramebufferWidget::OnUpdate()
case Source::DepthBuffer: case Source::DepthBuffer:
{ {
const auto& framebuffer = Pica::registers.framebuffer; const auto& framebuffer = Pica::g_state.regs.framebuffer;
framebuffer_address = framebuffer.GetDepthBufferPhysicalAddress(); framebuffer_address = framebuffer.GetDepthBufferPhysicalAddress();
framebuffer_width = framebuffer.GetWidth(); framebuffer_width = framebuffer.GetWidth();

View File

@ -253,13 +253,13 @@ void GraphicsVertexShaderModel::OnUpdate()
info.Clear(); info.Clear();
for (auto instr : Pica::VertexShader::GetShaderBinary()) for (auto instr : Pica::g_state.vs.program_code)
info.code.push_back({instr}); info.code.push_back({instr});
for (auto pattern : Pica::VertexShader::GetSwizzlePatterns()) for (auto pattern : Pica::g_state.vs.swizzle_data)
info.swizzle_info.push_back({pattern}); info.swizzle_info.push_back({pattern});
info.labels.insert({Pica::registers.vs_main_offset, "main"}); info.labels.insert({ Pica::g_state.regs.vs_main_offset, "main" });
endResetModel(); endResetModel();
} }

View File

@ -9,6 +9,7 @@ set(SRCS
debug_utils/debug_utils.cpp debug_utils/debug_utils.cpp
clipper.cpp clipper.cpp
command_processor.cpp command_processor.cpp
pica.cpp
primitive_assembly.cpp primitive_assembly.cpp
rasterizer.cpp rasterizer.cpp
utils.cpp utils.cpp

View File

@ -58,12 +58,13 @@ static void InitScreenCoordinates(OutputVertex& vtx)
float24 offset_z; float24 offset_z;
} viewport; } viewport;
viewport.halfsize_x = float24::FromRawFloat24(registers.viewport_size_x); const auto& regs = g_state.regs;
viewport.halfsize_y = float24::FromRawFloat24(registers.viewport_size_y); viewport.halfsize_x = float24::FromRawFloat24(regs.viewport_size_x);
viewport.offset_x = float24::FromFloat32(static_cast<float>(registers.viewport_corner.x)); viewport.halfsize_y = float24::FromRawFloat24(regs.viewport_size_y);
viewport.offset_y = float24::FromFloat32(static_cast<float>(registers.viewport_corner.y)); viewport.offset_x = float24::FromFloat32(static_cast<float>(regs.viewport_corner.x));
viewport.zscale = float24::FromRawFloat24(registers.viewport_depth_range); viewport.offset_y = float24::FromFloat32(static_cast<float>(regs.viewport_corner.y));
viewport.offset_z = float24::FromRawFloat24(registers.viewport_depth_far_plane); viewport.zscale = float24::FromRawFloat24(regs.viewport_depth_range);
viewport.offset_z = float24::FromRawFloat24(regs.viewport_depth_far_plane);
float24 inv_w = float24::FromFloat32(1.f) / vtx.pos.w; float24 inv_w = float24::FromFloat32(1.f) / vtx.pos.w;
vtx.color *= inv_w; vtx.color *= inv_w;

View File

@ -21,8 +21,6 @@
namespace Pica { namespace Pica {
Regs registers;
namespace CommandProcessor { namespace CommandProcessor {
static int float_regs_counter = 0; static int float_regs_counter = 0;
@ -36,8 +34,9 @@ static u32 default_attr_write_buffer[3];
Common::Profiling::TimingCategory category_drawing("Drawing"); Common::Profiling::TimingCategory category_drawing("Drawing");
static inline void WritePicaReg(u32 id, u32 value, u32 mask) { static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
auto& regs = g_state.regs;
if (id >= registers.NumIds()) if (id >= regs.NumIds())
return; return;
// If we're skipping this frame, only allow trigger IRQ // If we're skipping this frame, only allow trigger IRQ
@ -45,13 +44,13 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
return; return;
// TODO: Figure out how register masking acts on e.g. vs_uniform_setup.set_value // TODO: Figure out how register masking acts on e.g. vs_uniform_setup.set_value
u32 old_value = registers[id]; u32 old_value = regs[id];
registers[id] = (old_value & ~mask) | (value & mask); regs[id] = (old_value & ~mask) | (value & mask);
if (g_debug_context) if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::CommandLoaded, reinterpret_cast<void*>(&id)); g_debug_context->OnEvent(DebugContext::Event::CommandLoaded, reinterpret_cast<void*>(&id));
DebugUtils::OnPicaRegWrite(id, registers[id]); DebugUtils::OnPicaRegWrite(id, regs[id]);
switch(id) { switch(id) {
// Trigger IRQ // Trigger IRQ
@ -65,12 +64,12 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
{ {
Common::Profiling::ScopeTimer scope_timer(category_drawing); Common::Profiling::ScopeTimer scope_timer(category_drawing);
DebugUtils::DumpTevStageConfig(registers.GetTevStages()); DebugUtils::DumpTevStageConfig(regs.GetTevStages());
if (g_debug_context) if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::IncomingPrimitiveBatch, nullptr); g_debug_context->OnEvent(DebugContext::Event::IncomingPrimitiveBatch, nullptr);
const auto& attribute_config = registers.vertex_attributes; const auto& attribute_config = regs.vertex_attributes;
const u32 base_address = attribute_config.GetPhysicalBaseAddress(); const u32 base_address = attribute_config.GetPhysicalBaseAddress();
// Information about internal vertex attributes // Information about internal vertex attributes
@ -103,16 +102,16 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
// Load vertices // Load vertices
bool is_indexed = (id == PICA_REG_INDEX(trigger_draw_indexed)); bool is_indexed = (id == PICA_REG_INDEX(trigger_draw_indexed));
const auto& index_info = registers.index_array; const auto& index_info = regs.index_array;
const u8* index_address_8 = Memory::GetPhysicalPointer(base_address + index_info.offset); const u8* index_address_8 = Memory::GetPhysicalPointer(base_address + index_info.offset);
const u16* index_address_16 = (u16*)index_address_8; const u16* index_address_16 = (u16*)index_address_8;
bool index_u16 = index_info.format != 0; bool index_u16 = index_info.format != 0;
DebugUtils::GeometryDumper geometry_dumper; DebugUtils::GeometryDumper geometry_dumper;
PrimitiveAssembler<VertexShader::OutputVertex> primitive_assembler(registers.triangle_topology.Value()); PrimitiveAssembler<VertexShader::OutputVertex> primitive_assembler(regs.triangle_topology.Value());
PrimitiveAssembler<DebugUtils::GeometryDumper::Vertex> dumping_primitive_assembler(registers.triangle_topology.Value()); PrimitiveAssembler<DebugUtils::GeometryDumper::Vertex> dumping_primitive_assembler(regs.triangle_topology.Value());
for (unsigned int index = 0; index < registers.num_vertices; ++index) for (unsigned int index = 0; index < regs.num_vertices; ++index)
{ {
unsigned int vertex = is_indexed ? (index_u16 ? index_address_16[index] : index_address_8[index]) : index; unsigned int vertex = is_indexed ? (index_u16 ? index_address_16[index] : index_address_8[index]) : index;
@ -131,7 +130,7 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
for (int i = 0; i < attribute_config.GetNumTotalAttributes(); ++i) { for (int i = 0; i < attribute_config.GetNumTotalAttributes(); ++i) {
// Load the default attribute if we're configured to do so, this data will be overwritten by the loader data if it's set // Load the default attribute if we're configured to do so, this data will be overwritten by the loader data if it's set
if (attribute_config.IsDefaultAttribute(i)) { if (attribute_config.IsDefaultAttribute(i)) {
input.attr[i] = VertexShader::GetDefaultAttribute(i); input.attr[i] = g_state.vs.default_attributes[i];
LOG_TRACE(HW_GPU, "Loaded default attribute %x for vertex %x (index %x): (%f, %f, %f, %f)", LOG_TRACE(HW_GPU, "Loaded default attribute %x for vertex %x (index %x): (%f, %f, %f, %f)",
i, vertex, index, i, vertex, index,
input.attr[i][0].ToFloat32(), input.attr[i][1].ToFloat32(), input.attr[i][0].ToFloat32(), input.attr[i][1].ToFloat32(),
@ -216,7 +215,7 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
case PICA_REG_INDEX(vs_bool_uniforms): case PICA_REG_INDEX(vs_bool_uniforms):
for (unsigned i = 0; i < 16; ++i) for (unsigned i = 0; i < 16; ++i)
VertexShader::GetBoolUniform(i) = (registers.vs_bool_uniforms.Value() & (1 << i)) != 0; g_state.vs.uniforms.b[i] = (regs.vs_bool_uniforms.Value() & (1 << i)) != 0;
break; break;
@ -226,8 +225,8 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
case PICA_REG_INDEX_WORKAROUND(vs_int_uniforms[3], 0x2b4): case PICA_REG_INDEX_WORKAROUND(vs_int_uniforms[3], 0x2b4):
{ {
int index = (id - PICA_REG_INDEX_WORKAROUND(vs_int_uniforms[0], 0x2b1)); int index = (id - PICA_REG_INDEX_WORKAROUND(vs_int_uniforms[0], 0x2b1));
auto values = registers.vs_int_uniforms[index]; auto values = regs.vs_int_uniforms[index];
VertexShader::GetIntUniform(index) = Math::Vec4<u8>(values.x, values.y, values.z, values.w); g_state.vs.uniforms.i[index] = Math::Vec4<u8>(values.x, values.y, values.z, values.w);
LOG_TRACE(HW_GPU, "Set integer uniform %d to %02x %02x %02x %02x", LOG_TRACE(HW_GPU, "Set integer uniform %d to %02x %02x %02x %02x",
index, values.x.Value(), values.y.Value(), values.z.Value(), values.w.Value()); index, values.x.Value(), values.y.Value(), values.z.Value(), values.w.Value());
break; break;
@ -242,7 +241,7 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[6], 0x2c7): case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[6], 0x2c7):
case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[7], 0x2c8): case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[7], 0x2c8):
{ {
auto& uniform_setup = registers.vs_uniform_setup; auto& uniform_setup = regs.vs_uniform_setup;
// TODO: Does actual hardware indeed keep an intermediate buffer or does // TODO: Does actual hardware indeed keep an intermediate buffer or does
// it directly write the values? // it directly write the values?
@ -255,7 +254,7 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
(float_regs_counter >= 3 && !uniform_setup.IsFloat32())) { (float_regs_counter >= 3 && !uniform_setup.IsFloat32())) {
float_regs_counter = 0; float_regs_counter = 0;
auto& uniform = VertexShader::GetFloatUniform(uniform_setup.index); auto& uniform = g_state.vs.uniforms.f[uniform_setup.index];
if (uniform_setup.index > 95) { if (uniform_setup.index > 95) {
LOG_ERROR(HW_GPU, "Invalid VS uniform index %d", (int)uniform_setup.index); LOG_ERROR(HW_GPU, "Invalid VS uniform index %d", (int)uniform_setup.index);
@ -299,14 +298,14 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
if (default_attr_counter >= 3) { if (default_attr_counter >= 3) {
default_attr_counter = 0; default_attr_counter = 0;
auto& setup = registers.vs_default_attributes_setup; auto& setup = regs.vs_default_attributes_setup;
if (setup.index >= 16) { if (setup.index >= 16) {
LOG_ERROR(HW_GPU, "Invalid VS default attribute index %d", (int)setup.index); LOG_ERROR(HW_GPU, "Invalid VS default attribute index %d", (int)setup.index);
break; break;
} }
Math::Vec4<float24>& attribute = VertexShader::GetDefaultAttribute(setup.index); Math::Vec4<float24>& attribute = g_state.vs.default_attributes[setup.index];
// NOTE: The destination component order indeed is "backwards" // NOTE: The destination component order indeed is "backwards"
attribute.w = float24::FromRawFloat24(default_attr_write_buffer[0] >> 8); attribute.w = float24::FromRawFloat24(default_attr_write_buffer[0] >> 8);
@ -334,8 +333,8 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[6], 0x2d2): case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[6], 0x2d2):
case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[7], 0x2d3): case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[7], 0x2d3):
{ {
VertexShader::SubmitShaderMemoryChange(registers.vs_program.offset, value); g_state.vs.program_code[regs.vs_program.offset] = value;
registers.vs_program.offset++; regs.vs_program.offset++;
break; break;
} }
@ -349,8 +348,8 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[6], 0x2dc): case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[6], 0x2dc):
case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[7], 0x2dd): case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[7], 0x2dd):
{ {
VertexShader::SubmitSwizzleDataChange(registers.vs_swizzle_patterns.offset, value); g_state.vs.swizzle_data[regs.vs_swizzle_patterns.offset] = value;
registers.vs_swizzle_patterns.offset++; regs.vs_swizzle_patterns.offset++;
break; break;
} }

View File

@ -632,7 +632,7 @@ void DumpTexture(const Pica::Regs::TextureConfig& texture_config, u8* data) {
info.width = texture_config.width; info.width = texture_config.width;
info.height = texture_config.height; info.height = texture_config.height;
info.stride = row_stride; info.stride = row_stride;
info.format = registers.texture0_format; info.format = g_state.regs.texture0_format;
Math::Vec4<u8> texture_color = LookupTexture(data, x, y, info); Math::Vec4<u8> texture_color = LookupTexture(data, x, y, info);
buf[3 * x + y * row_stride ] = texture_color.r(); buf[3 * x + y * row_stride ] = texture_color.r();
buf[3 * x + y * row_stride + 1] = texture_color.g(); buf[3 * x + y * row_stride + 1] = texture_color.g();

20
src/video_core/pica.cpp Normal file
View File

@ -0,0 +1,20 @@
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <string.h>
#include "pica.h"
namespace Pica {
State g_state;
void Init() {
}
void Shutdown() {
memset(&g_state, 0, sizeof(State));
}
}

View File

@ -16,6 +16,8 @@
#include "common/common_types.h" #include "common/common_types.h"
#include "common/logging/log.h" #include "common/logging/log.h"
#include "math.h"
namespace Pica { namespace Pica {
// Returns index corresponding to the Regs member labeled by field_name // Returns index corresponding to the Regs member labeled by field_name
@ -356,50 +358,50 @@ struct Regs {
tev_stage4, tev_stage5 }; tev_stage4, tev_stage5 };
}; };
struct { enum class BlendEquation : u32 {
enum CompareFunc : u32 { Add = 0,
Never = 0, Subtract = 1,
Always = 1, ReverseSubtract = 2,
Equal = 2, Min = 3,
NotEqual = 3, Max = 4,
LessThan = 4, };
LessThanOrEqual = 5,
GreaterThan = 6,
GreaterThanOrEqual = 7,
};
enum class BlendFactor : u32 {
Zero = 0,
One = 1,
SourceColor = 2,
OneMinusSourceColor = 3,
DestColor = 4,
OneMinusDestColor = 5,
SourceAlpha = 6,
OneMinusSourceAlpha = 7,
DestAlpha = 8,
OneMinusDestAlpha = 9,
ConstantColor = 10,
OneMinusConstantColor = 11,
ConstantAlpha = 12,
OneMinusConstantAlpha = 13,
SourceAlphaSaturate = 14,
};
enum class CompareFunc : u32 {
Never = 0,
Always = 1,
Equal = 2,
NotEqual = 3,
LessThan = 4,
LessThanOrEqual = 5,
GreaterThan = 6,
GreaterThanOrEqual = 7,
};
struct {
union { union {
// If false, logic blending is used // If false, logic blending is used
BitField<8, 1, u32> alphablend_enable; BitField<8, 1, u32> alphablend_enable;
}; };
union { union {
enum class BlendEquation : u32 {
Add = 0,
Subtract = 1,
ReverseSubtract = 2,
Min = 3,
Max = 4
};
enum BlendFactor : u32 {
Zero = 0,
One = 1,
SourceColor = 2,
OneMinusSourceColor = 3,
DestColor = 4,
OneMinusDestColor = 5,
SourceAlpha = 6,
OneMinusSourceAlpha = 7,
DestAlpha = 8,
OneMinusDestAlpha = 9,
ConstantColor = 10,
OneMinusConstantColor = 11,
ConstantAlpha = 12,
OneMinusConstantAlpha = 13,
SourceAlphaSaturate = 14
};
BitField< 0, 8, BlendEquation> blend_equation_rgb; BitField< 0, 8, BlendEquation> blend_equation_rgb;
BitField< 8, 8, BlendEquation> blend_equation_a; BitField< 8, 8, BlendEquation> blend_equation_a;
@ -454,49 +456,19 @@ struct Regs {
INSERT_PADDING_WORDS(0x8); INSERT_PADDING_WORDS(0x8);
} output_merger; } output_merger;
enum DepthFormat : u32 { // Components are laid out in reverse byte order, most significant bits first.
D16 = 0, enum class ColorFormat : u32 {
RGBA8 = 0,
D24 = 2, RGB8 = 1,
D24S8 = 3 RGB5A1 = 2,
RGB565 = 3,
RGBA4 = 4,
}; };
// Returns the number of bytes in the specified depth format enum class DepthFormat : u32 {
static u32 BytesPerDepthPixel(DepthFormat format) { D16 = 0,
switch (format) { D24 = 2,
case DepthFormat::D16: D24S8 = 3,
return 2;
case DepthFormat::D24:
return 3;
case DepthFormat::D24S8:
return 4;
default:
LOG_CRITICAL(HW_GPU, "Unknown depth format %u", format);
UNIMPLEMENTED();
}
}
// Returns the number of bits per depth component of the specified depth format
static u32 DepthBitsPerPixel(DepthFormat format) {
switch (format) {
case DepthFormat::D16:
return 16;
case DepthFormat::D24:
case DepthFormat::D24S8:
return 24;
default:
LOG_CRITICAL(HW_GPU, "Unknown depth format %u", format);
UNIMPLEMENTED();
}
}
// Components are laid out in reverse byte order, most significant bits first.
enum ColorFormat : u32 {
RGBA8 = 0,
RGB8 = 1,
RGB5A1 = 2,
RGB565 = 3,
RGBA4 = 4,
}; };
// Returns the number of bytes in the specified color format // Returns the number of bytes in the specified color format
@ -554,6 +526,35 @@ struct Regs {
} }
} framebuffer; } framebuffer;
// Returns the number of bytes in the specified depth format
static u32 BytesPerDepthPixel(DepthFormat format) {
switch (format) {
case DepthFormat::D16:
return 2;
case DepthFormat::D24:
return 3;
case DepthFormat::D24S8:
return 4;
default:
LOG_CRITICAL(HW_GPU, "Unknown depth format %u", format);
UNIMPLEMENTED();
}
}
// Returns the number of bits per depth component of the specified depth format
static u32 DepthBitsPerPixel(DepthFormat format) {
switch (format) {
case DepthFormat::D16:
return 16;
case DepthFormat::D24:
case DepthFormat::D24S8:
return 24;
default:
LOG_CRITICAL(HW_GPU, "Unknown depth format %u", format);
UNIMPLEMENTED();
}
}
INSERT_PADDING_WORDS(0xe0); INSERT_PADDING_WORDS(0xe0);
enum class VertexAttributeFormat : u64 { enum class VertexAttributeFormat : u64 {
@ -953,9 +954,6 @@ ASSERT_REG_POSITION(vs_swizzle_patterns, 0x2d5);
static_assert(sizeof(Regs) <= 0x300 * sizeof(u32), "Register set structure larger than it should be"); static_assert(sizeof(Regs) <= 0x300 * sizeof(u32), "Register set structure larger than it should be");
static_assert(sizeof(Regs) >= 0x300 * sizeof(u32), "Register set structure smaller than it should be"); static_assert(sizeof(Regs) >= 0x300 * sizeof(u32), "Register set structure smaller than it should be");
extern Regs registers; // TODO: Not sure if we want to have one global instance for this
struct float24 { struct float24 {
static float24 FromFloat32(float val) { static float24 FromFloat32(float val) {
float24 ret; float24 ret;
@ -1066,4 +1064,30 @@ union CommandHeader {
BitField<31, 1, u32> group_commands; BitField<31, 1, u32> group_commands;
}; };
/// Struct used to describe current Pica state
struct State {
Regs regs;
struct {
struct {
Math::Vec4<float24> f[96];
std::array<bool, 16> b;
std::array<Math::Vec4<u8>, 4> i;
} uniforms;
Math::Vec4<float24> default_attributes[16];
std::array<u32, 1024> program_code;
std::array<u32, 1024> swizzle_data;
} vs;
};
/// Initialize Pica state
void Init();
/// Shutdown Pica state
void Shutdown();
extern State g_state; ///< Current Pica state
} // namespace } // namespace

View File

@ -24,72 +24,74 @@ namespace Pica {
namespace Rasterizer { namespace Rasterizer {
static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) { static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress(); const auto& framebuffer = g_state.regs.framebuffer;
const PAddr addr = framebuffer.GetColorBufferPhysicalAddress();
// Similarly to textures, the render framebuffer is laid out from bottom to top, too. // Similarly to textures, the render framebuffer is laid out from bottom to top, too.
// NOTE: The framebuffer height register contains the actual FB height minus one. // NOTE: The framebuffer height register contains the actual FB height minus one.
y = (registers.framebuffer.height - y); y = framebuffer.height - y;
const u32 coarse_y = y & ~7; const u32 coarse_y = y & ~7;
u32 bytes_per_pixel = GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(registers.framebuffer.color_format.Value())); u32 bytes_per_pixel = GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * registers.framebuffer.width * bytes_per_pixel; u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * framebuffer.width * bytes_per_pixel;
u8* dst_pixel = Memory::GetPhysicalPointer(addr) + dst_offset; u8* dst_pixel = Memory::GetPhysicalPointer(addr) + dst_offset;
switch (registers.framebuffer.color_format) { switch (framebuffer.color_format) {
case Pica::Regs::ColorFormat::RGBA8: case Regs::ColorFormat::RGBA8:
Color::EncodeRGBA8(color, dst_pixel); Color::EncodeRGBA8(color, dst_pixel);
break; break;
case Pica::Regs::ColorFormat::RGB8: case Regs::ColorFormat::RGB8:
Color::EncodeRGB8(color, dst_pixel); Color::EncodeRGB8(color, dst_pixel);
break; break;
case Pica::Regs::ColorFormat::RGB5A1: case Regs::ColorFormat::RGB5A1:
Color::EncodeRGB5A1(color, dst_pixel); Color::EncodeRGB5A1(color, dst_pixel);
break; break;
case Pica::Regs::ColorFormat::RGB565: case Regs::ColorFormat::RGB565:
Color::EncodeRGB565(color, dst_pixel); Color::EncodeRGB565(color, dst_pixel);
break; break;
case Pica::Regs::ColorFormat::RGBA4: case Regs::ColorFormat::RGBA4:
Color::EncodeRGBA4(color, dst_pixel); Color::EncodeRGBA4(color, dst_pixel);
break; break;
default: default:
LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", registers.framebuffer.color_format.Value()); LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", framebuffer.color_format.Value());
UNIMPLEMENTED(); UNIMPLEMENTED();
} }
} }
static const Math::Vec4<u8> GetPixel(int x, int y) { static const Math::Vec4<u8> GetPixel(int x, int y) {
const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress(); const auto& framebuffer = g_state.regs.framebuffer;
const PAddr addr = framebuffer.GetColorBufferPhysicalAddress();
y = (registers.framebuffer.height - y); y = framebuffer.height - y;
const u32 coarse_y = y & ~7; const u32 coarse_y = y & ~7;
u32 bytes_per_pixel = GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(registers.framebuffer.color_format.Value())); u32 bytes_per_pixel = GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * registers.framebuffer.width * bytes_per_pixel; u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * framebuffer.width * bytes_per_pixel;
u8* src_pixel = Memory::GetPhysicalPointer(addr) + src_offset; u8* src_pixel = Memory::GetPhysicalPointer(addr) + src_offset;
switch (registers.framebuffer.color_format) { switch (framebuffer.color_format) {
case Pica::Regs::ColorFormat::RGBA8: case Regs::ColorFormat::RGBA8:
return Color::DecodeRGBA8(src_pixel); return Color::DecodeRGBA8(src_pixel);
case Pica::Regs::ColorFormat::RGB8: case Regs::ColorFormat::RGB8:
return Color::DecodeRGB8(src_pixel); return Color::DecodeRGB8(src_pixel);
case Pica::Regs::ColorFormat::RGB5A1: case Regs::ColorFormat::RGB5A1:
return Color::DecodeRGB5A1(src_pixel); return Color::DecodeRGB5A1(src_pixel);
case Pica::Regs::ColorFormat::RGB565: case Regs::ColorFormat::RGB565:
return Color::DecodeRGB565(src_pixel); return Color::DecodeRGB565(src_pixel);
case Pica::Regs::ColorFormat::RGBA4: case Regs::ColorFormat::RGBA4:
return Color::DecodeRGBA4(src_pixel); return Color::DecodeRGBA4(src_pixel);
default: default:
LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", registers.framebuffer.color_format.Value()); LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", framebuffer.color_format.Value());
UNIMPLEMENTED(); UNIMPLEMENTED();
} }
@ -97,58 +99,60 @@ static const Math::Vec4<u8> GetPixel(int x, int y) {
} }
static u32 GetDepth(int x, int y) { static u32 GetDepth(int x, int y) {
const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress(); const auto& framebuffer = g_state.regs.framebuffer;
const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress();
u8* depth_buffer = Memory::GetPhysicalPointer(addr); u8* depth_buffer = Memory::GetPhysicalPointer(addr);
y = (registers.framebuffer.height - y); y = framebuffer.height - y;
const u32 coarse_y = y & ~7; const u32 coarse_y = y & ~7;
u32 bytes_per_pixel = Pica::Regs::BytesPerDepthPixel(registers.framebuffer.depth_format); u32 bytes_per_pixel = Regs::BytesPerDepthPixel(framebuffer.depth_format);
u32 stride = registers.framebuffer.width * bytes_per_pixel; u32 stride = framebuffer.width * bytes_per_pixel;
u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride; u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
u8* src_pixel = depth_buffer + src_offset; u8* src_pixel = depth_buffer + src_offset;
switch (registers.framebuffer.depth_format) { switch (framebuffer.depth_format) {
case Pica::Regs::DepthFormat::D16: case Regs::DepthFormat::D16:
return Color::DecodeD16(src_pixel); return Color::DecodeD16(src_pixel);
case Pica::Regs::DepthFormat::D24: case Regs::DepthFormat::D24:
return Color::DecodeD24(src_pixel); return Color::DecodeD24(src_pixel);
case Pica::Regs::DepthFormat::D24S8: case Regs::DepthFormat::D24S8:
return Color::DecodeD24S8(src_pixel).x; return Color::DecodeD24S8(src_pixel).x;
default: default:
LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", registers.framebuffer.depth_format); LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
UNIMPLEMENTED(); UNIMPLEMENTED();
return 0; return 0;
} }
} }
static void SetDepth(int x, int y, u32 value) { static void SetDepth(int x, int y, u32 value) {
const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress(); const auto& framebuffer = g_state.regs.framebuffer;
const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress();
u8* depth_buffer = Memory::GetPhysicalPointer(addr); u8* depth_buffer = Memory::GetPhysicalPointer(addr);
y = (registers.framebuffer.height - y); y = framebuffer.height - y;
const u32 coarse_y = y & ~7; const u32 coarse_y = y & ~7;
u32 bytes_per_pixel = Pica::Regs::BytesPerDepthPixel(registers.framebuffer.depth_format); u32 bytes_per_pixel = Regs::BytesPerDepthPixel(framebuffer.depth_format);
u32 stride = registers.framebuffer.width * bytes_per_pixel; u32 stride = framebuffer.width * bytes_per_pixel;
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride; u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
u8* dst_pixel = depth_buffer + dst_offset; u8* dst_pixel = depth_buffer + dst_offset;
switch (registers.framebuffer.depth_format) { switch (framebuffer.depth_format) {
case Pica::Regs::DepthFormat::D16: case Regs::DepthFormat::D16:
Color::EncodeD16(value, dst_pixel); Color::EncodeD16(value, dst_pixel);
break; break;
case Pica::Regs::DepthFormat::D24: case Regs::DepthFormat::D24:
Color::EncodeD24(value, dst_pixel); Color::EncodeD24(value, dst_pixel);
break; break;
case Pica::Regs::DepthFormat::D24S8: case Regs::DepthFormat::D24S8:
// TODO(Subv): Implement the stencil buffer // TODO(Subv): Implement the stencil buffer
Color::EncodeD24S8(value, 0, dst_pixel); Color::EncodeD24S8(value, 0, dst_pixel);
break; break;
default: default:
LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", registers.framebuffer.depth_format); LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
UNIMPLEMENTED(); UNIMPLEMENTED();
break; break;
} }
@ -200,6 +204,7 @@ static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0,
const VertexShader::OutputVertex& v2, const VertexShader::OutputVertex& v2,
bool reversed = false) bool reversed = false)
{ {
const auto& regs = g_state.regs;
Common::Profiling::ScopeTimer timer(rasterization_category); Common::Profiling::ScopeTimer timer(rasterization_category);
// vertex positions in rasterizer coordinates // vertex positions in rasterizer coordinates
@ -216,14 +221,14 @@ static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0,
ScreenToRasterizerCoordinates(v1.screenpos), ScreenToRasterizerCoordinates(v1.screenpos),
ScreenToRasterizerCoordinates(v2.screenpos) }; ScreenToRasterizerCoordinates(v2.screenpos) };
if (registers.cull_mode == Regs::CullMode::KeepAll) { if (regs.cull_mode == Regs::CullMode::KeepAll) {
// Make sure we always end up with a triangle wound counter-clockwise // Make sure we always end up with a triangle wound counter-clockwise
if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) { if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) {
ProcessTriangleInternal(v0, v2, v1, true); ProcessTriangleInternal(v0, v2, v1, true);
return; return;
} }
} else { } else {
if (!reversed && registers.cull_mode == Regs::CullMode::KeepClockWise) { if (!reversed && regs.cull_mode == Regs::CullMode::KeepClockWise) {
// Reverse vertex order and use the CCW code path. // Reverse vertex order and use the CCW code path.
ProcessTriangleInternal(v0, v2, v1, true); ProcessTriangleInternal(v0, v2, v1, true);
return; return;
@ -268,8 +273,8 @@ static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0,
auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w); auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w);
auto textures = registers.GetTextures(); auto textures = regs.GetTextures();
auto tev_stages = registers.GetTevStages(); auto tev_stages = regs.GetTevStages();
// Enter rasterization loop, starting at the center of the topleft bounding box corner. // Enter rasterization loop, starting at the center of the topleft bounding box corner.
// TODO: Not sure if looping through x first might be faster // TODO: Not sure if looping through x first might be faster
@ -384,8 +389,8 @@ static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0,
// analogously. // analogously.
Math::Vec4<u8> combiner_output; Math::Vec4<u8> combiner_output;
Math::Vec4<u8> combiner_buffer = { Math::Vec4<u8> combiner_buffer = {
registers.tev_combiner_buffer_color.r, registers.tev_combiner_buffer_color.g, regs.tev_combiner_buffer_color.r, regs.tev_combiner_buffer_color.g,
registers.tev_combiner_buffer_color.b, registers.tev_combiner_buffer_color.a regs.tev_combiner_buffer_color.b, regs.tev_combiner_buffer_color.a
}; };
for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); ++tev_stage_index) { for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); ++tev_stage_index) {
@ -609,51 +614,52 @@ static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0,
combiner_output[2] = std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier()); combiner_output[2] = std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier());
combiner_output[3] = std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier()); combiner_output[3] = std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier());
if (registers.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(tev_stage_index)) { if (regs.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(tev_stage_index)) {
combiner_buffer.r() = combiner_output.r(); combiner_buffer.r() = combiner_output.r();
combiner_buffer.g() = combiner_output.g(); combiner_buffer.g() = combiner_output.g();
combiner_buffer.b() = combiner_output.b(); combiner_buffer.b() = combiner_output.b();
} }
if (registers.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(tev_stage_index)) { if (regs.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(tev_stage_index)) {
combiner_buffer.a() = combiner_output.a(); combiner_buffer.a() = combiner_output.a();
} }
} }
if (registers.output_merger.alpha_test.enable) { const auto& output_merger = regs.output_merger;
if (output_merger.alpha_test.enable) {
bool pass = false; bool pass = false;
switch (registers.output_merger.alpha_test.func) { switch (output_merger.alpha_test.func) {
case registers.output_merger.Never: case Regs::CompareFunc::Never:
pass = false; pass = false;
break; break;
case registers.output_merger.Always: case Regs::CompareFunc::Always:
pass = true; pass = true;
break; break;
case registers.output_merger.Equal: case Regs::CompareFunc::Equal:
pass = combiner_output.a() == registers.output_merger.alpha_test.ref; pass = combiner_output.a() == output_merger.alpha_test.ref;
break; break;
case registers.output_merger.NotEqual: case Regs::CompareFunc::NotEqual:
pass = combiner_output.a() != registers.output_merger.alpha_test.ref; pass = combiner_output.a() != output_merger.alpha_test.ref;
break; break;
case registers.output_merger.LessThan: case Regs::CompareFunc::LessThan:
pass = combiner_output.a() < registers.output_merger.alpha_test.ref; pass = combiner_output.a() < output_merger.alpha_test.ref;
break; break;
case registers.output_merger.LessThanOrEqual: case Regs::CompareFunc::LessThanOrEqual:
pass = combiner_output.a() <= registers.output_merger.alpha_test.ref; pass = combiner_output.a() <= output_merger.alpha_test.ref;
break; break;
case registers.output_merger.GreaterThan: case Regs::CompareFunc::GreaterThan:
pass = combiner_output.a() > registers.output_merger.alpha_test.ref; pass = combiner_output.a() > output_merger.alpha_test.ref;
break; break;
case registers.output_merger.GreaterThanOrEqual: case Regs::CompareFunc::GreaterThanOrEqual:
pass = combiner_output.a() >= registers.output_merger.alpha_test.ref; pass = combiner_output.a() >= output_merger.alpha_test.ref;
break; break;
} }
@ -662,8 +668,8 @@ static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0,
} }
// TODO: Does depth indeed only get written even if depth testing is enabled? // TODO: Does depth indeed only get written even if depth testing is enabled?
if (registers.output_merger.depth_test_enable) { if (output_merger.depth_test_enable) {
unsigned num_bits = Pica::Regs::DepthBitsPerPixel(registers.framebuffer.depth_format); unsigned num_bits = Regs::DepthBitsPerPixel(regs.framebuffer.depth_format);
u32 z = (u32)((v0.screenpos[2].ToFloat32() * w0 + u32 z = (u32)((v0.screenpos[2].ToFloat32() * w0 +
v1.screenpos[2].ToFloat32() * w1 + v1.screenpos[2].ToFloat32() * w1 +
v2.screenpos[2].ToFloat32() * w2) * ((1 << num_bits) - 1) / wsum); v2.screenpos[2].ToFloat32() * w2) * ((1 << num_bits) - 1) / wsum);
@ -671,36 +677,36 @@ static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0,
bool pass = false; bool pass = false;
switch (registers.output_merger.depth_test_func) { switch (output_merger.depth_test_func) {
case registers.output_merger.Never: case Regs::CompareFunc::Never:
pass = false; pass = false;
break; break;
case registers.output_merger.Always: case Regs::CompareFunc::Always:
pass = true; pass = true;
break; break;
case registers.output_merger.Equal: case Regs::CompareFunc::Equal:
pass = z == ref_z; pass = z == ref_z;
break; break;
case registers.output_merger.NotEqual: case Regs::CompareFunc::NotEqual:
pass = z != ref_z; pass = z != ref_z;
break; break;
case registers.output_merger.LessThan: case Regs::CompareFunc::LessThan:
pass = z < ref_z; pass = z < ref_z;
break; break;
case registers.output_merger.LessThanOrEqual: case Regs::CompareFunc::LessThanOrEqual:
pass = z <= ref_z; pass = z <= ref_z;
break; break;
case registers.output_merger.GreaterThan: case Regs::CompareFunc::GreaterThan:
pass = z > ref_z; pass = z > ref_z;
break; break;
case registers.output_merger.GreaterThanOrEqual: case Regs::CompareFunc::GreaterThanOrEqual:
pass = z >= ref_z; pass = z >= ref_z;
break; break;
} }
@ -708,59 +714,59 @@ static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0,
if (!pass) if (!pass)
continue; continue;
if (registers.output_merger.depth_write_enable) if (output_merger.depth_write_enable)
SetDepth(x >> 4, y >> 4, z); SetDepth(x >> 4, y >> 4, z);
} }
auto dest = GetPixel(x >> 4, y >> 4); auto dest = GetPixel(x >> 4, y >> 4);
Math::Vec4<u8> blend_output = combiner_output; Math::Vec4<u8> blend_output = combiner_output;
if (registers.output_merger.alphablend_enable) { if (output_merger.alphablend_enable) {
auto params = registers.output_merger.alpha_blending; auto params = output_merger.alpha_blending;
auto LookupFactorRGB = [&](decltype(params)::BlendFactor factor) -> Math::Vec3<u8> { auto LookupFactorRGB = [&](Regs::BlendFactor factor) -> Math::Vec3<u8> {
switch (factor) { switch (factor) {
case params.Zero: case Regs::BlendFactor::Zero :
return Math::Vec3<u8>(0, 0, 0); return Math::Vec3<u8>(0, 0, 0);
case params.One: case Regs::BlendFactor::One :
return Math::Vec3<u8>(255, 255, 255); return Math::Vec3<u8>(255, 255, 255);
case params.SourceColor: case Regs::BlendFactor::SourceColor:
return combiner_output.rgb(); return combiner_output.rgb();
case params.OneMinusSourceColor: case Regs::BlendFactor::OneMinusSourceColor:
return Math::Vec3<u8>(255 - combiner_output.r(), 255 - combiner_output.g(), 255 - combiner_output.b()); return Math::Vec3<u8>(255 - combiner_output.r(), 255 - combiner_output.g(), 255 - combiner_output.b());
case params.DestColor: case Regs::BlendFactor::DestColor:
return dest.rgb(); return dest.rgb();
case params.OneMinusDestColor: case Regs::BlendFactor::OneMinusDestColor:
return Math::Vec3<u8>(255 - dest.r(), 255 - dest.g(), 255 - dest.b()); return Math::Vec3<u8>(255 - dest.r(), 255 - dest.g(), 255 - dest.b());
case params.SourceAlpha: case Regs::BlendFactor::SourceAlpha:
return Math::Vec3<u8>(combiner_output.a(), combiner_output.a(), combiner_output.a()); return Math::Vec3<u8>(combiner_output.a(), combiner_output.a(), combiner_output.a());
case params.OneMinusSourceAlpha: case Regs::BlendFactor::OneMinusSourceAlpha:
return Math::Vec3<u8>(255 - combiner_output.a(), 255 - combiner_output.a(), 255 - combiner_output.a()); return Math::Vec3<u8>(255 - combiner_output.a(), 255 - combiner_output.a(), 255 - combiner_output.a());
case params.DestAlpha: case Regs::BlendFactor::DestAlpha:
return Math::Vec3<u8>(dest.a(), dest.a(), dest.a()); return Math::Vec3<u8>(dest.a(), dest.a(), dest.a());
case params.OneMinusDestAlpha: case Regs::BlendFactor::OneMinusDestAlpha:
return Math::Vec3<u8>(255 - dest.a(), 255 - dest.a(), 255 - dest.a()); return Math::Vec3<u8>(255 - dest.a(), 255 - dest.a(), 255 - dest.a());
case params.ConstantColor: case Regs::BlendFactor::ConstantColor:
return Math::Vec3<u8>(registers.output_merger.blend_const.r, registers.output_merger.blend_const.g, registers.output_merger.blend_const.b); return Math::Vec3<u8>(output_merger.blend_const.r, output_merger.blend_const.g, output_merger.blend_const.b);
case params.OneMinusConstantColor: case Regs::BlendFactor::OneMinusConstantColor:
return Math::Vec3<u8>(255 - registers.output_merger.blend_const.r, 255 - registers.output_merger.blend_const.g, 255 - registers.output_merger.blend_const.b); return Math::Vec3<u8>(255 - output_merger.blend_const.r, 255 - output_merger.blend_const.g, 255 - output_merger.blend_const.b);
case params.ConstantAlpha: case Regs::BlendFactor::ConstantAlpha:
return Math::Vec3<u8>(registers.output_merger.blend_const.a, registers.output_merger.blend_const.a, registers.output_merger.blend_const.a); return Math::Vec3<u8>(output_merger.blend_const.a, output_merger.blend_const.a, output_merger.blend_const.a);
case params.OneMinusConstantAlpha: case Regs::BlendFactor::OneMinusConstantAlpha:
return Math::Vec3<u8>(255 - registers.output_merger.blend_const.a, 255 - registers.output_merger.blend_const.a, 255 - registers.output_merger.blend_const.a); return Math::Vec3<u8>(255 - output_merger.blend_const.a, 255 - output_merger.blend_const.a, 255 - output_merger.blend_const.a);
default: default:
LOG_CRITICAL(HW_GPU, "Unknown color blend factor %x", factor); LOG_CRITICAL(HW_GPU, "Unknown color blend factor %x", factor);
@ -769,31 +775,31 @@ static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0,
} }
}; };
auto LookupFactorA = [&](decltype(params)::BlendFactor factor) -> u8 { auto LookupFactorA = [&](Regs::BlendFactor factor) -> u8 {
switch (factor) { switch (factor) {
case params.Zero: case Regs::BlendFactor::Zero:
return 0; return 0;
case params.One: case Regs::BlendFactor::One:
return 255; return 255;
case params.SourceAlpha: case Regs::BlendFactor::SourceAlpha:
return combiner_output.a(); return combiner_output.a();
case params.OneMinusSourceAlpha: case Regs::BlendFactor::OneMinusSourceAlpha:
return 255 - combiner_output.a(); return 255 - combiner_output.a();
case params.DestAlpha: case Regs::BlendFactor::DestAlpha:
return dest.a(); return dest.a();
case params.OneMinusDestAlpha: case Regs::BlendFactor::OneMinusDestAlpha:
return 255 - dest.a(); return 255 - dest.a();
case params.ConstantAlpha: case Regs::BlendFactor::ConstantAlpha:
return registers.output_merger.blend_const.a; return output_merger.blend_const.a;
case params.OneMinusConstantAlpha: case Regs::BlendFactor::OneMinusConstantAlpha:
return 255 - registers.output_merger.blend_const.a; return 255 - output_merger.blend_const.a;
default: default:
LOG_CRITICAL(HW_GPU, "Unknown alpha blend factor %x", factor); LOG_CRITICAL(HW_GPU, "Unknown alpha blend factor %x", factor);
@ -802,7 +808,7 @@ static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0,
} }
}; };
using BlendEquation = decltype(params)::BlendEquation; using BlendEquation = Regs::BlendEquation;
static auto EvaluateBlendEquation = [](const Math::Vec4<u8>& src, const Math::Vec4<u8>& srcfactor, static auto EvaluateBlendEquation = [](const Math::Vec4<u8>& src, const Math::Vec4<u8>& srcfactor,
const Math::Vec4<u8>& dest, const Math::Vec4<u8>& destfactor, const Math::Vec4<u8>& dest, const Math::Vec4<u8>& destfactor,
BlendEquation equation) { BlendEquation equation) {
@ -812,29 +818,29 @@ static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0,
auto dst_result = (dest * destfactor).Cast<int>(); auto dst_result = (dest * destfactor).Cast<int>();
switch (equation) { switch (equation) {
case BlendEquation::Add: case Regs::BlendEquation::Add:
result = (src_result + dst_result) / 255; result = (src_result + dst_result) / 255;
break; break;
case BlendEquation::Subtract: case Regs::BlendEquation::Subtract:
result = (src_result - dst_result) / 255; result = (src_result - dst_result) / 255;
break; break;
case BlendEquation::ReverseSubtract: case Regs::BlendEquation::ReverseSubtract:
result = (dst_result - src_result) / 255; result = (dst_result - src_result) / 255;
break; break;
// TODO: How do these two actually work? // TODO: How do these two actually work?
// OpenGL doesn't include the blend factors in the min/max computations, // OpenGL doesn't include the blend factors in the min/max computations,
// but is this what the 3DS actually does? // but is this what the 3DS actually does?
case BlendEquation::Min: case Regs::BlendEquation::Min:
result.r() = std::min(src.r(), dest.r()); result.r() = std::min(src.r(), dest.r());
result.g() = std::min(src.g(), dest.g()); result.g() = std::min(src.g(), dest.g());
result.b() = std::min(src.b(), dest.b()); result.b() = std::min(src.b(), dest.b());
result.a() = std::min(src.a(), dest.a()); result.a() = std::min(src.a(), dest.a());
break; break;
case BlendEquation::Max: case Regs::BlendEquation::Max:
result.r() = std::max(src.r(), dest.r()); result.r() = std::max(src.r(), dest.r());
result.g() = std::max(src.g(), dest.g()); result.g() = std::max(src.g(), dest.g());
result.b() = std::max(src.b(), dest.b()); result.b() = std::max(src.b(), dest.b());
@ -860,15 +866,15 @@ static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0,
blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_rgb); blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_rgb);
blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_a).a(); blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_a).a();
} else { } else {
LOG_CRITICAL(HW_GPU, "logic op: %x", registers.output_merger.logic_op); LOG_CRITICAL(HW_GPU, "logic op: %x", output_merger.logic_op);
UNIMPLEMENTED(); UNIMPLEMENTED();
} }
const Math::Vec4<u8> result = { const Math::Vec4<u8> result = {
registers.output_merger.red_enable ? blend_output.r() : dest.r(), output_merger.red_enable ? blend_output.r() : dest.r(),
registers.output_merger.green_enable ? blend_output.g() : dest.g(), output_merger.green_enable ? blend_output.g() : dest.g(),
registers.output_merger.blue_enable ? blend_output.b() : dest.b(), output_merger.blue_enable ? blend_output.b() : dest.b(),
registers.output_merger.alpha_enable ? blend_output.a() : dest.a() output_merger.alpha_enable ? blend_output.a() : dest.a()
}; };
DrawPixel(x >> 4, y >> 4, result); DrawPixel(x >> 4, y >> 4, result);

View File

@ -46,7 +46,7 @@ void RasterizerOpenGL::InitObjects() {
uniform_tev_combiner_buffer_color = glGetUniformLocation(shader.handle, "tev_combiner_buffer_color"); uniform_tev_combiner_buffer_color = glGetUniformLocation(shader.handle, "tev_combiner_buffer_color");
const auto tev_stages = Pica::registers.GetTevStages(); const auto tev_stages = Pica::g_state.regs.GetTevStages();
for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); ++tev_stage_index) { for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); ++tev_stage_index) {
auto& uniform_tev_cfg = uniform_tev_cfgs[tev_stage_index]; auto& uniform_tev_cfg = uniform_tev_cfgs[tev_stage_index];
@ -128,6 +128,8 @@ void RasterizerOpenGL::InitObjects() {
} }
void RasterizerOpenGL::Reset() { void RasterizerOpenGL::Reset() {
const auto& regs = Pica::g_state.regs;
SyncCullMode(); SyncCullMode();
SyncBlendEnabled(); SyncBlendEnabled();
SyncBlendFuncs(); SyncBlendFuncs();
@ -137,46 +139,46 @@ void RasterizerOpenGL::Reset() {
SyncDepthTest(); SyncDepthTest();
// TEV stage 0 // TEV stage 0
SyncTevSources(0, Pica::registers.tev_stage0); SyncTevSources(0, regs.tev_stage0);
SyncTevModifiers(0, Pica::registers.tev_stage0); SyncTevModifiers(0, regs.tev_stage0);
SyncTevOps(0, Pica::registers.tev_stage0); SyncTevOps(0, regs.tev_stage0);
SyncTevColor(0, Pica::registers.tev_stage0); SyncTevColor(0, regs.tev_stage0);
SyncTevMultipliers(0, Pica::registers.tev_stage0); SyncTevMultipliers(0, regs.tev_stage0);
// TEV stage 1 // TEV stage 1
SyncTevSources(1, Pica::registers.tev_stage1); SyncTevSources(1, regs.tev_stage1);
SyncTevModifiers(1, Pica::registers.tev_stage1); SyncTevModifiers(1, regs.tev_stage1);
SyncTevOps(1, Pica::registers.tev_stage1); SyncTevOps(1, regs.tev_stage1);
SyncTevColor(1, Pica::registers.tev_stage1); SyncTevColor(1, regs.tev_stage1);
SyncTevMultipliers(1, Pica::registers.tev_stage1); SyncTevMultipliers(1, regs.tev_stage1);
// TEV stage 2 // TEV stage 2
SyncTevSources(2, Pica::registers.tev_stage2); SyncTevSources(2, regs.tev_stage2);
SyncTevModifiers(2, Pica::registers.tev_stage2); SyncTevModifiers(2, regs.tev_stage2);
SyncTevOps(2, Pica::registers.tev_stage2); SyncTevOps(2, regs.tev_stage2);
SyncTevColor(2, Pica::registers.tev_stage2); SyncTevColor(2, regs.tev_stage2);
SyncTevMultipliers(2, Pica::registers.tev_stage2); SyncTevMultipliers(2, regs.tev_stage2);
// TEV stage 3 // TEV stage 3
SyncTevSources(3, Pica::registers.tev_stage3); SyncTevSources(3, regs.tev_stage3);
SyncTevModifiers(3, Pica::registers.tev_stage3); SyncTevModifiers(3, regs.tev_stage3);
SyncTevOps(3, Pica::registers.tev_stage3); SyncTevOps(3, regs.tev_stage3);
SyncTevColor(3, Pica::registers.tev_stage3); SyncTevColor(3, regs.tev_stage3);
SyncTevMultipliers(3, Pica::registers.tev_stage3); SyncTevMultipliers(3, regs.tev_stage3);
// TEV stage 4 // TEV stage 4
SyncTevSources(4, Pica::registers.tev_stage4); SyncTevSources(4, regs.tev_stage4);
SyncTevModifiers(4, Pica::registers.tev_stage4); SyncTevModifiers(4, regs.tev_stage4);
SyncTevOps(4, Pica::registers.tev_stage4); SyncTevOps(4, regs.tev_stage4);
SyncTevColor(4, Pica::registers.tev_stage4); SyncTevColor(4, regs.tev_stage4);
SyncTevMultipliers(4, Pica::registers.tev_stage4); SyncTevMultipliers(4, regs.tev_stage4);
// TEV stage 5 // TEV stage 5
SyncTevSources(5, Pica::registers.tev_stage5); SyncTevSources(5, regs.tev_stage5);
SyncTevModifiers(5, Pica::registers.tev_stage5); SyncTevModifiers(5, regs.tev_stage5);
SyncTevOps(5, Pica::registers.tev_stage5); SyncTevOps(5, regs.tev_stage5);
SyncTevColor(5, Pica::registers.tev_stage5); SyncTevColor(5, regs.tev_stage5);
SyncTevMultipliers(5, Pica::registers.tev_stage5); SyncTevMultipliers(5, regs.tev_stage5);
SyncCombinerColor(); SyncCombinerColor();
SyncCombinerWriteFlags(); SyncCombinerWriteFlags();
@ -210,6 +212,8 @@ void RasterizerOpenGL::CommitFramebuffer() {
} }
void RasterizerOpenGL::NotifyPicaRegisterChanged(u32 id) { void RasterizerOpenGL::NotifyPicaRegisterChanged(u32 id) {
const auto& regs = Pica::g_state.regs;
if (!Settings::values.use_hw_renderer) if (!Settings::values.use_hw_renderer)
return; return;
@ -247,104 +251,104 @@ void RasterizerOpenGL::NotifyPicaRegisterChanged(u32 id) {
// TEV stage 0 // TEV stage 0
case PICA_REG_INDEX(tev_stage0.color_source1): case PICA_REG_INDEX(tev_stage0.color_source1):
SyncTevSources(0, Pica::registers.tev_stage0); SyncTevSources(0, regs.tev_stage0);
break; break;
case PICA_REG_INDEX(tev_stage0.color_modifier1): case PICA_REG_INDEX(tev_stage0.color_modifier1):
SyncTevModifiers(0, Pica::registers.tev_stage0); SyncTevModifiers(0, regs.tev_stage0);
break; break;
case PICA_REG_INDEX(tev_stage0.color_op): case PICA_REG_INDEX(tev_stage0.color_op):
SyncTevOps(0, Pica::registers.tev_stage0); SyncTevOps(0, regs.tev_stage0);
break; break;
case PICA_REG_INDEX(tev_stage0.const_r): case PICA_REG_INDEX(tev_stage0.const_r):
SyncTevColor(0, Pica::registers.tev_stage0); SyncTevColor(0, regs.tev_stage0);
break; break;
case PICA_REG_INDEX(tev_stage0.color_scale): case PICA_REG_INDEX(tev_stage0.color_scale):
SyncTevMultipliers(0, Pica::registers.tev_stage0); SyncTevMultipliers(0, regs.tev_stage0);
break; break;
// TEV stage 1 // TEV stage 1
case PICA_REG_INDEX(tev_stage1.color_source1): case PICA_REG_INDEX(tev_stage1.color_source1):
SyncTevSources(1, Pica::registers.tev_stage1); SyncTevSources(1, regs.tev_stage1);
break; break;
case PICA_REG_INDEX(tev_stage1.color_modifier1): case PICA_REG_INDEX(tev_stage1.color_modifier1):
SyncTevModifiers(1, Pica::registers.tev_stage1); SyncTevModifiers(1, regs.tev_stage1);
break; break;
case PICA_REG_INDEX(tev_stage1.color_op): case PICA_REG_INDEX(tev_stage1.color_op):
SyncTevOps(1, Pica::registers.tev_stage1); SyncTevOps(1, regs.tev_stage1);
break; break;
case PICA_REG_INDEX(tev_stage1.const_r): case PICA_REG_INDEX(tev_stage1.const_r):
SyncTevColor(1, Pica::registers.tev_stage1); SyncTevColor(1, regs.tev_stage1);
break; break;
case PICA_REG_INDEX(tev_stage1.color_scale): case PICA_REG_INDEX(tev_stage1.color_scale):
SyncTevMultipliers(1, Pica::registers.tev_stage1); SyncTevMultipliers(1, regs.tev_stage1);
break; break;
// TEV stage 2 // TEV stage 2
case PICA_REG_INDEX(tev_stage2.color_source1): case PICA_REG_INDEX(tev_stage2.color_source1):
SyncTevSources(2, Pica::registers.tev_stage2); SyncTevSources(2, regs.tev_stage2);
break; break;
case PICA_REG_INDEX(tev_stage2.color_modifier1): case PICA_REG_INDEX(tev_stage2.color_modifier1):
SyncTevModifiers(2, Pica::registers.tev_stage2); SyncTevModifiers(2, regs.tev_stage2);
break; break;
case PICA_REG_INDEX(tev_stage2.color_op): case PICA_REG_INDEX(tev_stage2.color_op):
SyncTevOps(2, Pica::registers.tev_stage2); SyncTevOps(2, regs.tev_stage2);
break; break;
case PICA_REG_INDEX(tev_stage2.const_r): case PICA_REG_INDEX(tev_stage2.const_r):
SyncTevColor(2, Pica::registers.tev_stage2); SyncTevColor(2, regs.tev_stage2);
break; break;
case PICA_REG_INDEX(tev_stage2.color_scale): case PICA_REG_INDEX(tev_stage2.color_scale):
SyncTevMultipliers(2, Pica::registers.tev_stage2); SyncTevMultipliers(2, regs.tev_stage2);
break; break;
// TEV stage 3 // TEV stage 3
case PICA_REG_INDEX(tev_stage3.color_source1): case PICA_REG_INDEX(tev_stage3.color_source1):
SyncTevSources(3, Pica::registers.tev_stage3); SyncTevSources(3, regs.tev_stage3);
break; break;
case PICA_REG_INDEX(tev_stage3.color_modifier1): case PICA_REG_INDEX(tev_stage3.color_modifier1):
SyncTevModifiers(3, Pica::registers.tev_stage3); SyncTevModifiers(3, regs.tev_stage3);
break; break;
case PICA_REG_INDEX(tev_stage3.color_op): case PICA_REG_INDEX(tev_stage3.color_op):
SyncTevOps(3, Pica::registers.tev_stage3); SyncTevOps(3, regs.tev_stage3);
break; break;
case PICA_REG_INDEX(tev_stage3.const_r): case PICA_REG_INDEX(tev_stage3.const_r):
SyncTevColor(3, Pica::registers.tev_stage3); SyncTevColor(3, regs.tev_stage3);
break; break;
case PICA_REG_INDEX(tev_stage3.color_scale): case PICA_REG_INDEX(tev_stage3.color_scale):
SyncTevMultipliers(3, Pica::registers.tev_stage3); SyncTevMultipliers(3, regs.tev_stage3);
break; break;
// TEV stage 4 // TEV stage 4
case PICA_REG_INDEX(tev_stage4.color_source1): case PICA_REG_INDEX(tev_stage4.color_source1):
SyncTevSources(4, Pica::registers.tev_stage4); SyncTevSources(4, regs.tev_stage4);
break; break;
case PICA_REG_INDEX(tev_stage4.color_modifier1): case PICA_REG_INDEX(tev_stage4.color_modifier1):
SyncTevModifiers(4, Pica::registers.tev_stage4); SyncTevModifiers(4, regs.tev_stage4);
break; break;
case PICA_REG_INDEX(tev_stage4.color_op): case PICA_REG_INDEX(tev_stage4.color_op):
SyncTevOps(4, Pica::registers.tev_stage4); SyncTevOps(4, regs.tev_stage4);
break; break;
case PICA_REG_INDEX(tev_stage4.const_r): case PICA_REG_INDEX(tev_stage4.const_r):
SyncTevColor(4, Pica::registers.tev_stage4); SyncTevColor(4, regs.tev_stage4);
break; break;
case PICA_REG_INDEX(tev_stage4.color_scale): case PICA_REG_INDEX(tev_stage4.color_scale):
SyncTevMultipliers(4, Pica::registers.tev_stage4); SyncTevMultipliers(4, regs.tev_stage4);
break; break;
// TEV stage 5 // TEV stage 5
case PICA_REG_INDEX(tev_stage5.color_source1): case PICA_REG_INDEX(tev_stage5.color_source1):
SyncTevSources(5, Pica::registers.tev_stage5); SyncTevSources(5, regs.tev_stage5);
break; break;
case PICA_REG_INDEX(tev_stage5.color_modifier1): case PICA_REG_INDEX(tev_stage5.color_modifier1):
SyncTevModifiers(5, Pica::registers.tev_stage5); SyncTevModifiers(5, regs.tev_stage5);
break; break;
case PICA_REG_INDEX(tev_stage5.color_op): case PICA_REG_INDEX(tev_stage5.color_op):
SyncTevOps(5, Pica::registers.tev_stage5); SyncTevOps(5, regs.tev_stage5);
break; break;
case PICA_REG_INDEX(tev_stage5.const_r): case PICA_REG_INDEX(tev_stage5.const_r):
SyncTevColor(5, Pica::registers.tev_stage5); SyncTevColor(5, regs.tev_stage5);
break; break;
case PICA_REG_INDEX(tev_stage5.color_scale): case PICA_REG_INDEX(tev_stage5.color_scale):
SyncTevMultipliers(5, Pica::registers.tev_stage5); SyncTevMultipliers(5, regs.tev_stage5);
break; break;
// TEV combiner buffer color // TEV combiner buffer color
@ -360,16 +364,18 @@ void RasterizerOpenGL::NotifyPicaRegisterChanged(u32 id) {
} }
void RasterizerOpenGL::NotifyPreRead(PAddr addr, u32 size) { void RasterizerOpenGL::NotifyPreRead(PAddr addr, u32 size) {
const auto& regs = Pica::g_state.regs;
if (!Settings::values.use_hw_renderer) if (!Settings::values.use_hw_renderer)
return; return;
PAddr cur_fb_color_addr = Pica::registers.framebuffer.GetColorBufferPhysicalAddress(); PAddr cur_fb_color_addr = regs.framebuffer.GetColorBufferPhysicalAddress();
u32 cur_fb_color_size = Pica::Regs::BytesPerColorPixel(Pica::registers.framebuffer.color_format) u32 cur_fb_color_size = Pica::Regs::BytesPerColorPixel(regs.framebuffer.color_format)
* Pica::registers.framebuffer.GetWidth() * Pica::registers.framebuffer.GetHeight(); * regs.framebuffer.GetWidth() * regs.framebuffer.GetHeight();
PAddr cur_fb_depth_addr = Pica::registers.framebuffer.GetDepthBufferPhysicalAddress(); PAddr cur_fb_depth_addr = regs.framebuffer.GetDepthBufferPhysicalAddress();
u32 cur_fb_depth_size = Pica::Regs::BytesPerDepthPixel(Pica::registers.framebuffer.depth_format) u32 cur_fb_depth_size = Pica::Regs::BytesPerDepthPixel(regs.framebuffer.depth_format)
* Pica::registers.framebuffer.GetWidth() * Pica::registers.framebuffer.GetHeight(); * regs.framebuffer.GetWidth() * regs.framebuffer.GetHeight();
// If source memory region overlaps 3DS framebuffers, commit them before the copy happens // If source memory region overlaps 3DS framebuffers, commit them before the copy happens
if (MathUtil::IntervalsIntersect(addr, size, cur_fb_color_addr, cur_fb_color_size)) if (MathUtil::IntervalsIntersect(addr, size, cur_fb_color_addr, cur_fb_color_size))
@ -380,16 +386,18 @@ void RasterizerOpenGL::NotifyPreRead(PAddr addr, u32 size) {
} }
void RasterizerOpenGL::NotifyFlush(PAddr addr, u32 size) { void RasterizerOpenGL::NotifyFlush(PAddr addr, u32 size) {
const auto& regs = Pica::g_state.regs;
if (!Settings::values.use_hw_renderer) if (!Settings::values.use_hw_renderer)
return; return;
PAddr cur_fb_color_addr = Pica::registers.framebuffer.GetColorBufferPhysicalAddress(); PAddr cur_fb_color_addr = regs.framebuffer.GetColorBufferPhysicalAddress();
u32 cur_fb_color_size = Pica::Regs::BytesPerColorPixel(Pica::registers.framebuffer.color_format) u32 cur_fb_color_size = Pica::Regs::BytesPerColorPixel(regs.framebuffer.color_format)
* Pica::registers.framebuffer.GetWidth() * Pica::registers.framebuffer.GetHeight(); * regs.framebuffer.GetWidth() * regs.framebuffer.GetHeight();
PAddr cur_fb_depth_addr = Pica::registers.framebuffer.GetDepthBufferPhysicalAddress(); PAddr cur_fb_depth_addr = regs.framebuffer.GetDepthBufferPhysicalAddress();
u32 cur_fb_depth_size = Pica::Regs::BytesPerDepthPixel(Pica::registers.framebuffer.depth_format) u32 cur_fb_depth_size = Pica::Regs::BytesPerDepthPixel(regs.framebuffer.depth_format)
* Pica::registers.framebuffer.GetWidth() * Pica::registers.framebuffer.GetHeight(); * regs.framebuffer.GetWidth() * regs.framebuffer.GetHeight();
// If modified memory region overlaps 3DS framebuffers, reload their contents into OpenGL // If modified memory region overlaps 3DS framebuffers, reload their contents into OpenGL
if (MathUtil::IntervalsIntersect(addr, size, cur_fb_color_addr, cur_fb_color_size)) if (MathUtil::IntervalsIntersect(addr, size, cur_fb_color_addr, cur_fb_color_size))
@ -501,14 +509,16 @@ void RasterizerOpenGL::ReconfigureDepthTexture(DepthTextureInfo& texture, Pica::
} }
void RasterizerOpenGL::SyncFramebuffer() { void RasterizerOpenGL::SyncFramebuffer() {
PAddr cur_fb_color_addr = Pica::registers.framebuffer.GetColorBufferPhysicalAddress(); const auto& regs = Pica::g_state.regs;
Pica::Regs::ColorFormat new_fb_color_format = Pica::registers.framebuffer.color_format;
PAddr cur_fb_depth_addr = Pica::registers.framebuffer.GetDepthBufferPhysicalAddress(); PAddr cur_fb_color_addr = regs.framebuffer.GetColorBufferPhysicalAddress();
Pica::Regs::DepthFormat new_fb_depth_format = Pica::registers.framebuffer.depth_format; Pica::Regs::ColorFormat new_fb_color_format = regs.framebuffer.color_format;
bool fb_size_changed = fb_color_texture.width != Pica::registers.framebuffer.GetWidth() || PAddr cur_fb_depth_addr = regs.framebuffer.GetDepthBufferPhysicalAddress();
fb_color_texture.height != Pica::registers.framebuffer.GetHeight(); Pica::Regs::DepthFormat new_fb_depth_format = regs.framebuffer.depth_format;
bool fb_size_changed = fb_color_texture.width != regs.framebuffer.GetWidth() ||
fb_color_texture.height != regs.framebuffer.GetHeight();
bool color_fb_prop_changed = fb_color_texture.format != new_fb_color_format || bool color_fb_prop_changed = fb_color_texture.format != new_fb_color_format ||
fb_size_changed; fb_size_changed;
@ -532,12 +542,12 @@ void RasterizerOpenGL::SyncFramebuffer() {
// Reconfigure framebuffer textures if any property has changed // Reconfigure framebuffer textures if any property has changed
if (color_fb_prop_changed) { if (color_fb_prop_changed) {
ReconfigureColorTexture(fb_color_texture, new_fb_color_format, ReconfigureColorTexture(fb_color_texture, new_fb_color_format,
Pica::registers.framebuffer.GetWidth(), Pica::registers.framebuffer.GetHeight()); regs.framebuffer.GetWidth(), regs.framebuffer.GetHeight());
} }
if (depth_fb_prop_changed) { if (depth_fb_prop_changed) {
ReconfigureDepthTexture(fb_depth_texture, new_fb_depth_format, ReconfigureDepthTexture(fb_depth_texture, new_fb_depth_format,
Pica::registers.framebuffer.GetWidth(), Pica::registers.framebuffer.GetHeight()); regs.framebuffer.GetWidth(), regs.framebuffer.GetHeight());
// Only attach depth buffer as stencil if it supports stencil // Only attach depth buffer as stencil if it supports stencil
switch (new_fb_depth_format) { switch (new_fb_depth_format) {
@ -572,7 +582,9 @@ void RasterizerOpenGL::SyncFramebuffer() {
} }
void RasterizerOpenGL::SyncCullMode() { void RasterizerOpenGL::SyncCullMode() {
switch (Pica::registers.cull_mode) { const auto& regs = Pica::g_state.regs;
switch (regs.cull_mode) {
case Pica::Regs::CullMode::KeepAll: case Pica::Regs::CullMode::KeepAll:
state.cull.enabled = false; state.cull.enabled = false;
break; break;
@ -588,25 +600,26 @@ void RasterizerOpenGL::SyncCullMode() {
break; break;
default: default:
LOG_CRITICAL(Render_OpenGL, "Unknown cull mode %d", Pica::registers.cull_mode.Value()); LOG_CRITICAL(Render_OpenGL, "Unknown cull mode %d", regs.cull_mode.Value());
UNIMPLEMENTED(); UNIMPLEMENTED();
break; break;
} }
} }
void RasterizerOpenGL::SyncBlendEnabled() { void RasterizerOpenGL::SyncBlendEnabled() {
state.blend.enabled = Pica::registers.output_merger.alphablend_enable; state.blend.enabled = (Pica::g_state.regs.output_merger.alphablend_enable == 1);
} }
void RasterizerOpenGL::SyncBlendFuncs() { void RasterizerOpenGL::SyncBlendFuncs() {
state.blend.src_rgb_func = PicaToGL::BlendFunc(Pica::registers.output_merger.alpha_blending.factor_source_rgb); const auto& regs = Pica::g_state.regs;
state.blend.dst_rgb_func = PicaToGL::BlendFunc(Pica::registers.output_merger.alpha_blending.factor_dest_rgb); state.blend.src_rgb_func = PicaToGL::BlendFunc(regs.output_merger.alpha_blending.factor_source_rgb);
state.blend.src_a_func = PicaToGL::BlendFunc(Pica::registers.output_merger.alpha_blending.factor_source_a); state.blend.dst_rgb_func = PicaToGL::BlendFunc(regs.output_merger.alpha_blending.factor_dest_rgb);
state.blend.dst_a_func = PicaToGL::BlendFunc(Pica::registers.output_merger.alpha_blending.factor_dest_a); state.blend.src_a_func = PicaToGL::BlendFunc(regs.output_merger.alpha_blending.factor_source_a);
state.blend.dst_a_func = PicaToGL::BlendFunc(regs.output_merger.alpha_blending.factor_dest_a);
} }
void RasterizerOpenGL::SyncBlendColor() { void RasterizerOpenGL::SyncBlendColor() {
auto blend_color = PicaToGL::ColorRGBA8((u8*)&Pica::registers.output_merger.blend_const.r); auto blend_color = PicaToGL::ColorRGBA8((u8*)&Pica::g_state.regs.output_merger.blend_const.r);
state.blend.color.red = blend_color[0]; state.blend.color.red = blend_color[0];
state.blend.color.green = blend_color[1]; state.blend.color.green = blend_color[1];
state.blend.color.blue = blend_color[2]; state.blend.color.blue = blend_color[2];
@ -614,9 +627,10 @@ void RasterizerOpenGL::SyncBlendColor() {
} }
void RasterizerOpenGL::SyncAlphaTest() { void RasterizerOpenGL::SyncAlphaTest() {
glUniform1i(uniform_alphatest_enabled, Pica::registers.output_merger.alpha_test.enable); const auto& regs = Pica::g_state.regs;
glUniform1i(uniform_alphatest_func, Pica::registers.output_merger.alpha_test.func); glUniform1i(uniform_alphatest_enabled, regs.output_merger.alpha_test.enable);
glUniform1f(uniform_alphatest_ref, Pica::registers.output_merger.alpha_test.ref / 255.0f); glUniform1i(uniform_alphatest_func, (GLint)regs.output_merger.alpha_test.func.Value());
glUniform1f(uniform_alphatest_ref, regs.output_merger.alpha_test.ref / 255.0f);
} }
void RasterizerOpenGL::SyncStencilTest() { void RasterizerOpenGL::SyncStencilTest() {
@ -624,9 +638,10 @@ void RasterizerOpenGL::SyncStencilTest() {
} }
void RasterizerOpenGL::SyncDepthTest() { void RasterizerOpenGL::SyncDepthTest() {
state.depth.test_enabled = Pica::registers.output_merger.depth_test_enable; const auto& regs = Pica::g_state.regs;
state.depth.test_func = PicaToGL::CompareFunc(Pica::registers.output_merger.depth_test_func); state.depth.test_enabled = (regs.output_merger.depth_test_enable == 1);
state.depth.write_mask = Pica::registers.output_merger.depth_write_enable ? GL_TRUE : GL_FALSE; state.depth.test_func = PicaToGL::CompareFunc(regs.output_merger.depth_test_func);
state.depth.write_mask = regs.output_merger.depth_write_enable ? GL_TRUE : GL_FALSE;
} }
void RasterizerOpenGL::SyncTevSources(unsigned stage_index, const Pica::Regs::TevStageConfig& config) { void RasterizerOpenGL::SyncTevSources(unsigned stage_index, const Pica::Regs::TevStageConfig& config) {
@ -667,34 +682,37 @@ void RasterizerOpenGL::SyncTevMultipliers(unsigned stage_index, const Pica::Regs
} }
void RasterizerOpenGL::SyncCombinerColor() { void RasterizerOpenGL::SyncCombinerColor() {
auto combiner_color = PicaToGL::ColorRGBA8((u8*)&Pica::registers.tev_combiner_buffer_color.r); auto combiner_color = PicaToGL::ColorRGBA8((u8*)&Pica::g_state.regs.tev_combiner_buffer_color.r);
glUniform4fv(uniform_tev_combiner_buffer_color, 1, combiner_color.data()); glUniform4fv(uniform_tev_combiner_buffer_color, 1, combiner_color.data());
} }
void RasterizerOpenGL::SyncCombinerWriteFlags() { void RasterizerOpenGL::SyncCombinerWriteFlags() {
const auto tev_stages = Pica::registers.GetTevStages(); const auto& regs = Pica::g_state.regs;
const auto tev_stages = regs.GetTevStages();
for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); ++tev_stage_index) { for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); ++tev_stage_index) {
glUniform2i(uniform_tev_cfgs[tev_stage_index].updates_combiner_buffer_color_alpha, glUniform2i(uniform_tev_cfgs[tev_stage_index].updates_combiner_buffer_color_alpha,
Pica::registers.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(tev_stage_index), regs.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(tev_stage_index),
Pica::registers.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(tev_stage_index)); regs.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(tev_stage_index));
} }
} }
void RasterizerOpenGL::SyncDrawState() { void RasterizerOpenGL::SyncDrawState() {
const auto& regs = Pica::g_state.regs;
// Sync the viewport // Sync the viewport
GLsizei viewport_width = (GLsizei)Pica::float24::FromRawFloat24(Pica::registers.viewport_size_x).ToFloat32() * 2; GLsizei viewport_width = (GLsizei)Pica::float24::FromRawFloat24(regs.viewport_size_x).ToFloat32() * 2;
GLsizei viewport_height = (GLsizei)Pica::float24::FromRawFloat24(Pica::registers.viewport_size_y).ToFloat32() * 2; GLsizei viewport_height = (GLsizei)Pica::float24::FromRawFloat24(regs.viewport_size_y).ToFloat32() * 2;
// OpenGL uses different y coordinates, so negate corner offset and flip origin // OpenGL uses different y coordinates, so negate corner offset and flip origin
// TODO: Ensure viewport_corner.x should not be negated or origin flipped // TODO: Ensure viewport_corner.x should not be negated or origin flipped
// TODO: Use floating-point viewports for accuracy if supported // TODO: Use floating-point viewports for accuracy if supported
glViewport((GLsizei)static_cast<float>(Pica::registers.viewport_corner.x), glViewport((GLsizei)static_cast<float>(regs.viewport_corner.x),
-(GLsizei)static_cast<float>(Pica::registers.viewport_corner.y) -(GLsizei)static_cast<float>(regs.viewport_corner.y)
+ Pica::registers.framebuffer.GetHeight() - viewport_height, + regs.framebuffer.GetHeight() - viewport_height,
viewport_width, viewport_height); viewport_width, viewport_height);
// Sync bound texture(s), upload if not cached // Sync bound texture(s), upload if not cached
const auto pica_textures = Pica::registers.GetTextures(); const auto pica_textures = regs.GetTextures();
for (unsigned texture_index = 0; texture_index < pica_textures.size(); ++texture_index) { for (unsigned texture_index = 0; texture_index < pica_textures.size(); ++texture_index) {
const auto& texture = pica_textures[texture_index]; const auto& texture = pica_textures[texture_index];
@ -707,7 +725,7 @@ void RasterizerOpenGL::SyncDrawState() {
} }
// Skip processing TEV stages that simply pass the previous stage results through // Skip processing TEV stages that simply pass the previous stage results through
const auto tev_stages = Pica::registers.GetTevStages(); const auto tev_stages = regs.GetTevStages();
for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); ++tev_stage_index) { for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); ++tev_stage_index) {
glUniform1i(uniform_tev_cfgs[tev_stage_index].enabled, !IsPassThroughTevStage(tev_stages[tev_stage_index])); glUniform1i(uniform_tev_cfgs[tev_stage_index].enabled, !IsPassThroughTevStage(tev_stages[tev_stage_index]));
} }
@ -716,7 +734,7 @@ void RasterizerOpenGL::SyncDrawState() {
} }
void RasterizerOpenGL::ReloadColorBuffer() { void RasterizerOpenGL::ReloadColorBuffer() {
u8* color_buffer = Memory::GetPhysicalPointer(Pica::registers.framebuffer.GetColorBufferPhysicalAddress()); u8* color_buffer = Memory::GetPhysicalPointer(Pica::g_state.regs.framebuffer.GetColorBufferPhysicalAddress());
if (color_buffer == nullptr) if (color_buffer == nullptr)
return; return;
@ -748,7 +766,7 @@ void RasterizerOpenGL::ReloadColorBuffer() {
void RasterizerOpenGL::ReloadDepthBuffer() { void RasterizerOpenGL::ReloadDepthBuffer() {
// TODO: Appears to work, but double-check endianness of depth values and order of depth-stencil // TODO: Appears to work, but double-check endianness of depth values and order of depth-stencil
u8* depth_buffer = Memory::GetPhysicalPointer(Pica::registers.framebuffer.GetDepthBufferPhysicalAddress()); u8* depth_buffer = Memory::GetPhysicalPointer(Pica::g_state.regs.framebuffer.GetDepthBufferPhysicalAddress());
if (depth_buffer == nullptr) { if (depth_buffer == nullptr) {
return; return;

View File

@ -41,7 +41,7 @@ inline GLenum WrapMode(Pica::Regs::TextureConfig::WrapMode mode) {
return gl_mode; return gl_mode;
} }
inline GLenum BlendFunc(u32 factor) { inline GLenum BlendFunc(Pica::Regs::BlendFactor factor) {
static const GLenum blend_func_table[] = { static const GLenum blend_func_table[] = {
GL_ZERO, // BlendFactor::Zero GL_ZERO, // BlendFactor::Zero
GL_ONE, // BlendFactor::One GL_ONE, // BlendFactor::One
@ -61,17 +61,17 @@ inline GLenum BlendFunc(u32 factor) {
}; };
// Range check table for input // Range check table for input
if (factor >= ARRAY_SIZE(blend_func_table)) { if ((unsigned)factor >= ARRAY_SIZE(blend_func_table)) {
LOG_CRITICAL(Render_OpenGL, "Unknown blend factor %d", factor); LOG_CRITICAL(Render_OpenGL, "Unknown blend factor %d", factor);
UNREACHABLE(); UNREACHABLE();
return GL_ONE; return GL_ONE;
} }
return blend_func_table[factor]; return blend_func_table[(unsigned)factor];
} }
inline GLenum CompareFunc(u32 func) { inline GLenum CompareFunc(Pica::Regs::CompareFunc func) {
static const GLenum compare_func_table[] = { static const GLenum compare_func_table[] = {
GL_NEVER, // CompareFunc::Never GL_NEVER, // CompareFunc::Never
GL_ALWAYS, // CompareFunc::Always GL_ALWAYS, // CompareFunc::Always
@ -84,14 +84,14 @@ inline GLenum CompareFunc(u32 func) {
}; };
// Range check table for input // Range check table for input
if (func >= ARRAY_SIZE(compare_func_table)) { if ((unsigned)func >= ARRAY_SIZE(compare_func_table)) {
LOG_CRITICAL(Render_OpenGL, "Unknown compare function %d", func); LOG_CRITICAL(Render_OpenGL, "Unknown compare function %d", func);
UNREACHABLE(); UNREACHABLE();
return GL_ALWAYS; return GL_ALWAYS;
} }
return compare_func_table[func]; return compare_func_table[(unsigned)func];
} }
inline std::array<GLfloat, 4> ColorRGBA8(const u8* bytes) { inline std::array<GLfloat, 4> ColorRGBA8(const u8* bytes) {

View File

@ -26,55 +26,8 @@ namespace Pica {
namespace VertexShader { namespace VertexShader {
static struct {
Math::Vec4<float24> f[96];
std::array<bool,16> b;
std::array<Math::Vec4<u8>,4> i;
} shader_uniforms;
static Math::Vec4<float24> vs_default_attributes[16];
// TODO: Not sure where the shader binary and swizzle patterns are supposed to be loaded to!
// For now, we just keep these local arrays around.
static std::array<u32, 1024> shader_memory;
static std::array<u32, 1024> swizzle_data;
void SubmitShaderMemoryChange(u32 addr, u32 value) {
shader_memory[addr] = value;
}
void SubmitSwizzleDataChange(u32 addr, u32 value) {
swizzle_data[addr] = value;
}
Math::Vec4<float24>& GetFloatUniform(u32 index) {
return shader_uniforms.f[index];
}
bool& GetBoolUniform(u32 index) {
return shader_uniforms.b[index];
}
Math::Vec4<u8>& GetIntUniform(u32 index) {
return shader_uniforms.i[index];
}
Math::Vec4<float24>& GetDefaultAttribute(u32 index) {
return vs_default_attributes[index];
}
const std::array<u32, 1024>& GetShaderBinary() {
return shader_memory;
}
const std::array<u32, 1024>& GetSwizzlePatterns() {
return swizzle_data;
}
struct VertexShaderState { struct VertexShaderState {
u32* program_counter; const u32* program_counter;
const float24* input_register_table[16]; const float24* input_register_table[16];
Math::Vec4<float24> output_registers[16]; Math::Vec4<float24> output_registers[16];
@ -109,6 +62,9 @@ struct VertexShaderState {
}; };
static void ProcessShaderCode(VertexShaderState& state) { static void ProcessShaderCode(VertexShaderState& state) {
const auto& uniforms = g_state.vs.uniforms;
const auto& swizzle_data = g_state.vs.swizzle_data;
const auto& program_code = g_state.vs.program_code;
// Placeholder for invalid inputs // Placeholder for invalid inputs
static float24 dummy_vec4_float24[4]; static float24 dummy_vec4_float24[4];
@ -116,14 +72,14 @@ static void ProcessShaderCode(VertexShaderState& state) {
while (true) { while (true) {
if (!state.call_stack.empty()) { if (!state.call_stack.empty()) {
auto& top = state.call_stack.top(); auto& top = state.call_stack.top();
if (state.program_counter - shader_memory.data() == top.final_address) { if (state.program_counter - program_code.data() == top.final_address) {
state.address_registers[2] += top.loop_increment; state.address_registers[2] += top.loop_increment;
if (top.repeat_counter-- == 0) { if (top.repeat_counter-- == 0) {
state.program_counter = &shader_memory[top.return_address]; state.program_counter = &program_code[top.return_address];
state.call_stack.pop(); state.call_stack.pop();
} else { } else {
state.program_counter = &shader_memory[top.loop_address]; state.program_counter = &program_code[top.loop_address];
} }
// TODO: Is "trying again" accurate to hardware? // TODO: Is "trying again" accurate to hardware?
@ -135,12 +91,12 @@ static void ProcessShaderCode(VertexShaderState& state) {
const Instruction& instr = *(const Instruction*)state.program_counter; const Instruction& instr = *(const Instruction*)state.program_counter;
const SwizzlePattern& swizzle = *(SwizzlePattern*)&swizzle_data[instr.common.operand_desc_id]; const SwizzlePattern& swizzle = *(SwizzlePattern*)&swizzle_data[instr.common.operand_desc_id];
static auto call = [](VertexShaderState& state, u32 offset, u32 num_instructions, static auto call = [&program_code](VertexShaderState& state, u32 offset, u32 num_instructions,
u32 return_offset, u8 repeat_count, u8 loop_increment) { u32 return_offset, u8 repeat_count, u8 loop_increment) {
state.program_counter = &shader_memory[offset] - 1; // -1 to make sure when incrementing the PC we end up at the correct offset state.program_counter = &program_code[offset] - 1; // -1 to make sure when incrementing the PC we end up at the correct offset
state.call_stack.push({ offset + num_instructions, return_offset, repeat_count, loop_increment, offset }); state.call_stack.push({ offset + num_instructions, return_offset, repeat_count, loop_increment, offset });
}; };
u32 binary_offset = state.program_counter - shader_memory.data(); u32 binary_offset = state.program_counter - program_code.data();
state.debug.max_offset = std::max<u32>(state.debug.max_offset, 1 + binary_offset); state.debug.max_offset = std::max<u32>(state.debug.max_offset, 1 + binary_offset);
@ -153,7 +109,7 @@ static void ProcessShaderCode(VertexShaderState& state) {
return &state.temporary_registers[source_reg.GetIndex()].x; return &state.temporary_registers[source_reg.GetIndex()].x;
case RegisterType::FloatUniform: case RegisterType::FloatUniform:
return &shader_uniforms.f[source_reg.GetIndex()].x; return &uniforms.f[source_reg.GetIndex()].x;
default: default:
return dummy_vec4_float24; return dummy_vec4_float24;
@ -471,13 +427,13 @@ static void ProcessShaderCode(VertexShaderState& state) {
case OpCode::Id::JMPC: case OpCode::Id::JMPC:
if (evaluate_condition(state, instr.flow_control.refx, instr.flow_control.refy, instr.flow_control)) { if (evaluate_condition(state, instr.flow_control.refx, instr.flow_control.refy, instr.flow_control)) {
state.program_counter = &shader_memory[instr.flow_control.dest_offset] - 1; state.program_counter = &program_code[instr.flow_control.dest_offset] - 1;
} }
break; break;
case OpCode::Id::JMPU: case OpCode::Id::JMPU:
if (shader_uniforms.b[instr.flow_control.bool_uniform_id]) { if (uniforms.b[instr.flow_control.bool_uniform_id]) {
state.program_counter = &shader_memory[instr.flow_control.dest_offset] - 1; state.program_counter = &program_code[instr.flow_control.dest_offset] - 1;
} }
break; break;
@ -489,7 +445,7 @@ static void ProcessShaderCode(VertexShaderState& state) {
break; break;
case OpCode::Id::CALLU: case OpCode::Id::CALLU:
if (shader_uniforms.b[instr.flow_control.bool_uniform_id]) { if (uniforms.b[instr.flow_control.bool_uniform_id]) {
call(state, call(state,
instr.flow_control.dest_offset, instr.flow_control.dest_offset,
instr.flow_control.num_instructions, instr.flow_control.num_instructions,
@ -510,7 +466,7 @@ static void ProcessShaderCode(VertexShaderState& state) {
break; break;
case OpCode::Id::IFU: case OpCode::Id::IFU:
if (shader_uniforms.b[instr.flow_control.bool_uniform_id]) { if (uniforms.b[instr.flow_control.bool_uniform_id]) {
call(state, call(state,
binary_offset + 1, binary_offset + 1,
instr.flow_control.dest_offset - binary_offset - 1, instr.flow_control.dest_offset - binary_offset - 1,
@ -545,14 +501,14 @@ static void ProcessShaderCode(VertexShaderState& state) {
case OpCode::Id::LOOP: case OpCode::Id::LOOP:
{ {
state.address_registers[2] = shader_uniforms.i[instr.flow_control.int_uniform_id].y; state.address_registers[2] = uniforms.i[instr.flow_control.int_uniform_id].y;
call(state, call(state,
binary_offset + 1, binary_offset + 1,
instr.flow_control.dest_offset - binary_offset + 1, instr.flow_control.dest_offset - binary_offset + 1,
instr.flow_control.dest_offset + 1, instr.flow_control.dest_offset + 1,
shader_uniforms.i[instr.flow_control.int_uniform_id].x, uniforms.i[instr.flow_control.int_uniform_id].x,
shader_uniforms.i[instr.flow_control.int_uniform_id].z); uniforms.i[instr.flow_control.int_uniform_id].z);
break; break;
} }
@ -578,15 +534,17 @@ static Common::Profiling::TimingCategory shader_category("Vertex Shader");
OutputVertex RunShader(const InputVertex& input, int num_attributes) { OutputVertex RunShader(const InputVertex& input, int num_attributes) {
Common::Profiling::ScopeTimer timer(shader_category); Common::Profiling::ScopeTimer timer(shader_category);
const auto& regs = g_state.regs;
const auto& vs = g_state.vs;
VertexShaderState state; VertexShaderState state;
const u32* main = &shader_memory[registers.vs_main_offset]; const u32* main = &vs.program_code[regs.vs_main_offset];
state.program_counter = (u32*)main; state.program_counter = (u32*)main;
state.debug.max_offset = 0; state.debug.max_offset = 0;
state.debug.max_opdesc_id = 0; state.debug.max_opdesc_id = 0;
// Setup input register table // Setup input register table
const auto& attribute_register_map = registers.vs_input_register_map; const auto& attribute_register_map = regs.vs_input_register_map;
float24 dummy_register; float24 dummy_register;
boost::fill(state.input_register_table, &dummy_register); boost::fill(state.input_register_table, &dummy_register);
@ -611,16 +569,16 @@ OutputVertex RunShader(const InputVertex& input, int num_attributes) {
state.conditional_code[1] = false; state.conditional_code[1] = false;
ProcessShaderCode(state); ProcessShaderCode(state);
DebugUtils::DumpShader(shader_memory.data(), state.debug.max_offset, swizzle_data.data(), DebugUtils::DumpShader(vs.program_code.data(), state.debug.max_offset, vs.swizzle_data.data(),
state.debug.max_opdesc_id, registers.vs_main_offset, state.debug.max_opdesc_id, regs.vs_main_offset,
registers.vs_output_attributes); regs.vs_output_attributes);
// Setup output data // Setup output data
OutputVertex ret; OutputVertex ret;
// TODO(neobrain): Under some circumstances, up to 16 attributes may be output. We need to // TODO(neobrain): Under some circumstances, up to 16 attributes may be output. We need to
// figure out what those circumstances are and enable the remaining outputs then. // figure out what those circumstances are and enable the remaining outputs then.
for (int i = 0; i < 7; ++i) { for (int i = 0; i < 7; ++i) {
const auto& output_register_map = registers.vs_output_attributes[i]; const auto& output_register_map = regs.vs_output_attributes[i];
u32 semantics[4] = { u32 semantics[4] = {
output_register_map.map_x, output_register_map.map_y, output_register_map.map_x, output_register_map.map_y,

View File

@ -66,19 +66,8 @@ struct OutputVertex {
static_assert(std::is_pod<OutputVertex>::value, "Structure is not POD"); static_assert(std::is_pod<OutputVertex>::value, "Structure is not POD");
static_assert(sizeof(OutputVertex) == 32 * sizeof(float), "OutputVertex has invalid size"); static_assert(sizeof(OutputVertex) == 32 * sizeof(float), "OutputVertex has invalid size");
void SubmitShaderMemoryChange(u32 addr, u32 value);
void SubmitSwizzleDataChange(u32 addr, u32 value);
OutputVertex RunShader(const InputVertex& input, int num_attributes); OutputVertex RunShader(const InputVertex& input, int num_attributes);
Math::Vec4<float24>& GetFloatUniform(u32 index);
bool& GetBoolUniform(u32 index);
Math::Vec4<u8>& GetIntUniform(u32 index);
Math::Vec4<float24>& GetDefaultAttribute(u32 index);
const std::array<u32, 1024>& GetShaderBinary();
const std::array<u32, 1024>& GetSwizzlePatterns();
} // namespace } // namespace
} // namespace } // namespace

View File

@ -8,9 +8,11 @@
#include "core/core.h" #include "core/core.h"
#include "core/settings.h" #include "core/settings.h"
#include "video_core/video_core.h" #include "video_core.h"
#include "video_core/renderer_base.h" #include "renderer_base.h"
#include "video_core/renderer_opengl/renderer_opengl.h" #include "renderer_opengl/renderer_opengl.h"
#include "pica.h"
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
// Video Core namespace // Video Core namespace
@ -24,6 +26,8 @@ std::atomic<bool> g_hw_renderer_enabled;
/// Initialize the video core /// Initialize the video core
void Init(EmuWindow* emu_window) { void Init(EmuWindow* emu_window) {
Pica::Init();
g_emu_window = emu_window; g_emu_window = emu_window;
g_renderer = new RendererOpenGL(); g_renderer = new RendererOpenGL();
g_renderer->SetWindow(g_emu_window); g_renderer->SetWindow(g_emu_window);
@ -34,7 +38,10 @@ void Init(EmuWindow* emu_window) {
/// Shutdown the video core /// Shutdown the video core
void Shutdown() { void Shutdown() {
Pica::Shutdown();
delete g_renderer; delete g_renderer;
LOG_DEBUG(Render, "shutdown OK"); LOG_DEBUG(Render, "shutdown OK");
} }