yuzu-emu
/
yuzu
Archived
1
0
Fork 0

Kernel: Properly implement ControlMemory FREE and COMMIT

This commit is contained in:
Yuri Kunde Schlesner 2015-07-17 23:19:16 -03:00
parent ccab02c723
commit cdeeecf080
6 changed files with 338 additions and 38 deletions

View File

@ -36,8 +36,7 @@ SharedPtr<Process> Process::Create(SharedPtr<CodeSet> code_set) {
process->codeset = std::move(code_set); process->codeset = std::move(code_set);
process->flags.raw = 0; process->flags.raw = 0;
process->flags.memory_region = MemoryRegion::APPLICATION; process->flags.memory_region = MemoryRegion::APPLICATION;
process->address_space = Common::make_unique<VMManager>(); Memory::InitLegacyAddressSpace(process->vm_manager);
Memory::InitLegacyAddressSpace(*process->address_space);
return process; return process;
} }
@ -104,19 +103,130 @@ void Process::ParseKernelCaps(const u32* kernel_caps, size_t len) {
void Process::Run(s32 main_thread_priority, u32 stack_size) { void Process::Run(s32 main_thread_priority, u32 stack_size) {
auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions, MemoryState memory_state) { auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions, MemoryState memory_state) {
auto vma = address_space->MapMemoryBlock(segment.addr, codeset->memory, auto vma = vm_manager.MapMemoryBlock(segment.addr, codeset->memory,
segment.offset, segment.size, memory_state).Unwrap(); segment.offset, segment.size, memory_state).Unwrap();
address_space->Reprotect(vma, permissions); vm_manager.Reprotect(vma, permissions);
}; };
// Map CodeSet segments
MapSegment(codeset->code, VMAPermission::ReadExecute, MemoryState::Code); MapSegment(codeset->code, VMAPermission::ReadExecute, MemoryState::Code);
MapSegment(codeset->rodata, VMAPermission::Read, MemoryState::Code); MapSegment(codeset->rodata, VMAPermission::Read, MemoryState::Code);
MapSegment(codeset->data, VMAPermission::ReadWrite, MemoryState::Private); MapSegment(codeset->data, VMAPermission::ReadWrite, MemoryState::Private);
address_space->LogLayout(Log::Level::Debug); // Allocate and map stack
vm_manager.MapMemoryBlock(Memory::HEAP_VADDR_END - stack_size,
std::make_shared<std::vector<u8>>(stack_size, 0), 0, stack_size, MemoryState::Locked
).Unwrap();
vm_manager.LogLayout(Log::Level::Debug);
Kernel::SetupMainThread(codeset->entrypoint, main_thread_priority); Kernel::SetupMainThread(codeset->entrypoint, main_thread_priority);
} }
ResultVal<VAddr> Process::HeapAllocate(VAddr target, u32 size, VMAPermission perms) {
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END || target + size < target) {
return ERR_INVALID_ADDRESS;
}
if (heap_memory == nullptr) {
// Initialize heap
heap_memory = std::make_shared<std::vector<u8>>();
heap_start = heap_end = target;
}
// If necessary, expand backing vector to cover new heap extents.
if (target < heap_start) {
heap_memory->insert(begin(*heap_memory), heap_start - target, 0);
heap_start = target;
vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
}
if (target + size > heap_end) {
heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0);
heap_end = target + size;
vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
}
ASSERT(heap_end - heap_start == heap_memory->size());
CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, heap_memory, target - heap_start, size, MemoryState::Private));
vm_manager.Reprotect(vma, perms);
return MakeResult<VAddr>(heap_end - size);
}
ResultCode Process::HeapFree(VAddr target, u32 size) {
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END || target + size < target) {
return ERR_INVALID_ADDRESS;
}
ResultCode result = vm_manager.UnmapRange(target, size);
if (result.IsError()) return result;
return RESULT_SUCCESS;
}
ResultVal<VAddr> Process::LinearAllocate(VAddr target, u32 size, VMAPermission perms) {
if (linear_heap_memory == nullptr) {
// Initialize heap
linear_heap_memory = std::make_shared<std::vector<u8>>();
}
VAddr heap_end = Memory::LINEAR_HEAP_VADDR + (u32)linear_heap_memory->size();
// Games and homebrew only ever seem to pass 0 here (which lets the kernel decide the address),
// but explicit addresses are also accepted and respected.
if (target == 0) {
target = heap_end;
}
if (target < Memory::LINEAR_HEAP_VADDR || target + size > Memory::LINEAR_HEAP_VADDR_END ||
target > heap_end || target + size < target) {
return ERR_INVALID_ADDRESS;
}
// Expansion of the linear heap is only allowed if you do an allocation immediatelly at its
// end. It's possible to free gaps in the middle of the heap and then reallocate them later,
// but expansions are only allowed at the end.
if (target == heap_end) {
linear_heap_memory->insert(linear_heap_memory->end(), size, 0);
vm_manager.RefreshMemoryBlockMappings(linear_heap_memory.get());
}
size_t offset = target - Memory::LINEAR_HEAP_VADDR;
CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, linear_heap_memory, offset, size, MemoryState::Continuous));
vm_manager.Reprotect(vma, perms);
return MakeResult<VAddr>(target);
}
ResultCode Process::LinearFree(VAddr target, u32 size) {
if (linear_heap_memory == nullptr || target < Memory::LINEAR_HEAP_VADDR ||
target + size > Memory::LINEAR_HEAP_VADDR_END || target + size < target) {
return ERR_INVALID_ADDRESS;
}
VAddr heap_end = Memory::LINEAR_HEAP_VADDR + (u32)linear_heap_memory->size();
if (target + size > heap_end) {
return ERR_INVALID_ADDRESS_STATE;
}
ResultCode result = vm_manager.UnmapRange(target, size);
if (result.IsError()) return result;
if (target + size == heap_end) {
// End of linear heap has been freed, so check what's the last allocated block in it and
// reduce the size.
auto vma = vm_manager.FindVMA(target);
ASSERT(vma != vm_manager.vma_map.end());
ASSERT(vma->second.type == VMAType::Free);
VAddr new_end = vma->second.base;
if (new_end >= Memory::LINEAR_HEAP_VADDR) {
linear_heap_memory->resize(new_end - Memory::LINEAR_HEAP_VADDR);
}
}
return RESULT_SUCCESS;
}
Kernel::Process::Process() {} Kernel::Process::Process() {}
Kernel::Process::~Process() {} Kernel::Process::~Process() {}

View File

@ -15,6 +15,7 @@
#include "common/common_types.h" #include "common/common_types.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/vm_manager.h"
namespace Kernel { namespace Kernel {
@ -48,7 +49,6 @@ union ProcessFlags {
}; };
class ResourceLimit; class ResourceLimit;
class VMManager;
struct CodeSet final : public Object { struct CodeSet final : public Object {
static SharedPtr<CodeSet> Create(std::string name, u64 program_id); static SharedPtr<CodeSet> Create(std::string name, u64 program_id);
@ -108,10 +108,6 @@ public:
/// The id of this process /// The id of this process
u32 process_id = next_process_id++; u32 process_id = next_process_id++;
/// Bitmask of the used TLS slots
std::bitset<300> used_tls_slots;
std::unique_ptr<VMManager> address_space;
/** /**
* Parses a list of kernel capability descriptors (as found in the ExHeader) and applies them * Parses a list of kernel capability descriptors (as found in the ExHeader) and applies them
* to this process. * to this process.
@ -123,6 +119,31 @@ public:
*/ */
void Run(s32 main_thread_priority, u32 stack_size); void Run(s32 main_thread_priority, u32 stack_size);
///////////////////////////////////////////////////////////////////////////////////////////////
// Memory Management
VMManager vm_manager;
// Memory used to back the allocations in the regular heap. A single vector is used to cover
// the entire virtual address space extents that bound the allocations, including any holes.
// This makes deallocation and reallocation of holes fast and keeps process memory contiguous
// in the emulator address space, allowing Memory::GetPointer to be reasonably safe.
std::shared_ptr<std::vector<u8>> heap_memory;
// The left/right bounds of the address space covered by heap_memory.
VAddr heap_start = 0, heap_end = 0;
std::shared_ptr<std::vector<u8>> linear_heap_memory;
/// Bitmask of the used TLS slots
std::bitset<300> used_tls_slots;
ResultVal<VAddr> HeapAllocate(VAddr target, u32 size, VMAPermission perms);
ResultCode HeapFree(VAddr target, u32 size);
ResultVal<VAddr> LinearAllocate(VAddr target, u32 size, VMAPermission perms);
ResultCode LinearFree(VAddr target, u32 size);
private: private:
Process(); Process();
~Process() override; ~Process() override;

View File

@ -60,8 +60,12 @@ void VMManager::Reset() {
} }
VMManager::VMAHandle VMManager::FindVMA(VAddr target) const { VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
if (target >= MAX_ADDRESS) {
return vma_map.end();
} else {
return std::prev(vma_map.upper_bound(target)); return std::prev(vma_map.upper_bound(target));
} }
}
ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target, ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
std::shared_ptr<std::vector<u8>> block, size_t offset, u32 size, MemoryState state) { std::shared_ptr<std::vector<u8>> block, size_t offset, u32 size, MemoryState state) {
@ -115,10 +119,8 @@ ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u3
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle)); return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
} }
void VMManager::Unmap(VMAHandle vma_handle) { VMManager::VMAIter VMManager::Unmap(VMAIter vma_handle) {
VMAIter iter = StripIterConstness(vma_handle); VirtualMemoryArea& vma = vma_handle->second;
VirtualMemoryArea& vma = iter->second;
vma.type = VMAType::Free; vma.type = VMAType::Free;
vma.permissions = VMAPermission::None; vma.permissions = VMAPermission::None;
vma.meminfo_state = MemoryState::Free; vma.meminfo_state = MemoryState::Free;
@ -130,17 +132,57 @@ void VMManager::Unmap(VMAHandle vma_handle) {
UpdatePageTableForVMA(vma); UpdatePageTableForVMA(vma);
MergeAdjacent(iter); return MergeAdjacent(vma_handle);
} }
void VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) { ResultCode VMManager::UnmapRange(VAddr target, u32 size) {
CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
VAddr target_end = target + size;
VMAIter end = vma_map.end();
// The comparison against the end of the range must be done using addresses since VMAs can be
// merged during this process, causing invalidation of the iterators.
while (vma != end && vma->second.base < target_end) {
vma = std::next(Unmap(vma));
}
ASSERT(FindVMA(target)->second.size >= size);
return RESULT_SUCCESS;
}
VMManager::VMAHandle VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) {
VMAIter iter = StripIterConstness(vma_handle); VMAIter iter = StripIterConstness(vma_handle);
VirtualMemoryArea& vma = iter->second; VirtualMemoryArea& vma = iter->second;
vma.permissions = new_perms; vma.permissions = new_perms;
UpdatePageTableForVMA(vma); UpdatePageTableForVMA(vma);
MergeAdjacent(iter); return MergeAdjacent(iter);
}
ResultCode VMManager::ReprotectRange(VAddr target, u32 size, VMAPermission new_perms) {
CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
VAddr target_end = target + size;
VMAIter end = vma_map.end();
// The comparison against the end of the range must be done using addresses since VMAs can be
// merged during this process, causing invalidation of the iterators.
while (vma != end && vma->second.base < target_end) {
vma = std::next(StripIterConstness(Reprotect(vma, new_perms)));
}
return RESULT_SUCCESS;
}
void VMManager::RefreshMemoryBlockMappings(const std::vector<u8>* block) {
// If this ever proves to have a noticeable performance impact, allow users of the function to
// specify a specific range of addresses to limit the scan to.
for (const auto& p : vma_map) {
const VirtualMemoryArea& vma = p.second;
if (block == vma.backing_block.get()) {
UpdatePageTableForVMA(vma);
}
}
} }
void VMManager::LogLayout(Log::Level log_level) const { void VMManager::LogLayout(Log::Level log_level) const {
@ -161,8 +203,8 @@ VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle & iter) {
} }
ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) { ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) {
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: %8X", size); ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size);
ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: %08X", base); ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", base);
VMAIter vma_handle = StripIterConstness(FindVMA(base)); VMAIter vma_handle = StripIterConstness(FindVMA(base));
if (vma_handle == vma_map.end()) { if (vma_handle == vma_map.end()) {
@ -196,6 +238,35 @@ ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) {
return MakeResult<VMAIter>(vma_handle); return MakeResult<VMAIter>(vma_handle);
} }
ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u32 size) {
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size);
ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", target);
VAddr target_end = target + size;
ASSERT(target_end >= target);
ASSERT(target_end <= MAX_ADDRESS);
ASSERT(size > 0);
VMAIter begin_vma = StripIterConstness(FindVMA(target));
VMAIter i_end = vma_map.lower_bound(target_end);
for (auto i = begin_vma; i != i_end; ++i) {
if (i->second.type == VMAType::Free) {
return ERR_INVALID_ADDRESS_STATE;
}
}
if (target != begin_vma->second.base) {
begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
}
VMAIter end_vma = StripIterConstness(FindVMA(target_end));
if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
}
return MakeResult<VMAIter>(begin_vma);
}
VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u32 offset_in_vma) { VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u32 offset_in_vma) {
VirtualMemoryArea& old_vma = vma_handle->second; VirtualMemoryArea& old_vma = vma_handle->second;
VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA

View File

@ -171,11 +171,20 @@ public:
*/ */
ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u32 size, MemoryState state); ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u32 size, MemoryState state);
/// Unmaps the given VMA. /// Unmaps a range of addresses, splitting VMAs as necessary.
void Unmap(VMAHandle vma); ResultCode UnmapRange(VAddr target, u32 size);
/// Changes the permissions of the given VMA. /// Changes the permissions of the given VMA.
void Reprotect(VMAHandle vma, VMAPermission new_perms); VMAHandle Reprotect(VMAHandle vma, VMAPermission new_perms);
/// Changes the permissions of a range of addresses, splitting VMAs as necessary.
ResultCode ReprotectRange(VAddr target, u32 size, VMAPermission new_perms);
/**
* Scans all VMAs and updates the page table range of any that use the given vector as backing
* memory. This should be called after any operation that causes reallocation of the vector.
*/
void RefreshMemoryBlockMappings(const std::vector<u8>* block);
/// Dumps the address space layout to the log, for debugging /// Dumps the address space layout to the log, for debugging
void LogLayout(Log::Level log_level) const; void LogLayout(Log::Level log_level) const;
@ -186,12 +195,21 @@ private:
/// Converts a VMAHandle to a mutable VMAIter. /// Converts a VMAHandle to a mutable VMAIter.
VMAIter StripIterConstness(const VMAHandle& iter); VMAIter StripIterConstness(const VMAHandle& iter);
/// Unmaps the given VMA.
VMAIter Unmap(VMAIter vma);
/** /**
* Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing * Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
* the appropriate error checking. * the appropriate error checking.
*/ */
ResultVal<VMAIter> CarveVMA(VAddr base, u32 size); ResultVal<VMAIter> CarveVMA(VAddr base, u32 size);
/**
* Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each
* end of the range.
*/
ResultVal<VMAIter> CarveVMARange(VAddr base, u32 size);
/** /**
* Splits a VMA in two, at the specified offset. * Splits a VMA in two, at the specified offset.
* @returns the right side of the split, with the original iterator becoming the left side. * @returns the right side of the split, with the original iterator becoming the left side.

View File

@ -41,32 +41,114 @@ const ResultCode ERR_NOT_FOUND(ErrorDescription::NotFound, ErrorModule::Kernel,
const ResultCode ERR_PORT_NAME_TOO_LONG(ErrorDescription(30), ErrorModule::OS, const ResultCode ERR_PORT_NAME_TOO_LONG(ErrorDescription(30), ErrorModule::OS,
ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E0181E ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E0181E
const ResultCode ERR_MISALIGNED_ADDRESS{ // 0xE0E01BF1
ErrorDescription::MisalignedAddress, ErrorModule::OS,
ErrorSummary::InvalidArgument, ErrorLevel::Usage};
const ResultCode ERR_MISALIGNED_SIZE{ // 0xE0E01BF2
ErrorDescription::MisalignedSize, ErrorModule::OS,
ErrorSummary::InvalidArgument, ErrorLevel::Usage};
const ResultCode ERR_INVALID_COMBINATION{ // 0xE0E01BEE
ErrorDescription::InvalidCombination, ErrorModule::OS,
ErrorSummary::InvalidArgument, ErrorLevel::Usage};
enum ControlMemoryOperation { enum ControlMemoryOperation {
MEMORY_OPERATION_HEAP = 0x00000003, MEMOP_FREE = 1,
MEMORY_OPERATION_GSP_HEAP = 0x00010003, MEMOP_RESERVE = 2, // This operation seems to be unsupported in the kernel
MEMOP_COMMIT = 3,
MEMOP_MAP = 4,
MEMOP_UNMAP = 5,
MEMOP_PROTECT = 6,
MEMOP_OPERATION_MASK = 0xFF,
MEMOP_REGION_APP = 0x100,
MEMOP_REGION_SYSTEM = 0x200,
MEMOP_REGION_BASE = 0x300,
MEMOP_REGION_MASK = 0xF00,
MEMOP_LINEAR = 0x10000,
}; };
/// Map application or GSP heap memory /// Map application or GSP heap memory
static ResultCode ControlMemory(u32* out_addr, u32 operation, u32 addr0, u32 addr1, u32 size, u32 permissions) { static ResultCode ControlMemory(u32* out_addr, u32 operation, u32 addr0, u32 addr1, u32 size, u32 permissions) {
LOG_TRACE(Kernel_SVC,"called operation=0x%08X, addr0=0x%08X, addr1=0x%08X, size=%08X, permissions=0x%08X", using namespace Kernel;
LOG_DEBUG(Kernel_SVC,"called operation=0x%08X, addr0=0x%08X, addr1=0x%08X, size=0x%X, permissions=0x%08X",
operation, addr0, addr1, size, permissions); operation, addr0, addr1, size, permissions);
switch (operation) { if ((addr0 & Memory::PAGE_MASK) != 0 || (addr1 & Memory::PAGE_MASK) != 0) {
return ERR_MISALIGNED_ADDRESS;
}
if ((size & Memory::PAGE_MASK) != 0) {
return ERR_MISALIGNED_SIZE;
}
// Map normal heap memory u32 region = operation & MEMOP_REGION_MASK;
case MEMORY_OPERATION_HEAP: operation &= ~MEMOP_REGION_MASK;
*out_addr = Memory::MapBlock_Heap(size, operation, permissions);
if (region != 0) {
LOG_WARNING(Kernel_SVC, "ControlMemory with specified region not supported, region=%X", region);
}
if ((permissions & (u32)MemoryPermission::ReadWrite) != permissions) {
return ERR_INVALID_COMBINATION;
}
VMAPermission vma_permissions = (VMAPermission)permissions;
auto& process = *g_current_process;
switch (operation & MEMOP_OPERATION_MASK) {
case MEMOP_FREE:
{
if (addr0 >= Memory::HEAP_VADDR && addr0 < Memory::HEAP_VADDR_END) {
ResultCode result = process.HeapFree(addr0, size);
if (result.IsError()) return result;
} else if (addr0 >= Memory::LINEAR_HEAP_VADDR && addr0 < Memory::LINEAR_HEAP_VADDR_END) {
ResultCode result = process.LinearFree(addr0, size);
if (result.IsError()) return result;
} else {
return ERR_INVALID_ADDRESS;
}
*out_addr = addr0;
break; break;
}
// Map GSP heap memory case MEMOP_COMMIT:
case MEMORY_OPERATION_GSP_HEAP: {
*out_addr = Memory::MapBlock_HeapLinear(size, operation, permissions); if (operation & MEMOP_LINEAR) {
CASCADE_RESULT(*out_addr, process.LinearAllocate(addr0, size, vma_permissions));
} else {
CASCADE_RESULT(*out_addr, process.HeapAllocate(addr0, size, vma_permissions));
}
break; break;
}
case MEMOP_MAP: // TODO: This is just a hack to avoid regressions until memory aliasing is implemented
{
CASCADE_RESULT(*out_addr, process.HeapAllocate(addr0, size, vma_permissions));
break;
}
case MEMOP_UNMAP: // TODO: This is just a hack to avoid regressions until memory aliasing is implemented
{
ResultCode result = process.HeapFree(addr0, size);
if (result.IsError()) return result;
break;
}
case MEMOP_PROTECT:
{
ResultCode result = process.vm_manager.ReprotectRange(addr0, size, vma_permissions);
if (result.IsError()) return result;
break;
}
// Unknown ControlMemory operation
default: default:
LOG_ERROR(Kernel_SVC, "unknown operation=0x%08X", operation); LOG_ERROR(Kernel_SVC, "unknown operation=0x%08X", operation);
return ERR_INVALID_COMBINATION;
} }
process.vm_manager.LogLayout(Log::Level::Trace);
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
@ -537,9 +619,9 @@ static ResultCode QueryProcessMemory(MemoryInfo* memory_info, PageInfo* page_inf
if (process == nullptr) if (process == nullptr)
return ERR_INVALID_HANDLE; return ERR_INVALID_HANDLE;
auto vma = process->address_space->FindVMA(addr); auto vma = process->vm_manager.FindVMA(addr);
if (vma == process->address_space->vma_map.end()) if (vma == Kernel::g_current_process->vm_manager.vma_map.end())
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage); return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage);
memory_info->base_address = vma->second.base; memory_info->base_address = vma->second.base;

View File

@ -32,9 +32,7 @@ struct MemoryArea {
// We don't declare the IO regions in here since its handled by other means. // We don't declare the IO regions in here since its handled by other means.
static MemoryArea memory_areas[] = { static MemoryArea memory_areas[] = {
{HEAP_VADDR, HEAP_SIZE, "Heap"}, // Application heap (main memory)
{SHARED_MEMORY_VADDR, SHARED_MEMORY_SIZE, "Shared Memory"}, // Shared memory {SHARED_MEMORY_VADDR, SHARED_MEMORY_SIZE, "Shared Memory"}, // Shared memory
{LINEAR_HEAP_VADDR, LINEAR_HEAP_SIZE, "Linear Heap"}, // Linear heap (main memory)
{VRAM_VADDR, VRAM_SIZE, "VRAM"}, // Video memory (VRAM) {VRAM_VADDR, VRAM_SIZE, "VRAM"}, // Video memory (VRAM)
{DSP_RAM_VADDR, DSP_RAM_SIZE, "DSP RAM"}, // DSP memory {DSP_RAM_VADDR, DSP_RAM_SIZE, "DSP RAM"}, // DSP memory
{TLS_AREA_VADDR, TLS_AREA_SIZE, "TLS Area"}, // TLS memory {TLS_AREA_VADDR, TLS_AREA_SIZE, "TLS Area"}, // TLS memory