Core: Implement a Host Timer.
This commit is contained in:
parent
be320a9e10
commit
62e35ffc0e
|
@ -547,6 +547,8 @@ add_library(core STATIC
|
||||||
hle/service/vi/vi_u.h
|
hle/service/vi/vi_u.h
|
||||||
hle/service/wlan/wlan.cpp
|
hle/service/wlan/wlan.cpp
|
||||||
hle/service/wlan/wlan.h
|
hle/service/wlan/wlan.h
|
||||||
|
host_timing.cpp
|
||||||
|
host_timing.h
|
||||||
loader/deconstructed_rom_directory.cpp
|
loader/deconstructed_rom_directory.cpp
|
||||||
loader/deconstructed_rom_directory.h
|
loader/deconstructed_rom_directory.h
|
||||||
loader/elf.cpp
|
loader/elf.cpp
|
||||||
|
|
|
@ -49,6 +49,11 @@ s64 nsToCycles(std::chrono::nanoseconds ns) {
|
||||||
return (Hardware::BASE_CLOCK_RATE * ns.count()) / 1000000000;
|
return (Hardware::BASE_CLOCK_RATE * ns.count()) / 1000000000;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
u64 nsToClockCycles(std::chrono::nanoseconds ns) {
|
||||||
|
const u128 temporal = Common::Multiply64Into128(ns.count(), CNTFREQ);
|
||||||
|
return Common::Divide128On32(temporal, 1000000000).first;
|
||||||
|
}
|
||||||
|
|
||||||
u64 CpuCyclesToClockCycles(u64 ticks) {
|
u64 CpuCyclesToClockCycles(u64 ticks) {
|
||||||
const u128 temporal = Common::Multiply64Into128(ticks, Hardware::CNTFREQ);
|
const u128 temporal = Common::Multiply64Into128(ticks, Hardware::CNTFREQ);
|
||||||
return Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
|
return Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
|
||||||
|
|
|
@ -13,6 +13,7 @@ namespace Core::Timing {
|
||||||
s64 msToCycles(std::chrono::milliseconds ms);
|
s64 msToCycles(std::chrono::milliseconds ms);
|
||||||
s64 usToCycles(std::chrono::microseconds us);
|
s64 usToCycles(std::chrono::microseconds us);
|
||||||
s64 nsToCycles(std::chrono::nanoseconds ns);
|
s64 nsToCycles(std::chrono::nanoseconds ns);
|
||||||
|
u64 nsToClockCycles(std::chrono::nanoseconds ns);
|
||||||
|
|
||||||
inline std::chrono::milliseconds CyclesToMs(s64 cycles) {
|
inline std::chrono::milliseconds CyclesToMs(s64 cycles) {
|
||||||
return std::chrono::milliseconds(cycles * 1000 / Hardware::BASE_CLOCK_RATE);
|
return std::chrono::milliseconds(cycles * 1000 / Hardware::BASE_CLOCK_RATE);
|
||||||
|
|
|
@ -0,0 +1,161 @@
|
||||||
|
// Copyright 2020 yuzu Emulator Project
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#include "core/host_timing.h"
|
||||||
|
|
||||||
|
#include <algorithm>
|
||||||
|
#include <mutex>
|
||||||
|
#include <string>
|
||||||
|
#include <tuple>
|
||||||
|
|
||||||
|
#include "common/assert.h"
|
||||||
|
#include "common/thread.h"
|
||||||
|
#include "core/core_timing_util.h"
|
||||||
|
|
||||||
|
namespace Core::HostTiming {
|
||||||
|
|
||||||
|
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
|
||||||
|
return std::make_shared<EventType>(std::move(callback), std::move(name));
|
||||||
|
}
|
||||||
|
|
||||||
|
struct CoreTiming::Event {
|
||||||
|
u64 time;
|
||||||
|
u64 fifo_order;
|
||||||
|
u64 userdata;
|
||||||
|
std::weak_ptr<EventType> type;
|
||||||
|
|
||||||
|
// Sort by time, unless the times are the same, in which case sort by
|
||||||
|
// the order added to the queue
|
||||||
|
friend bool operator>(const Event& left, const Event& right) {
|
||||||
|
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
|
||||||
|
}
|
||||||
|
|
||||||
|
friend bool operator<(const Event& left, const Event& right) {
|
||||||
|
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
CoreTiming::CoreTiming() = default;
|
||||||
|
CoreTiming::~CoreTiming() = default;
|
||||||
|
|
||||||
|
void CoreTiming::ThreadEntry(CoreTiming& instance) {
|
||||||
|
instance.Advance();
|
||||||
|
}
|
||||||
|
|
||||||
|
void CoreTiming::Initialize() {
|
||||||
|
event_fifo_id = 0;
|
||||||
|
const auto empty_timed_callback = [](u64, s64) {};
|
||||||
|
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
|
||||||
|
start_time = std::chrono::system_clock::now();
|
||||||
|
timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
|
||||||
|
}
|
||||||
|
|
||||||
|
void CoreTiming::Shutdown() {
|
||||||
|
std::unique_lock<std::mutex> guard(inner_mutex);
|
||||||
|
shutting_down = true;
|
||||||
|
if (!is_set) {
|
||||||
|
is_set = true;
|
||||||
|
condvar.notify_one();
|
||||||
|
}
|
||||||
|
inner_mutex.unlock();
|
||||||
|
timer_thread->join();
|
||||||
|
ClearPendingEvents();
|
||||||
|
}
|
||||||
|
|
||||||
|
void CoreTiming::ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type,
|
||||||
|
u64 userdata) {
|
||||||
|
std::lock_guard guard{inner_mutex};
|
||||||
|
const u64 timeout = static_cast<u64>(GetGlobalTimeNs().count() + ns_into_future);
|
||||||
|
|
||||||
|
event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type});
|
||||||
|
|
||||||
|
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||||
|
if (!is_set) {
|
||||||
|
is_set = true;
|
||||||
|
condvar.notify_one();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata) {
|
||||||
|
std::lock_guard guard{inner_mutex};
|
||||||
|
|
||||||
|
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
||||||
|
return e.type.lock().get() == event_type.get() && e.userdata == userdata;
|
||||||
|
});
|
||||||
|
|
||||||
|
// Removing random items breaks the invariant so we have to re-establish it.
|
||||||
|
if (itr != event_queue.end()) {
|
||||||
|
event_queue.erase(itr, event_queue.end());
|
||||||
|
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
u64 CoreTiming::GetCPUTicks() const {
|
||||||
|
std::chrono::nanoseconds time_now = GetGlobalTimeNs();
|
||||||
|
return Core::Timing::nsToCycles(time_now);
|
||||||
|
}
|
||||||
|
|
||||||
|
u64 CoreTiming::GetClockTicks() const {
|
||||||
|
std::chrono::nanoseconds time_now = GetGlobalTimeNs();
|
||||||
|
return Core::Timing::nsToClockCycles(time_now);
|
||||||
|
}
|
||||||
|
|
||||||
|
void CoreTiming::ClearPendingEvents() {
|
||||||
|
event_queue.clear();
|
||||||
|
}
|
||||||
|
|
||||||
|
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
|
||||||
|
std::lock_guard guard{inner_mutex};
|
||||||
|
|
||||||
|
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
||||||
|
return e.type.lock().get() == event_type.get();
|
||||||
|
});
|
||||||
|
|
||||||
|
// Removing random items breaks the invariant so we have to re-establish it.
|
||||||
|
if (itr != event_queue.end()) {
|
||||||
|
event_queue.erase(itr, event_queue.end());
|
||||||
|
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void CoreTiming::Advance() {
|
||||||
|
while (true) {
|
||||||
|
std::unique_lock<std::mutex> guard(inner_mutex);
|
||||||
|
|
||||||
|
global_timer = GetGlobalTimeNs().count();
|
||||||
|
|
||||||
|
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
|
||||||
|
Event evt = std::move(event_queue.front());
|
||||||
|
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
||||||
|
event_queue.pop_back();
|
||||||
|
inner_mutex.unlock();
|
||||||
|
|
||||||
|
if (auto event_type{evt.type.lock()}) {
|
||||||
|
event_type->callback(evt.userdata, global_timer - evt.time);
|
||||||
|
}
|
||||||
|
|
||||||
|
inner_mutex.lock();
|
||||||
|
}
|
||||||
|
auto next_time = std::chrono::nanoseconds(event_queue.front().time - global_timer);
|
||||||
|
condvar.wait_for(guard, next_time, [this] { return is_set; });
|
||||||
|
is_set = false;
|
||||||
|
if (shutting_down) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
|
||||||
|
sys_time_point current = std::chrono::system_clock::now();
|
||||||
|
auto elapsed = current - start_time;
|
||||||
|
return std::chrono::duration_cast<std::chrono::nanoseconds>(elapsed);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
|
||||||
|
sys_time_point current = std::chrono::system_clock::now();
|
||||||
|
auto elapsed = current - start_time;
|
||||||
|
return std::chrono::duration_cast<std::chrono::microseconds>(elapsed);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace Core::Timing
|
|
@ -0,0 +1,126 @@
|
||||||
|
// Copyright 2020 yuzu Emulator Project
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <chrono>
|
||||||
|
#include <functional>
|
||||||
|
#include <memory>
|
||||||
|
#include <mutex>
|
||||||
|
#include <optional>
|
||||||
|
#include <string>
|
||||||
|
#include <thread>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "common/common_types.h"
|
||||||
|
#include "common/threadsafe_queue.h"
|
||||||
|
|
||||||
|
namespace Core::HostTiming {
|
||||||
|
|
||||||
|
/// A callback that may be scheduled for a particular core timing event.
|
||||||
|
using TimedCallback = std::function<void(u64 userdata, s64 cycles_late)>;
|
||||||
|
using sys_time_point = std::chrono::time_point<std::chrono::system_clock>;
|
||||||
|
|
||||||
|
/// Contains the characteristics of a particular event.
|
||||||
|
struct EventType {
|
||||||
|
EventType(TimedCallback&& callback, std::string&& name)
|
||||||
|
: callback{std::move(callback)}, name{std::move(name)} {}
|
||||||
|
|
||||||
|
/// The event's callback function.
|
||||||
|
TimedCallback callback;
|
||||||
|
/// A pointer to the name of the event.
|
||||||
|
const std::string name;
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This is a system to schedule events into the emulated machine's future. Time is measured
|
||||||
|
* in main CPU clock cycles.
|
||||||
|
*
|
||||||
|
* To schedule an event, you first have to register its type. This is where you pass in the
|
||||||
|
* callback. You then schedule events using the type id you get back.
|
||||||
|
*
|
||||||
|
* The int cyclesLate that the callbacks get is how many cycles late it was.
|
||||||
|
* So to schedule a new event on a regular basis:
|
||||||
|
* inside callback:
|
||||||
|
* ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever")
|
||||||
|
*/
|
||||||
|
class CoreTiming {
|
||||||
|
public:
|
||||||
|
CoreTiming();
|
||||||
|
~CoreTiming();
|
||||||
|
|
||||||
|
CoreTiming(const CoreTiming&) = delete;
|
||||||
|
CoreTiming(CoreTiming&&) = delete;
|
||||||
|
|
||||||
|
CoreTiming& operator=(const CoreTiming&) = delete;
|
||||||
|
CoreTiming& operator=(CoreTiming&&) = delete;
|
||||||
|
|
||||||
|
/// CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is
|
||||||
|
/// required to end slice - 1 and start slice 0 before the first cycle of code is executed.
|
||||||
|
void Initialize();
|
||||||
|
|
||||||
|
/// Tears down all timing related functionality.
|
||||||
|
void Shutdown();
|
||||||
|
|
||||||
|
/// Schedules an event in core timing
|
||||||
|
void ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type,
|
||||||
|
u64 userdata = 0);
|
||||||
|
|
||||||
|
void UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata);
|
||||||
|
|
||||||
|
/// We only permit one event of each type in the queue at a time.
|
||||||
|
void RemoveEvent(const std::shared_ptr<EventType>& event_type);
|
||||||
|
|
||||||
|
/// Returns current time in emulated CPU cycles
|
||||||
|
u64 GetCPUTicks() const;
|
||||||
|
|
||||||
|
/// Returns current time in emulated in Clock cycles
|
||||||
|
u64 GetClockTicks() const;
|
||||||
|
|
||||||
|
/// Returns current time in microseconds.
|
||||||
|
std::chrono::microseconds GetGlobalTimeUs() const;
|
||||||
|
|
||||||
|
/// Returns current time in nanoseconds.
|
||||||
|
std::chrono::nanoseconds GetGlobalTimeNs() const;
|
||||||
|
|
||||||
|
private:
|
||||||
|
struct Event;
|
||||||
|
|
||||||
|
/// Clear all pending events. This should ONLY be done on exit.
|
||||||
|
void ClearPendingEvents();
|
||||||
|
|
||||||
|
static void ThreadEntry(CoreTiming& instance);
|
||||||
|
void Advance();
|
||||||
|
|
||||||
|
sys_time_point start_time;
|
||||||
|
|
||||||
|
u64 global_timer = 0;
|
||||||
|
|
||||||
|
std::chrono::nanoseconds start_point;
|
||||||
|
|
||||||
|
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
|
||||||
|
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
|
||||||
|
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't
|
||||||
|
// accomodated by the standard adaptor class.
|
||||||
|
std::vector<Event> event_queue;
|
||||||
|
u64 event_fifo_id = 0;
|
||||||
|
|
||||||
|
std::shared_ptr<EventType> ev_lost;
|
||||||
|
bool is_set = false;
|
||||||
|
std::condition_variable condvar;
|
||||||
|
std::mutex inner_mutex;
|
||||||
|
std::unique_ptr<std::thread> timer_thread;
|
||||||
|
std::atomic<bool> shutting_down{};
|
||||||
|
};
|
||||||
|
|
||||||
|
/// Creates a core timing event with the given name and callback.
|
||||||
|
///
|
||||||
|
/// @param name The name of the core timing event to create.
|
||||||
|
/// @param callback The callback to execute for the event.
|
||||||
|
///
|
||||||
|
/// @returns An EventType instance representing the created event.
|
||||||
|
///
|
||||||
|
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback);
|
||||||
|
|
||||||
|
} // namespace Core::Timing
|
Reference in New Issue