yuzu-emu
/
yuzu-mainline
Archived
1
0
Fork 0
This repository has been archived on 2024-03-23. You can view files and clone it, but cannot push or open issues or pull requests.
yuzu-mainline/src/audio_core/audio_renderer.cpp

341 lines
14 KiB
C++

// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <limits>
#include <vector>
#include "audio_core/audio_out.h"
#include "audio_core/audio_renderer.h"
#include "audio_core/common.h"
#include "audio_core/info_updater.h"
#include "audio_core/voice_context.h"
#include "common/logging/log.h"
#include "common/settings.h"
#include "core/core_timing.h"
#include "core/memory.h"
namespace {
[[nodiscard]] static constexpr s16 ClampToS16(s32 value) {
return static_cast<s16>(std::clamp(value, s32{std::numeric_limits<s16>::min()},
s32{std::numeric_limits<s16>::max()}));
}
[[nodiscard]] static constexpr s16 Mix2To1(s16 l_channel, s16 r_channel) {
// Mix 50% from left and 50% from right channel
constexpr float l_mix_amount = 50.0f / 100.0f;
constexpr float r_mix_amount = 50.0f / 100.0f;
return ClampToS16(static_cast<s32>((static_cast<float>(l_channel) * l_mix_amount) +
(static_cast<float>(r_channel) * r_mix_amount)));
}
[[maybe_unused, nodiscard]] static constexpr std::tuple<s16, s16> Mix6To2(
s16 fl_channel, s16 fr_channel, s16 fc_channel, [[maybe_unused]] s16 lf_channel, s16 bl_channel,
s16 br_channel) {
// Front channels are mixed 36.94%, Center channels are mixed to be 26.12% & the back channels
// are mixed to be 36.94%
constexpr float front_mix_amount = 36.94f / 100.0f;
constexpr float center_mix_amount = 26.12f / 100.0f;
constexpr float back_mix_amount = 36.94f / 100.0f;
// Mix 50% from left and 50% from right channel
const auto left = front_mix_amount * static_cast<float>(fl_channel) +
center_mix_amount * static_cast<float>(fc_channel) +
back_mix_amount * static_cast<float>(bl_channel);
const auto right = front_mix_amount * static_cast<float>(fr_channel) +
center_mix_amount * static_cast<float>(fc_channel) +
back_mix_amount * static_cast<float>(br_channel);
return {ClampToS16(static_cast<s32>(left)), ClampToS16(static_cast<s32>(right))};
}
[[nodiscard]] static constexpr std::tuple<s16, s16> Mix6To2WithCoefficients(
s16 fl_channel, s16 fr_channel, s16 fc_channel, s16 lf_channel, s16 bl_channel, s16 br_channel,
const std::array<float_le, 4>& coeff) {
const auto left =
static_cast<float>(fl_channel) * coeff[0] + static_cast<float>(fc_channel) * coeff[1] +
static_cast<float>(lf_channel) * coeff[2] + static_cast<float>(bl_channel) * coeff[3];
const auto right =
static_cast<float>(fr_channel) * coeff[0] + static_cast<float>(fc_channel) * coeff[1] +
static_cast<float>(lf_channel) * coeff[2] + static_cast<float>(br_channel) * coeff[3];
return {ClampToS16(static_cast<s32>(left)), ClampToS16(static_cast<s32>(right))};
}
} // namespace
namespace AudioCore {
constexpr s32 NUM_BUFFERS = 2;
AudioRenderer::AudioRenderer(Core::Timing::CoreTiming& core_timing_, Core::Memory::Memory& memory_,
AudioCommon::AudioRendererParameter params,
Stream::ReleaseCallback&& release_callback,
std::size_t instance_number)
: worker_params{params}, memory_pool_info(params.effect_count + params.voice_count * 4),
voice_context(params.voice_count), effect_context(params.effect_count), mix_context(),
sink_context(params.sink_count), splitter_context(),
voices(params.voice_count), memory{memory_},
command_generator(worker_params, voice_context, mix_context, splitter_context, effect_context,
memory),
core_timing{core_timing_} {
behavior_info.SetUserRevision(params.revision);
splitter_context.Initialize(behavior_info, params.splitter_count,
params.num_splitter_send_channels);
mix_context.Initialize(behavior_info, params.submix_count + 1, params.effect_count);
audio_out = std::make_unique<AudioCore::AudioOut>();
stream = audio_out->OpenStream(
core_timing, params.sample_rate, AudioCommon::STREAM_NUM_CHANNELS,
fmt::format("AudioRenderer-Instance{}", instance_number), std::move(release_callback));
process_event = Core::Timing::CreateEvent(
fmt::format("AudioRenderer-Instance{}-Process", instance_number),
[this](std::uintptr_t, std::chrono::nanoseconds) { ReleaseAndQueueBuffers(); });
for (s32 i = 0; i < NUM_BUFFERS; ++i) {
QueueMixedBuffer(i);
}
}
AudioRenderer::~AudioRenderer() = default;
ResultCode AudioRenderer::Start() {
audio_out->StartStream(stream);
ReleaseAndQueueBuffers();
return ResultSuccess;
}
ResultCode AudioRenderer::Stop() {
audio_out->StopStream(stream);
return ResultSuccess;
}
u32 AudioRenderer::GetSampleRate() const {
return worker_params.sample_rate;
}
u32 AudioRenderer::GetSampleCount() const {
return worker_params.sample_count;
}
u32 AudioRenderer::GetMixBufferCount() const {
return worker_params.mix_buffer_count;
}
Stream::State AudioRenderer::GetStreamState() const {
return stream->GetState();
}
ResultCode AudioRenderer::UpdateAudioRenderer(const std::vector<u8>& input_params,
std::vector<u8>& output_params) {
std::scoped_lock lock{mutex};
InfoUpdater info_updater{input_params, output_params, behavior_info};
if (!info_updater.UpdateBehaviorInfo(behavior_info)) {
LOG_ERROR(Audio, "Failed to update behavior info input parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
if (!info_updater.UpdateMemoryPools(memory_pool_info)) {
LOG_ERROR(Audio, "Failed to update memory pool parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
if (!info_updater.UpdateVoiceChannelResources(voice_context)) {
LOG_ERROR(Audio, "Failed to update voice channel resource parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
if (!info_updater.UpdateVoices(voice_context, memory_pool_info, 0)) {
LOG_ERROR(Audio, "Failed to update voice parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
// TODO(ogniK): Deal with stopped audio renderer but updates still taking place
if (!info_updater.UpdateEffects(effect_context, true)) {
LOG_ERROR(Audio, "Failed to update effect parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
if (behavior_info.IsSplitterSupported()) {
if (!info_updater.UpdateSplitterInfo(splitter_context)) {
LOG_ERROR(Audio, "Failed to update splitter parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
}
const auto mix_result = info_updater.UpdateMixes(mix_context, worker_params.mix_buffer_count,
splitter_context, effect_context);
if (mix_result.IsError()) {
LOG_ERROR(Audio, "Failed to update mix parameters");
return mix_result;
}
// TODO(ogniK): Sinks
if (!info_updater.UpdateSinks(sink_context)) {
LOG_ERROR(Audio, "Failed to update sink parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
// TODO(ogniK): Performance buffer
if (!info_updater.UpdatePerformanceBuffer()) {
LOG_ERROR(Audio, "Failed to update performance buffer parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
if (!info_updater.UpdateErrorInfo(behavior_info)) {
LOG_ERROR(Audio, "Failed to update error info");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
if (behavior_info.IsElapsedFrameCountSupported()) {
if (!info_updater.UpdateRendererInfo(elapsed_frame_count)) {
LOG_ERROR(Audio, "Failed to update renderer info");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
}
// TODO(ogniK): Statistics
if (!info_updater.WriteOutputHeader()) {
LOG_ERROR(Audio, "Failed to write output header");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
// TODO(ogniK): Check when all sections are implemented
if (!info_updater.CheckConsumedSize()) {
LOG_ERROR(Audio, "Audio buffers were not consumed!");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
return ResultSuccess;
}
void AudioRenderer::QueueMixedBuffer(Buffer::Tag tag) {
command_generator.PreCommand();
// Clear mix buffers before our next operation
command_generator.ClearMixBuffers();
// If the splitter is not in use, sort our mixes
if (!splitter_context.UsingSplitter()) {
mix_context.SortInfo();
}
// Sort our voices
voice_context.SortInfo();
// Handle samples
command_generator.GenerateVoiceCommands();
command_generator.GenerateSubMixCommands();
command_generator.GenerateFinalMixCommands();
command_generator.PostCommand();
// Base sample size
std::size_t BUFFER_SIZE{worker_params.sample_count};
// Samples, making sure to clear
std::vector<s16> buffer(BUFFER_SIZE * stream->GetNumChannels(), 0);
if (sink_context.InUse()) {
const auto stream_channel_count = stream->GetNumChannels();
const auto buffer_offsets = sink_context.OutputBuffers();
const auto channel_count = buffer_offsets.size();
const auto& final_mix = mix_context.GetFinalMixInfo();
const auto& in_params = final_mix.GetInParams();
std::vector<std::span<s32>> mix_buffers(channel_count);
for (std::size_t i = 0; i < channel_count; i++) {
mix_buffers[i] =
command_generator.GetMixBuffer(in_params.buffer_offset + buffer_offsets[i]);
}
for (std::size_t i = 0; i < BUFFER_SIZE; i++) {
if (channel_count == 1) {
const auto sample = ClampToS16(mix_buffers[0][i]);
// Place sample in all channels
for (u32 channel = 0; channel < stream_channel_count; channel++) {
buffer[i * stream_channel_count + channel] = sample;
}
if (stream_channel_count == 6) {
// Output stream has a LF channel, mute it!
buffer[i * stream_channel_count + 3] = 0;
}
} else if (channel_count == 2) {
const auto l_sample = ClampToS16(mix_buffers[0][i]);
const auto r_sample = ClampToS16(mix_buffers[1][i]);
if (stream_channel_count == 1) {
buffer[i * stream_channel_count + 0] = Mix2To1(l_sample, r_sample);
} else if (stream_channel_count == 2) {
buffer[i * stream_channel_count + 0] = l_sample;
buffer[i * stream_channel_count + 1] = r_sample;
} else if (stream_channel_count == 6) {
buffer[i * stream_channel_count + 0] = l_sample;
buffer[i * stream_channel_count + 1] = r_sample;
// Combine both left and right channels to the center channel
buffer[i * stream_channel_count + 2] = Mix2To1(l_sample, r_sample);
buffer[i * stream_channel_count + 4] = l_sample;
buffer[i * stream_channel_count + 5] = r_sample;
}
} else if (channel_count == 6) {
const auto fl_sample = ClampToS16(mix_buffers[0][i]);
const auto fr_sample = ClampToS16(mix_buffers[1][i]);
const auto fc_sample = ClampToS16(mix_buffers[2][i]);
const auto lf_sample = ClampToS16(mix_buffers[3][i]);
const auto bl_sample = ClampToS16(mix_buffers[4][i]);
const auto br_sample = ClampToS16(mix_buffers[5][i]);
if (stream_channel_count == 1) {
// Games seem to ignore the center channel half the time, we use the front left
// and right channel for mixing as that's where majority of the audio goes
buffer[i * stream_channel_count + 0] = Mix2To1(fl_sample, fr_sample);
} else if (stream_channel_count == 2) {
// Mix all channels into 2 channels
const auto [left, right] = Mix6To2WithCoefficients(
fl_sample, fr_sample, fc_sample, lf_sample, bl_sample, br_sample,
sink_context.GetDownmixCoefficients());
buffer[i * stream_channel_count + 0] = left;
buffer[i * stream_channel_count + 1] = right;
} else if (stream_channel_count == 6) {
// Pass through
buffer[i * stream_channel_count + 0] = fl_sample;
buffer[i * stream_channel_count + 1] = fr_sample;
buffer[i * stream_channel_count + 2] = fc_sample;
buffer[i * stream_channel_count + 3] = lf_sample;
buffer[i * stream_channel_count + 4] = bl_sample;
buffer[i * stream_channel_count + 5] = br_sample;
}
}
}
}
audio_out->QueueBuffer(stream, tag, std::move(buffer));
elapsed_frame_count++;
voice_context.UpdateStateByDspShared();
}
void AudioRenderer::ReleaseAndQueueBuffers() {
if (!stream->IsPlaying()) {
return;
}
{
std::scoped_lock lock{mutex};
const auto released_buffers{audio_out->GetTagsAndReleaseBuffers(stream)};
for (const auto& tag : released_buffers) {
QueueMixedBuffer(tag);
}
}
const f32 sample_rate = static_cast<f32>(GetSampleRate());
const f32 sample_count = static_cast<f32>(GetSampleCount());
const f32 consume_rate = sample_rate / (sample_count * (sample_count / 240));
const s32 ms = (1000 / static_cast<s32>(consume_rate)) - 1;
const std::chrono::milliseconds next_event_time(std::max(ms / NUM_BUFFERS, 1));
core_timing.ScheduleEvent(next_event_time, process_event, {});
}
} // namespace AudioCore