citra-emu
/
citra-canary
Archived
1
0
Fork 0

Merge pull request #503 from yuriks/kernel-lifetime4

Kernel Lifetime Reform Pt. 4
This commit is contained in:
Tony Wasserka 2015-01-30 15:00:17 +01:00
commit 28702cbfeb
29 changed files with 724 additions and 730 deletions

View File

@ -31,6 +31,10 @@ template<> struct CompileTimeAssert<true> {};
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0])) #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
/// Textually concatenates two tokens. The double-expansion is required by the C preprocessor.
#define CONCAT2(x, y) DO_CONCAT2(x, y)
#define DO_CONCAT2(x, y) x ## y
#ifndef _MSC_VER #ifndef _MSC_VER
#include <errno.h> #include <errno.h>

View File

@ -4,6 +4,8 @@
#pragma once #pragma once
#include "common/common_funcs.h"
namespace detail { namespace detail {
template <typename Func> template <typename Func>
struct ScopeExitHelper { struct ScopeExitHelper {
@ -34,4 +36,4 @@ namespace detail {
* } * }
* \endcode * \endcode
*/ */
#define SCOPE_EXIT(body) auto scope_exit_helper_##__LINE__ = detail::ScopeExit([&]() body) #define SCOPE_EXIT(body) auto CONCAT2(scope_exit_helper_, __LINE__) = detail::ScopeExit([&]() body)

View File

@ -33,114 +33,105 @@ static inline void FuncReturn64(u64 res) {
} }
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
// Function wrappers that return type s32 // Function wrappers that return type ResultCode
template<s32 func(u32, u32, u32, u32)> void Wrap() { template<ResultCode func(u32, u32, u32, u32)> void Wrap() {
FuncReturn(func(PARAM(0), PARAM(1), PARAM(2), PARAM(3))); FuncReturn(func(PARAM(0), PARAM(1), PARAM(2), PARAM(3)).raw);
} }
template<s32 func(u32, u32, u32, u32, u32)> void Wrap() { template<ResultCode func(u32*, u32, u32, u32, u32, u32)> void Wrap(){
FuncReturn(func(PARAM(0), PARAM(1), PARAM(2), PARAM(3), PARAM(4)));
}
template<s32 func(u32*, u32, u32, u32, u32, u32)> void Wrap(){
u32 param_1 = 0; u32 param_1 = 0;
u32 retval = func(&param_1, PARAM(0), PARAM(1), PARAM(2), PARAM(3), PARAM(4)); u32 retval = func(&param_1, PARAM(0), PARAM(1), PARAM(2), PARAM(3), PARAM(4)).raw;
Core::g_app_core->SetReg(1, param_1); Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval); FuncReturn(retval);
} }
template<s32 func(s32*, u32*, s32, bool, s64)> void Wrap() { template<ResultCode func(s32*, u32*, s32, bool, s64)> void Wrap() {
s32 param_1 = 0; s32 param_1 = 0;
s32 retval = func(&param_1, (Handle*)Memory::GetPointer(PARAM(1)), (s32)PARAM(2), s32 retval = func(&param_1, (Handle*)Memory::GetPointer(PARAM(1)), (s32)PARAM(2),
(PARAM(3) != 0), (((s64)PARAM(4) << 32) | PARAM(0))); (PARAM(3) != 0), (((s64)PARAM(4) << 32) | PARAM(0))).raw;
Core::g_app_core->SetReg(1, (u32)param_1); Core::g_app_core->SetReg(1, (u32)param_1);
FuncReturn(retval); FuncReturn(retval);
} }
// TODO(bunnei): Is this correct? Probably not - Last parameter looks wrong for ArbitrateAddress template<ResultCode func(u32, u32, u32, u32, s64)> void Wrap() {
template<s32 func(u32, u32, u32, u32, s64)> void Wrap() { FuncReturn(func(PARAM(0), PARAM(1), PARAM(2), PARAM(3), (((s64)PARAM(5) << 32) | PARAM(4))).raw);
FuncReturn(func(PARAM(0), PARAM(1), PARAM(2), PARAM(3), (((s64)PARAM(5) << 32) | PARAM(4))));
} }
template<s32 func(u32*)> void Wrap(){ template<ResultCode func(u32*)> void Wrap(){
u32 param_1 = 0; u32 param_1 = 0;
u32 retval = func(&param_1); u32 retval = func(&param_1).raw;
Core::g_app_core->SetReg(1, param_1); Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval); FuncReturn(retval);
} }
template<s32 func(u32, s64)> void Wrap() { template<ResultCode func(u32, s64)> void Wrap() {
FuncReturn(func(PARAM(0), (((s64)PARAM(3) << 32) | PARAM(2)))); FuncReturn(func(PARAM(0), (((s64)PARAM(3) << 32) | PARAM(2))).raw);
} }
template<s32 func(void*, void*, u32)> void Wrap(){ template<ResultCode func(void*, void*, u32)> void Wrap(){
FuncReturn(func(Memory::GetPointer(PARAM(0)), Memory::GetPointer(PARAM(1)), PARAM(2))); FuncReturn(func(Memory::GetPointer(PARAM(0)), Memory::GetPointer(PARAM(1)), PARAM(2)).raw);
} }
template<s32 func(s32*, u32)> void Wrap(){ template<ResultCode func(s32*, u32)> void Wrap(){
s32 param_1 = 0; s32 param_1 = 0;
u32 retval = func(&param_1, PARAM(1)); u32 retval = func(&param_1, PARAM(1)).raw;
Core::g_app_core->SetReg(1, param_1); Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval); FuncReturn(retval);
} }
template<s32 func(u32, s32)> void Wrap() { template<ResultCode func(u32, s32)> void Wrap() {
FuncReturn(func(PARAM(0), (s32)PARAM(1))); FuncReturn(func(PARAM(0), (s32)PARAM(1)).raw);
} }
template<s32 func(u32*, u32)> void Wrap(){ template<ResultCode func(u32*, u32)> void Wrap(){
u32 param_1 = 0; u32 param_1 = 0;
u32 retval = func(&param_1, PARAM(1)); u32 retval = func(&param_1, PARAM(1)).raw;
Core::g_app_core->SetReg(1, param_1); Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval); FuncReturn(retval);
} }
template<s32 func(u32)> void Wrap() { template<ResultCode func(u32)> void Wrap() {
FuncReturn(func(PARAM(0))); FuncReturn(func(PARAM(0)).raw);
} }
template<s32 func(void*)> void Wrap() { template<ResultCode func(s64*, u32, void*, s32)> void Wrap(){
FuncReturn(func(Memory::GetPointer(PARAM(0))));
}
template<s32 func(s64*, u32, void*, s32)> void Wrap(){
FuncReturn(func((s64*)Memory::GetPointer(PARAM(0)), PARAM(1), Memory::GetPointer(PARAM(2)), FuncReturn(func((s64*)Memory::GetPointer(PARAM(0)), PARAM(1), Memory::GetPointer(PARAM(2)),
(s32)PARAM(3))); (s32)PARAM(3)).raw);
} }
template<s32 func(u32*, const char*)> void Wrap() { template<ResultCode func(u32*, const char*)> void Wrap() {
u32 param_1 = 0; u32 param_1 = 0;
u32 retval = func(&param_1, Memory::GetCharPointer(PARAM(1))); u32 retval = func(&param_1, Memory::GetCharPointer(PARAM(1))).raw;
Core::g_app_core->SetReg(1, param_1); Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval); FuncReturn(retval);
} }
template<s32 func(u32*, s32, s32)> void Wrap() { template<ResultCode func(u32*, s32, s32)> void Wrap() {
u32 param_1 = 0; u32 param_1 = 0;
u32 retval = func(&param_1, PARAM(1), PARAM(2)); u32 retval = func(&param_1, PARAM(1), PARAM(2)).raw;
Core::g_app_core->SetReg(1, param_1); Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval); FuncReturn(retval);
} }
template<s32 func(s32*, u32, s32)> void Wrap() { template<ResultCode func(s32*, u32, s32)> void Wrap() {
s32 param_1 = 0; s32 param_1 = 0;
u32 retval = func(&param_1, PARAM(1), PARAM(2)); u32 retval = func(&param_1, PARAM(1), PARAM(2)).raw;
Core::g_app_core->SetReg(1, param_1); Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval); FuncReturn(retval);
} }
template<s32 func(u32*, u32, u32, u32, u32)> void Wrap() { template<ResultCode func(u32*, u32, u32, u32, u32)> void Wrap() {
u32 param_1 = 0; u32 param_1 = 0;
u32 retval = func(&param_1, PARAM(1), PARAM(2), PARAM(3), PARAM(4)); u32 retval = func(&param_1, PARAM(1), PARAM(2), PARAM(3), PARAM(4)).raw;
Core::g_app_core->SetReg(1, param_1); Core::g_app_core->SetReg(1, param_1);
FuncReturn(retval); FuncReturn(retval);
} }
template<s32 func(u32, s64, s64)> void Wrap() { template<ResultCode func(u32, s64, s64)> void Wrap() {
s64 param1 = ((u64)PARAM(3) << 32) | PARAM(2); s64 param1 = ((u64)PARAM(3) << 32) | PARAM(2);
s64 param2 = ((u64)PARAM(4) << 32) | PARAM(1); s64 param2 = ((u64)PARAM(4) << 32) | PARAM(1);
FuncReturn(func(PARAM(0), param1, param2)); FuncReturn(func(PARAM(0), param1, param2).raw);
} }
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -15,26 +15,18 @@
namespace Kernel { namespace Kernel {
class AddressArbiter : public Object { ResultVal<SharedPtr<AddressArbiter>> AddressArbiter::Create(std::string name) {
public: SharedPtr<AddressArbiter> address_arbiter(new AddressArbiter);
std::string GetTypeName() const override { return "Arbiter"; } // TOOD(yuriks): Don't create Handle (see Thread::Create())
std::string GetName() const override { return name; } CASCADE_RESULT(auto unused, Kernel::g_handle_table.Create(address_arbiter));
static const HandleType HANDLE_TYPE = HandleType::AddressArbiter; address_arbiter->name = std::move(name);
HandleType GetHandleType() const override { return HANDLE_TYPE; }
std::string name; ///< Name of address arbiter object (optional) return MakeResult<SharedPtr<AddressArbiter>>(std::move(address_arbiter));
}; }
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Arbitrate an address
ResultCode ArbitrateAddress(Handle handle, ArbitrationType type, u32 address, s32 value, u64 nanoseconds) {
AddressArbiter* object = Kernel::g_handle_table.Get<AddressArbiter>(handle).get();
if (object == nullptr)
return InvalidHandle(ErrorModule::Kernel);
ResultCode AddressArbiter::ArbitrateAddress(ArbitrationType type, VAddr address, s32 value,
u64 nanoseconds) {
switch (type) { switch (type) {
// Signal thread(s) waiting for arbitrate address... // Signal thread(s) waiting for arbitrate address...
@ -92,20 +84,4 @@ ResultCode ArbitrateAddress(Handle handle, ArbitrationType type, u32 address, s3
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
/// Create an address arbiter
AddressArbiter* CreateAddressArbiter(Handle& handle, const std::string& name) {
AddressArbiter* address_arbiter = new AddressArbiter;
// TOOD(yuriks): Fix error reporting
handle = Kernel::g_handle_table.Create(address_arbiter).ValueOr(INVALID_HANDLE);
address_arbiter->name = name;
return address_arbiter;
}
/// Create an address arbiter
Handle CreateAddressArbiter(const std::string& name) {
Handle handle;
CreateAddressArbiter(handle, name);
return handle;
}
} // namespace Kernel } // namespace Kernel

View File

@ -18,7 +18,6 @@
namespace Kernel { namespace Kernel {
/// Address arbitration types
enum class ArbitrationType : u32 { enum class ArbitrationType : u32 {
Signal, Signal,
WaitIfLessThan, WaitIfLessThan,
@ -27,10 +26,28 @@ enum class ArbitrationType : u32 {
DecrementAndWaitIfLessThanWithTimeout, DecrementAndWaitIfLessThanWithTimeout,
}; };
/// Arbitrate an address class AddressArbiter final : public Object {
ResultCode ArbitrateAddress(Handle handle, ArbitrationType type, u32 address, s32 value, u64 nanoseconds); public:
/**
* Creates an address arbiter.
*
* @param name Optional name used for debugging.
* @returns The created AddressArbiter.
*/
static ResultVal<SharedPtr<AddressArbiter>> Create(std::string name = "Unknown");
/// Create an address arbiter std::string GetTypeName() const override { return "Arbiter"; }
Handle CreateAddressArbiter(const std::string& name = "Unknown"); std::string GetName() const override { return name; }
static const HandleType HANDLE_TYPE = HandleType::AddressArbiter;
HandleType GetHandleType() const override { return HANDLE_TYPE; }
std::string name; ///< Name of address arbiter object (optional)
ResultCode ArbitrateAddress(ArbitrationType type, VAddr address, s32 value, u64 nanoseconds);
private:
AddressArbiter() = default;
};
} // namespace FileSys } // namespace FileSys

View File

@ -14,78 +14,37 @@
namespace Kernel { namespace Kernel {
class Event : public WaitObject { ResultVal<SharedPtr<Event>> Event::Create(ResetType reset_type, std::string name) {
public: SharedPtr<Event> evt(new Event);
std::string GetTypeName() const override { return "Event"; } // TOOD(yuriks): Don't create Handle (see Thread::Create())
std::string GetName() const override { return name; } CASCADE_RESULT(auto unused, Kernel::g_handle_table.Create(evt));
static const HandleType HANDLE_TYPE = HandleType::Event;
HandleType GetHandleType() const override { return HANDLE_TYPE; }
ResetType intitial_reset_type; ///< ResetType specified at Event initialization
ResetType reset_type; ///< Current ResetType
bool signaled; ///< Whether the event has already been signaled
std::string name; ///< Name of event (optional)
bool ShouldWait() override {
return !signaled;
}
void Acquire() override {
_assert_msg_(Kernel, !ShouldWait(), "object unavailable!");
// Release the event if it's not sticky...
if (reset_type != RESETTYPE_STICKY)
signaled = false;
}
};
ResultCode SignalEvent(const Handle handle) {
Event* evt = g_handle_table.Get<Event>(handle).get();
if (evt == nullptr)
return InvalidHandle(ErrorModule::Kernel);
evt->signaled = true;
evt->WakeupAllWaitingThreads();
return RESULT_SUCCESS;
}
ResultCode ClearEvent(Handle handle) {
Event* evt = g_handle_table.Get<Event>(handle).get();
if (evt == nullptr)
return InvalidHandle(ErrorModule::Kernel);
evt->signaled = false;
return RESULT_SUCCESS;
}
/**
* Creates an event
* @param handle Reference to handle for the newly created mutex
* @param reset_type ResetType describing how to create event
* @param name Optional name of event
* @return Newly created Event object
*/
Event* CreateEvent(Handle& handle, const ResetType reset_type, const std::string& name) {
Event* evt = new Event;
// TOOD(yuriks): Fix error reporting
handle = Kernel::g_handle_table.Create(evt).ValueOr(INVALID_HANDLE);
evt->signaled = false; evt->signaled = false;
evt->reset_type = evt->intitial_reset_type = reset_type; evt->reset_type = evt->intitial_reset_type = reset_type;
evt->name = name; evt->name = std::move(name);
return evt; return MakeResult<SharedPtr<Event>>(evt);
} }
Handle CreateEvent(const ResetType reset_type, const std::string& name) { bool Event::ShouldWait() {
Handle handle; return !signaled;
Event* evt = CreateEvent(handle, reset_type, name); }
return handle;
void Event::Acquire() {
_assert_msg_(Kernel, !ShouldWait(), "object unavailable!");
// Release the event if it's not sticky...
if (reset_type != RESETTYPE_STICKY)
signaled = false;
}
void Event::Signal() {
signaled = true;
WakeupAllWaitingThreads();
}
void Event::Clear() {
signaled = false;
} }
} // namespace } // namespace

View File

@ -11,26 +11,35 @@
namespace Kernel { namespace Kernel {
/** class Event final : public WaitObject {
* Signals an event public:
* @param handle Handle to event to signal /**
* @return Result of operation, 0 on success, otherwise error code * Creates an event
*/ * @param reset_type ResetType describing how to create event
ResultCode SignalEvent(const Handle handle); * @param name Optional name of event
*/
static ResultVal<SharedPtr<Event>> Create(ResetType reset_type, std::string name = "Unknown");
/** std::string GetTypeName() const override { return "Event"; }
* Clears an event std::string GetName() const override { return name; }
* @param handle Handle to event to clear
* @return Result of operation, 0 on success, otherwise error code
*/
ResultCode ClearEvent(Handle handle);
/** static const HandleType HANDLE_TYPE = HandleType::Event;
* Creates an event HandleType GetHandleType() const override { return HANDLE_TYPE; }
* @param reset_type ResetType describing how to create event
* @param name Optional name of event ResetType intitial_reset_type; ///< ResetType specified at Event initialization
* @return Handle to newly created Event object ResetType reset_type; ///< Current ResetType
*/
Handle CreateEvent(const ResetType reset_type, const std::string& name="Unknown"); bool signaled; ///< Whether the event has already been signaled
std::string name; ///< Name of event (optional)
bool ShouldWait() override;
void Acquire() override;
void Signal();
void Clear();
private:
Event() = default;
};
} // namespace } // namespace

View File

@ -16,6 +16,11 @@
typedef u32 Handle; typedef u32 Handle;
typedef s32 Result; typedef s32 Result;
// TODO: It would be nice to eventually replace these with strong types that prevent accidental
// conversion between each other.
typedef u32 VAddr; ///< Represents a pointer in the userspace virtual address space.
typedef u32 PAddr; ///< Represents a pointer in the ARM11 physical address space.
const Handle INVALID_HANDLE = 0; const Handle INVALID_HANDLE = 0;
namespace Kernel { namespace Kernel {
@ -26,7 +31,8 @@ class Thread;
const ResultCode ERR_OUT_OF_HANDLES(ErrorDescription::OutOfMemory, ErrorModule::Kernel, const ResultCode ERR_OUT_OF_HANDLES(ErrorDescription::OutOfMemory, ErrorModule::Kernel,
ErrorSummary::OutOfResource, ErrorLevel::Temporary); ErrorSummary::OutOfResource, ErrorLevel::Temporary);
// TOOD: Verify code // TOOD: Verify code
const ResultCode ERR_INVALID_HANDLE = InvalidHandle(ErrorModule::Kernel); const ResultCode ERR_INVALID_HANDLE(ErrorDescription::InvalidHandle, ErrorModule::Kernel,
ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
enum KernelHandle : Handle { enum KernelHandle : Handle {
CurrentThread = 0xFFFF8000, CurrentThread = 0xFFFF8000,

View File

@ -13,59 +13,30 @@
namespace Kernel { namespace Kernel {
class Mutex : public WaitObject {
public:
std::string GetTypeName() const override { return "Mutex"; }
std::string GetName() const override { return name; }
static const HandleType HANDLE_TYPE = HandleType::Mutex;
HandleType GetHandleType() const override { return HANDLE_TYPE; }
bool initial_locked; ///< Initial lock state when mutex was created
bool locked; ///< Current locked state
std::string name; ///< Name of mutex (optional)
SharedPtr<Thread> holding_thread; ///< Thread that has acquired the mutex
bool ShouldWait() override;
void Acquire() override;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
typedef std::multimap<SharedPtr<Thread>, SharedPtr<Mutex>> MutexMap; typedef std::multimap<SharedPtr<Thread>, SharedPtr<Mutex>> MutexMap;
static MutexMap g_mutex_held_locks; static MutexMap g_mutex_held_locks;
/**
* Acquires the specified mutex for the specified thread
* @param mutex Mutex that is to be acquired
* @param thread Thread that will acquire the mutex
*/
void MutexAcquireLock(Mutex* mutex, Thread* thread) {
g_mutex_held_locks.insert(std::make_pair(thread, mutex));
mutex->holding_thread = thread;
}
/** /**
* Resumes a thread waiting for the specified mutex * Resumes a thread waiting for the specified mutex
* @param mutex The mutex that some thread is waiting on * @param mutex The mutex that some thread is waiting on
*/ */
void ResumeWaitingThread(Mutex* mutex) { static void ResumeWaitingThread(Mutex* mutex) {
// Reset mutex lock thread handle, nothing is waiting
mutex->locked = false;
mutex->holding_thread = nullptr;
// Find the next waiting thread for the mutex... // Find the next waiting thread for the mutex...
auto next_thread = mutex->WakeupNextThread(); auto next_thread = mutex->WakeupNextThread();
if (next_thread != nullptr) { if (next_thread != nullptr) {
MutexAcquireLock(mutex, next_thread); mutex->Acquire(next_thread);
} else {
// Reset mutex lock thread handle, nothing is waiting
mutex->locked = false;
mutex->holding_thread = nullptr;
} }
} }
void ReleaseThreadMutexes(Thread* thread) { void ReleaseThreadMutexes(Thread* thread) {
auto locked = g_mutex_held_locks.equal_range(thread); auto locked_range = g_mutex_held_locks.equal_range(thread);
// Release every mutex that the thread holds, and resume execution on the waiting threads // Release every mutex that the thread holds, and resume execution on the waiting threads
for (auto iter = locked.first; iter != locked.second; ++iter) { for (auto iter = locked_range.first; iter != locked_range.second; ++iter) {
ResumeWaitingThread(iter->second.get()); ResumeWaitingThread(iter->second.get());
} }
@ -73,72 +44,21 @@ void ReleaseThreadMutexes(Thread* thread) {
g_mutex_held_locks.erase(thread); g_mutex_held_locks.erase(thread);
} }
bool ReleaseMutex(Mutex* mutex) { ResultVal<SharedPtr<Mutex>> Mutex::Create(bool initial_locked, std::string name) {
if (mutex->locked) { SharedPtr<Mutex> mutex(new Mutex);
auto locked = g_mutex_held_locks.equal_range(mutex->holding_thread); // TOOD(yuriks): Don't create Handle (see Thread::Create())
CASCADE_RESULT(auto unused, Kernel::g_handle_table.Create(mutex));
for (MutexMap::iterator iter = locked.first; iter != locked.second; ++iter) { mutex->initial_locked = initial_locked;
if (iter->second == mutex) { mutex->locked = false;
g_mutex_held_locks.erase(iter); mutex->name = std::move(name);
break;
}
}
ResumeWaitingThread(mutex);
}
return true;
}
/**
* Releases a mutex
* @param handle Handle to mutex to release
*/
ResultCode ReleaseMutex(Handle handle) {
Mutex* mutex = Kernel::g_handle_table.Get<Mutex>(handle).get();
if (mutex == nullptr) return InvalidHandle(ErrorModule::Kernel);
if (!ReleaseMutex(mutex)) {
// TODO(yuriks): Verify error code, this one was pulled out of thin air. I'm not even sure
// what error condition this is supposed to be signaling.
return ResultCode(ErrorDescription::AlreadyDone, ErrorModule::Kernel,
ErrorSummary::NothingHappened, ErrorLevel::Temporary);
}
return RESULT_SUCCESS;
}
/**
* Creates a mutex
* @param handle Reference to handle for the newly created mutex
* @param initial_locked Specifies if the mutex should be locked initially
* @param name Optional name of mutex
* @return Pointer to new Mutex object
*/
Mutex* CreateMutex(Handle& handle, bool initial_locked, const std::string& name) {
Mutex* mutex = new Mutex;
// TODO(yuriks): Fix error reporting
handle = Kernel::g_handle_table.Create(mutex).ValueOr(INVALID_HANDLE);
mutex->locked = mutex->initial_locked = initial_locked;
mutex->name = name;
mutex->holding_thread = nullptr; mutex->holding_thread = nullptr;
// Acquire mutex with current thread if initialized as locked... // Acquire mutex with current thread if initialized as locked...
if (mutex->locked) if (initial_locked)
MutexAcquireLock(mutex, GetCurrentThread()); mutex->Acquire();
return mutex; return MakeResult<SharedPtr<Mutex>>(mutex);
}
/**
* Creates a mutex
* @param initial_locked Specifies if the mutex should be locked initially
* @param name Optional name of mutex
* @return Handle to newly created object
*/
Handle CreateMutex(bool initial_locked, const std::string& name) {
Handle handle;
Mutex* mutex = CreateMutex(handle, initial_locked, name);
return handle;
} }
bool Mutex::ShouldWait() { bool Mutex::ShouldWait() {
@ -146,9 +66,34 @@ bool Mutex::ShouldWait() {
} }
void Mutex::Acquire() { void Mutex::Acquire() {
Acquire(GetCurrentThread());
}
void Mutex::Acquire(Thread* thread) {
_assert_msg_(Kernel, !ShouldWait(), "object unavailable!"); _assert_msg_(Kernel, !ShouldWait(), "object unavailable!");
if (locked)
return;
locked = true; locked = true;
MutexAcquireLock(this, GetCurrentThread());
g_mutex_held_locks.insert(std::make_pair(thread, this));
holding_thread = thread;
}
void Mutex::Release() {
if (!locked)
return;
auto locked_range = g_mutex_held_locks.equal_range(holding_thread);
for (MutexMap::iterator iter = locked_range.first; iter != locked_range.second; ++iter) {
if (iter->second == this) {
g_mutex_held_locks.erase(iter);
break;
}
}
ResumeWaitingThread(this);
} }
} // namespace } // namespace

View File

@ -4,25 +4,51 @@
#pragma once #pragma once
#include <string>
#include "common/common_types.h" #include "common/common_types.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
namespace Kernel { namespace Kernel {
/** class Thread;
* Releases a mutex
* @param handle Handle to mutex to release
*/
ResultCode ReleaseMutex(Handle handle);
/** class Mutex final : public WaitObject {
* Creates a mutex public:
* @param initial_locked Specifies if the mutex should be locked initially /**
* @param name Optional name of mutex * Creates a mutex.
* @return Handle to newly created object * @param initial_locked Specifies if the mutex should be locked initially
*/ * @param name Optional name of mutex
Handle CreateMutex(bool initial_locked, const std::string& name="Unknown"); * @return Pointer to new Mutex object
*/
static ResultVal<SharedPtr<Mutex>> Create(bool initial_locked, std::string name = "Unknown");
std::string GetTypeName() const override { return "Mutex"; }
std::string GetName() const override { return name; }
static const HandleType HANDLE_TYPE = HandleType::Mutex;
HandleType GetHandleType() const override { return HANDLE_TYPE; }
bool initial_locked; ///< Initial lock state when mutex was created
bool locked; ///< Current locked state
std::string name; ///< Name of mutex (optional)
SharedPtr<Thread> holding_thread; ///< Thread that has acquired the mutex
bool ShouldWait() override;
void Acquire() override;
/**
* Acquires the specified mutex for the specified thread
* @param mutex Mutex that is to be acquired
* @param thread Thread that will acquire the mutex
*/
void Acquire(Thread* thread);
void Release();
private:
Mutex() = default;
};
/** /**
* Releases all the mutexes held by the specified thread * Releases all the mutexes held by the specified thread

View File

@ -2,8 +2,6 @@
// Licensed under GPLv2 or any later version // Licensed under GPLv2 or any later version
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <queue>
#include "common/common.h" #include "common/common.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
@ -12,69 +10,50 @@
namespace Kernel { namespace Kernel {
class Semaphore : public WaitObject { ResultVal<SharedPtr<Semaphore>> Semaphore::Create(s32 initial_count, s32 max_count,
public: std::string name) {
std::string GetTypeName() const override { return "Semaphore"; }
std::string GetName() const override { return name; }
static const HandleType HANDLE_TYPE = HandleType::Semaphore;
HandleType GetHandleType() const override { return HANDLE_TYPE; }
s32 max_count; ///< Maximum number of simultaneous holders the semaphore can have
s32 available_count; ///< Number of free slots left in the semaphore
std::string name; ///< Name of semaphore (optional)
bool ShouldWait() override {
return available_count <= 0;
}
void Acquire() override {
_assert_msg_(Kernel, !ShouldWait(), "object unavailable!");
--available_count;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
ResultCode CreateSemaphore(Handle* handle, s32 initial_count,
s32 max_count, const std::string& name) {
if (initial_count > max_count) if (initial_count > max_count)
return ResultCode(ErrorDescription::InvalidCombination, ErrorModule::Kernel, return ResultCode(ErrorDescription::InvalidCombination, ErrorModule::Kernel,
ErrorSummary::WrongArgument, ErrorLevel::Permanent); ErrorSummary::WrongArgument, ErrorLevel::Permanent);
Semaphore* semaphore = new Semaphore; SharedPtr<Semaphore> semaphore(new Semaphore);
// TOOD(yuriks): Fix error reporting // TOOD(yuriks): Don't create Handle (see Thread::Create())
*handle = g_handle_table.Create(semaphore).ValueOr(INVALID_HANDLE); CASCADE_RESULT(auto unused, Kernel::g_handle_table.Create(semaphore));
// When the semaphore is created, some slots are reserved for other threads, // When the semaphore is created, some slots are reserved for other threads,
// and the rest is reserved for the caller thread // and the rest is reserved for the caller thread
semaphore->max_count = max_count; semaphore->max_count = max_count;
semaphore->available_count = initial_count; semaphore->available_count = initial_count;
semaphore->name = name; semaphore->name = std::move(name);
return RESULT_SUCCESS; return MakeResult<SharedPtr<Semaphore>>(std::move(semaphore));
} }
ResultCode ReleaseSemaphore(s32* count, Handle handle, s32 release_count) { bool Semaphore::ShouldWait() {
Semaphore* semaphore = g_handle_table.Get<Semaphore>(handle).get(); return available_count <= 0;
if (semaphore == nullptr) }
return InvalidHandle(ErrorModule::Kernel);
if (semaphore->max_count - semaphore->available_count < release_count) void Semaphore::Acquire() {
_assert_msg_(Kernel, !ShouldWait(), "object unavailable!");
--available_count;
}
ResultVal<s32> Semaphore::Release(s32 release_count) {
if (max_count - available_count < release_count)
return ResultCode(ErrorDescription::OutOfRange, ErrorModule::Kernel, return ResultCode(ErrorDescription::OutOfRange, ErrorModule::Kernel,
ErrorSummary::InvalidArgument, ErrorLevel::Permanent); ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
*count = semaphore->available_count; s32 previous_count = available_count;
semaphore->available_count += release_count; available_count += release_count;
// Notify some of the threads that the semaphore has been released // Notify some of the threads that the semaphore has been released
// stop once the semaphore is full again or there are no more waiting threads // stop once the semaphore is full again or there are no more waiting threads
while (!semaphore->ShouldWait() && semaphore->WakeupNextThread() != nullptr) { while (!ShouldWait() && WakeupNextThread() != nullptr) {
semaphore->Acquire(); Acquire();
} }
return RESULT_SUCCESS; return MakeResult<s32>(previous_count);
} }
} // namespace } // namespace

View File

@ -4,29 +4,50 @@
#pragma once #pragma once
#include <queue>
#include <string>
#include "common/common_types.h" #include "common/common_types.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
namespace Kernel { namespace Kernel {
/** class Semaphore final : public WaitObject {
* Creates a semaphore. public:
* @param handle Pointer to the handle of the newly created object /**
* @param initial_count Number of slots reserved for other threads * Creates a semaphore.
* @param max_count Maximum number of slots the semaphore can have * @param handle Pointer to the handle of the newly created object
* @param name Optional name of semaphore * @param initial_count Number of slots reserved for other threads
* @return ResultCode of the error * @param max_count Maximum number of slots the semaphore can have
*/ * @param name Optional name of semaphore
ResultCode CreateSemaphore(Handle* handle, s32 initial_count, s32 max_count, const std::string& name = "Unknown"); * @return The created semaphore
*/
static ResultVal<SharedPtr<Semaphore>> Create(s32 initial_count, s32 max_count,
std::string name = "Unknown");
/** std::string GetTypeName() const override { return "Semaphore"; }
* Releases a certain number of slots from a semaphore. std::string GetName() const override { return name; }
* @param count The number of free slots the semaphore had before this call
* @param handle The handle of the semaphore to release static const HandleType HANDLE_TYPE = HandleType::Semaphore;
* @param release_count The number of slots to release HandleType GetHandleType() const override { return HANDLE_TYPE; }
* @return ResultCode of the error
*/ s32 max_count; ///< Maximum number of simultaneous holders the semaphore can have
ResultCode ReleaseSemaphore(s32* count, Handle handle, s32 release_count); s32 available_count; ///< Number of free slots left in the semaphore
std::string name; ///< Name of semaphore (optional)
bool ShouldWait() override;
void Acquire() override;
/**
* Releases a certain number of slots from a semaphore.
* @param release_count The number of slots to release
* @return The number of free slots the semaphore had before this call
*/
ResultVal<s32> Release(s32 release_count);
private:
Semaphore() = default;
};
} // namespace } // namespace

View File

@ -9,76 +9,39 @@
namespace Kernel { namespace Kernel {
class SharedMemory : public Object { ResultVal<SharedPtr<SharedMemory>> SharedMemory::Create(std::string name) {
public: SharedPtr<SharedMemory> shared_memory(new SharedMemory);
std::string GetTypeName() const override { return "SharedMemory"; }
static const HandleType HANDLE_TYPE = HandleType::SharedMemory; // TOOD(yuriks): Don't create Handle (see Thread::Create())
HandleType GetHandleType() const override { return HANDLE_TYPE; } CASCADE_RESULT(auto unused, Kernel::g_handle_table.Create(shared_memory));
u32 base_address; ///< Address of shared memory block in RAM shared_memory->name = std::move(name);
MemoryPermission permissions; ///< Permissions of shared memory block (SVC field) return MakeResult<SharedPtr<SharedMemory>>(std::move(shared_memory));
MemoryPermission other_permissions; ///< Other permissions of shared memory block (SVC field)
std::string name; ///< Name of shared memory object (optional)
};
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Creates a shared memory object
* @param handle Handle of newly created shared memory object
* @param name Name of shared memory object
* @return Pointer to newly created shared memory object
*/
SharedMemory* CreateSharedMemory(Handle& handle, const std::string& name) {
SharedMemory* shared_memory = new SharedMemory;
// TOOD(yuriks): Fix error reporting
handle = Kernel::g_handle_table.Create(shared_memory).ValueOr(INVALID_HANDLE);
shared_memory->name = name;
return shared_memory;
} }
Handle CreateSharedMemory(const std::string& name) { ResultCode SharedMemory::Map(VAddr address, MemoryPermission permissions,
Handle handle; MemoryPermission other_permissions) {
CreateSharedMemory(handle, name);
return handle;
}
/**
* Maps a shared memory block to an address in system memory
* @param handle Shared memory block handle
* @param address Address in system memory to map shared memory block to
* @param permissions Memory block map permissions (specified by SVC field)
* @param other_permissions Memory block map other permissions (specified by SVC field)
* @return Result of operation, 0 on success, otherwise error code
*/
ResultCode MapSharedMemory(u32 handle, u32 address, MemoryPermission permissions,
MemoryPermission other_permissions) {
if (address < Memory::SHARED_MEMORY_VADDR || address >= Memory::SHARED_MEMORY_VADDR_END) { if (address < Memory::SHARED_MEMORY_VADDR || address >= Memory::SHARED_MEMORY_VADDR_END) {
LOG_ERROR(Kernel_SVC, "cannot map handle=0x%08X, address=0x%08X outside of shared mem bounds!", LOG_ERROR(Kernel, "cannot map handle=0x%08X, address=0x%08X outside of shared mem bounds!",
handle, address); GetHandle(), address);
// TODO: Verify error code with hardware
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::Kernel, return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::Kernel,
ErrorSummary::InvalidArgument, ErrorLevel::Permanent); ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
} }
SharedMemory* shared_memory = Kernel::g_handle_table.Get<SharedMemory>(handle).get();
if (shared_memory == nullptr) return InvalidHandle(ErrorModule::Kernel);
shared_memory->base_address = address; base_address = address;
shared_memory->permissions = permissions; permissions = permissions;
shared_memory->other_permissions = other_permissions; other_permissions = other_permissions;
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
ResultVal<u8*> GetSharedMemoryPointer(Handle handle, u32 offset) { ResultVal<u8*> SharedMemory::GetPointer(u32 offset) {
SharedMemory* shared_memory = Kernel::g_handle_table.Get<SharedMemory>(handle).get(); if (base_address != 0)
if (shared_memory == nullptr) return InvalidHandle(ErrorModule::Kernel); return MakeResult<u8*>(Memory::GetPointer(base_address + offset));
if (0 != shared_memory->base_address) LOG_ERROR(Kernel_SVC, "memory block handle=0x%08X not mapped!", GetHandle());
return MakeResult<u8*>(Memory::GetPointer(shared_memory->base_address + offset));
LOG_ERROR(Kernel_SVC, "memory block handle=0x%08X not mapped!", handle);
// TODO(yuriks): Verify error code. // TODO(yuriks): Verify error code.
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::Kernel, return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::Kernel,
ErrorSummary::InvalidState, ErrorLevel::Permanent); ErrorSummary::InvalidState, ErrorLevel::Permanent);

View File

@ -23,29 +23,41 @@ enum class MemoryPermission : u32 {
DontCare = (1u << 28) DontCare = (1u << 28)
}; };
/** class SharedMemory final : public Object {
* Creates a shared memory object public:
* @param name Optional name of shared memory object /**
* @return Handle of newly created shared memory object * Creates a shared memory object
*/ * @param name Optional object name, used only for debugging purposes.
Handle CreateSharedMemory(const std::string& name="Unknown"); */
static ResultVal<SharedPtr<SharedMemory>> Create(std::string name = "Unknown");
/** std::string GetTypeName() const override { return "SharedMemory"; }
* Maps a shared memory block to an address in system memory
* @param handle Shared memory block handle
* @param address Address in system memory to map shared memory block to
* @param permissions Memory block map permissions (specified by SVC field)
* @param other_permissions Memory block map other permissions (specified by SVC field)
*/
ResultCode MapSharedMemory(Handle handle, u32 address, MemoryPermission permissions,
MemoryPermission other_permissions);
/** static const HandleType HANDLE_TYPE = HandleType::SharedMemory;
* Gets a pointer to the shared memory block HandleType GetHandleType() const override { return HANDLE_TYPE; }
* @param handle Shared memory block handle
* @param offset Offset from the start of the shared memory block to get pointer /**
* @return Pointer to the shared memory block from the specified offset * Maps a shared memory block to an address in system memory
*/ * @param address Address in system memory to map shared memory block to
ResultVal<u8*> GetSharedMemoryPointer(Handle handle, u32 offset); * @param permissions Memory block map permissions (specified by SVC field)
* @param other_permissions Memory block map other permissions (specified by SVC field)
*/
ResultCode Map(VAddr address, MemoryPermission permissions, MemoryPermission other_permissions);
/**
* Gets a pointer to the shared memory block
* @param offset Offset from the start of the shared memory block to get pointer
* @return Pointer to the shared memory block from the specified offset
*/
ResultVal<u8*> GetPointer(u32 offset = 0);
VAddr base_address; ///< Address of shared memory block in RAM
MemoryPermission permissions; ///< Permissions of shared memory block (SVC field)
MemoryPermission other_permissions; ///< Other permissions of shared memory block (SVC field)
std::string name; ///< Name of shared memory object (optional)
private:
SharedMemory() = default;
};
} // namespace } // namespace

View File

@ -40,7 +40,7 @@ enum ThreadStatus {
namespace Kernel { namespace Kernel {
class Thread : public WaitObject { class Thread final : public WaitObject {
public: public:
static ResultVal<SharedPtr<Thread>> Create(std::string name, VAddr entry_point, s32 priority, static ResultVal<SharedPtr<Thread>> Create(std::string name, VAddr entry_point, s32 priority,
u32 arg, s32 processor_id, VAddr stack_top, u32 stack_size); u32 arg, s32 processor_id, VAddr stack_top, u32 stack_size);
@ -115,7 +115,6 @@ public:
bool idle = false; bool idle = false;
private: private:
Thread() = default; Thread() = default;
}; };

View File

@ -13,75 +13,54 @@
namespace Kernel { namespace Kernel {
class Timer : public WaitObject { /// The event type of the generic timer callback event
public: static int timer_callback_event_type = -1;
std::string GetTypeName() const override { return "Timer"; }
std::string GetName() const override { return name; }
static const HandleType HANDLE_TYPE = HandleType::Timer; ResultVal<SharedPtr<Timer>> Timer::Create(ResetType reset_type, std::string name) {
HandleType GetHandleType() const override { return HANDLE_TYPE; } SharedPtr<Timer> timer(new Timer);
// TOOD(yuriks): Don't create Handle (see Thread::Create())
ResetType reset_type; ///< The ResetType of this timer CASCADE_RESULT(auto unused, Kernel::g_handle_table.Create(timer));
bool signaled; ///< Whether the timer has been signaled or not
std::string name; ///< Name of timer (optional)
u64 initial_delay; ///< The delay until the timer fires for the first time
u64 interval_delay; ///< The delay until the timer fires after the first time
bool ShouldWait() override {
return !signaled;
}
void Acquire() override {
_assert_msg_(Kernel, !ShouldWait(), "object unavailable!");
}
};
/**
* Creates a timer.
* @param handle Reference to handle for the newly created timer
* @param reset_type ResetType describing how to create timer
* @param name Optional name of timer
* @return Newly created Timer object
*/
Timer* CreateTimer(Handle& handle, const ResetType reset_type, const std::string& name) {
Timer* timer = new Timer;
handle = Kernel::g_handle_table.Create(timer).ValueOr(INVALID_HANDLE);
timer->reset_type = reset_type; timer->reset_type = reset_type;
timer->signaled = false; timer->signaled = false;
timer->name = name; timer->name = std::move(name);
timer->initial_delay = 0; timer->initial_delay = 0;
timer->interval_delay = 0; timer->interval_delay = 0;
return timer; return MakeResult<SharedPtr<Timer>>(timer);
} }
ResultCode CreateTimer(Handle* handle, const ResetType reset_type, const std::string& name) { bool Timer::ShouldWait() {
CreateTimer(*handle, reset_type, name); return !signaled;
return RESULT_SUCCESS;
} }
ResultCode ClearTimer(Handle handle) { void Timer::Acquire() {
SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(handle); _assert_msg_(Kernel, !ShouldWait(), "object unavailable!");
if (timer == nullptr)
return InvalidHandle(ErrorModule::Kernel);
timer->signaled = false;
return RESULT_SUCCESS;
} }
/// The event type of the generic timer callback event void Timer::Set(s64 initial, s64 interval) {
static int TimerCallbackEventType = -1; initial_delay = initial;
interval_delay = interval;
u64 initial_microseconds = initial / 1000;
// TODO(yuriks): Figure out a replacement for GetHandle here
CoreTiming::ScheduleEvent(usToCycles(initial_microseconds), timer_callback_event_type,
GetHandle());
}
void Timer::Cancel() {
CoreTiming::UnscheduleEvent(timer_callback_event_type, GetHandle());
}
void Timer::Clear() {
signaled = false;
}
/// The timer callback event, called when a timer is fired /// The timer callback event, called when a timer is fired
static void TimerCallback(u64 timer_handle, int cycles_late) { static void TimerCallback(u64 timer_handle, int cycles_late) {
SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(timer_handle); SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(timer_handle);
if (timer == nullptr) { if (timer == nullptr) {
LOG_CRITICAL(Kernel, "Callback fired for invalid timer %u", timer_handle); LOG_CRITICAL(Kernel, "Callback fired for invalid timer %08X", timer_handle);
return; return;
} }
@ -99,36 +78,12 @@ static void TimerCallback(u64 timer_handle, int cycles_late) {
// Reschedule the timer with the interval delay // Reschedule the timer with the interval delay
u64 interval_microseconds = timer->interval_delay / 1000; u64 interval_microseconds = timer->interval_delay / 1000;
CoreTiming::ScheduleEvent(usToCycles(interval_microseconds) - cycles_late, CoreTiming::ScheduleEvent(usToCycles(interval_microseconds) - cycles_late,
TimerCallbackEventType, timer_handle); timer_callback_event_type, timer_handle);
} }
} }
ResultCode SetTimer(Handle handle, s64 initial, s64 interval) {
SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(handle);
if (timer == nullptr)
return InvalidHandle(ErrorModule::Kernel);
timer->initial_delay = initial;
timer->interval_delay = interval;
u64 initial_microseconds = initial / 1000;
CoreTiming::ScheduleEvent(usToCycles(initial_microseconds), TimerCallbackEventType, handle);
return RESULT_SUCCESS;
}
ResultCode CancelTimer(Handle handle) {
SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(handle);
if (timer == nullptr)
return InvalidHandle(ErrorModule::Kernel);
CoreTiming::UnscheduleEvent(TimerCallbackEventType, handle);
return RESULT_SUCCESS;
}
void TimersInit() { void TimersInit() {
TimerCallbackEventType = CoreTiming::RegisterEvent("TimerCallback", TimerCallback); timer_callback_event_type = CoreTiming::RegisterEvent("TimerCallback", TimerCallback);
} }
void TimersShutdown() { void TimersShutdown() {

View File

@ -11,37 +11,50 @@
namespace Kernel { namespace Kernel {
/** class Timer final : public WaitObject {
* Cancels a timer public:
* @param handle Handle of the timer to cancel /**
*/ * Creates a timer
ResultCode CancelTimer(Handle handle); * @param reset_type ResetType describing how to create the timer
* @param name Optional name of timer
* @return The created Timer
*/
static ResultVal<SharedPtr<Timer>> Create(ResetType reset_type, std::string name = "Unknown");
/** std::string GetTypeName() const override { return "Timer"; }
* Starts a timer with the specified initial delay and interval std::string GetName() const override { return name; }
* @param handle Handle of the timer to start
* @param initial Delay until the timer is first fired
* @param interval Delay until the timer is fired after the first time
*/
ResultCode SetTimer(Handle handle, s64 initial, s64 interval);
/** static const HandleType HANDLE_TYPE = HandleType::Timer;
* Clears a timer HandleType GetHandleType() const override { return HANDLE_TYPE; }
* @param handle Handle of the timer to clear
*/
ResultCode ClearTimer(Handle handle);
/** ResetType reset_type; ///< The ResetType of this timer
* Creates a timer
* @param handle Handle to the newly created Timer object bool signaled; ///< Whether the timer has been signaled or not
* @param reset_type ResetType describing how to create the timer std::string name; ///< Name of timer (optional)
* @param name Optional name of timer
* @return ResultCode of the error u64 initial_delay; ///< The delay until the timer fires for the first time
*/ u64 interval_delay; ///< The delay until the timer fires after the first time
ResultCode CreateTimer(Handle* handle, const ResetType reset_type, const std::string& name="Unknown");
bool ShouldWait() override;
void Acquire() override;
/**
* Starts the timer, with the specified initial delay and interval.
* @param initial Delay until the timer is first fired
* @param interval Delay until the timer is fired after the first time
*/
void Set(s64 initial, s64 interval);
void Cancel();
void Clear();
private:
Timer() = default;
};
/// Initializes the required variables for timers /// Initializes the required variables for timers
void TimersInit(); void TimersInit();
/// Tears down the timer variables /// Tears down the timer variables
void TimersShutdown(); void TimersShutdown();
} // namespace } // namespace

View File

@ -9,8 +9,9 @@
#include <type_traits> #include <type_traits>
#include <utility> #include <utility>
#include "common/common_types.h"
#include "common/bit_field.h" #include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
// All the constants in this file come from http://3dbrew.org/wiki/Error_codes // All the constants in this file come from http://3dbrew.org/wiki/Error_codes
@ -226,11 +227,6 @@ inline ResultCode UnimplementedFunction(ErrorModule module) {
return ResultCode(ErrorDescription::NotImplemented, module, return ResultCode(ErrorDescription::NotImplemented, module,
ErrorSummary::NotSupported, ErrorLevel::Permanent); ErrorSummary::NotSupported, ErrorLevel::Permanent);
} }
/// Returned when a function is passed an invalid handle.
inline ResultCode InvalidHandle(ErrorModule module) {
return ResultCode(ErrorDescription::InvalidHandle, module,
ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
}
/** /**
* This is an optional value type. It holds a `ResultCode` and, if that code is a success code, * This is an optional value type. It holds a `ResultCode` and, if that code is a success code,
@ -364,6 +360,17 @@ public:
return !empty() ? *GetPointer() : std::move(value); return !empty() ? *GetPointer() : std::move(value);
} }
/// Asserts that the result succeeded and returns a reference to it.
T& Unwrap() {
// TODO(yuriks): Should be a release assert
_assert_msg_(Common, Succeeded(), "Tried to Unwrap empty ResultVal");
return **this;
}
T&& MoveFrom() {
return std::move(Unwrap());
}
private: private:
typedef typename std::aligned_storage<sizeof(T), std::alignment_of<T>::value>::type StorageType; typedef typename std::aligned_storage<sizeof(T), std::alignment_of<T>::value>::type StorageType;
@ -400,3 +407,15 @@ template <typename T, typename... Args>
ResultVal<T> MakeResult(Args&&... args) { ResultVal<T> MakeResult(Args&&... args) {
return ResultVal<T>::WithCode(RESULT_SUCCESS, std::forward<Args>(args)...); return ResultVal<T>::WithCode(RESULT_SUCCESS, std::forward<Args>(args)...);
} }
/**
* Check for the success of `source` (which must evaluate to a ResultVal). If it succeeds, unwraps
* the contained value and assigns it to `target`, which can be either an l-value expression or a
* variable declaration. If it fails the return code is returned from the current function. Thus it
* can be used to cascade errors out, achieving something akin to exception handling.
*/
#define CASCADE_RESULT(target, source) \
auto CONCAT2(check_result_L, __LINE__) = source; \
if (CONCAT2(check_result_L, __LINE__).Failed()) \
return CONCAT2(check_result_L, __LINE__).Code(); \
target = std::move(*CONCAT2(check_result_L, __LINE__))

View File

@ -10,6 +10,7 @@
#include "core/hle/kernel/event.h" #include "core/hle/kernel/event.h"
#include "core/hle/kernel/mutex.h" #include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/shared_memory.h" #include "core/hle/kernel/shared_memory.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/service/apt_s.h" #include "core/hle/service/apt_s.h"
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -10,6 +10,7 @@
#include "core/hle/kernel/event.h" #include "core/hle/kernel/event.h"
#include "core/hle/kernel/mutex.h" #include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/shared_memory.h" #include "core/hle/kernel/shared_memory.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/service/apt_u.h" #include "core/hle/service/apt_u.h"
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
@ -26,11 +27,11 @@ namespace APT_U {
static const VAddr SHARED_FONT_VADDR = 0x18000000; static const VAddr SHARED_FONT_VADDR = 0x18000000;
/// Handle to shared memory region designated to for shared system font /// Handle to shared memory region designated to for shared system font
static Handle shared_font_mem = 0; static Kernel::SharedPtr<Kernel::SharedMemory> shared_font_mem;
static Handle lock_handle = 0; static Kernel::SharedPtr<Kernel::Mutex> lock;
static Handle notification_event_handle = 0; ///< APT notification event handle static Kernel::SharedPtr<Kernel::Event> notification_event; ///< APT notification event
static Handle pause_event_handle = 0; ///< APT pause event handle static Kernel::SharedPtr<Kernel::Event> pause_event = 0; ///< APT pause event
static std::vector<u8> shared_font; static std::vector<u8> shared_font;
/// Signals used by APT functions /// Signals used by APT functions
@ -67,17 +68,19 @@ enum class AppID : u32 {
void Initialize(Service::Interface* self) { void Initialize(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer(); u32* cmd_buff = Kernel::GetCommandBuffer();
notification_event_handle = Kernel::CreateEvent(RESETTYPE_ONESHOT, "APT_U:Notification"); // TODO(bunnei): Check if these are created in Initialize or on APT process startup.
pause_event_handle = Kernel::CreateEvent(RESETTYPE_ONESHOT, "APT_U:Pause"); notification_event = Kernel::Event::Create(RESETTYPE_ONESHOT, "APT_U:Notification").MoveFrom();
pause_event = Kernel::Event::Create(RESETTYPE_ONESHOT, "APT_U:Pause").MoveFrom();
cmd_buff[3] = notification_event_handle; cmd_buff[3] = Kernel::g_handle_table.Create(notification_event).MoveFrom();
cmd_buff[4] = pause_event_handle; cmd_buff[4] = Kernel::g_handle_table.Create(pause_event).MoveFrom();
Kernel::ClearEvent(notification_event_handle); // TODO(bunnei): Check if these events are cleared/signaled every time Initialize is called.
Kernel::SignalEvent(pause_event_handle); // Fire start event notification_event->Clear();
pause_event->Signal(); // Fire start event
_assert_msg_(KERNEL, (0 != lock_handle), "Cannot initialize without lock"); _assert_msg_(KERNEL, (nullptr != lock), "Cannot initialize without lock");
Kernel::ReleaseMutex(lock_handle); lock->Release();
cmd_buff[1] = RESULT_SUCCESS.raw; // No error cmd_buff[1] = RESULT_SUCCESS.raw; // No error
} }
@ -93,7 +96,7 @@ void NotifyToWait(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer(); u32* cmd_buff = Kernel::GetCommandBuffer();
u32 app_id = cmd_buff[1]; u32 app_id = cmd_buff[1];
// TODO(Subv): Verify this, it seems to get SWKBD and Home Menu further. // TODO(Subv): Verify this, it seems to get SWKBD and Home Menu further.
Kernel::SignalEvent(pause_event_handle); pause_event->Signal();
cmd_buff[1] = RESULT_SUCCESS.raw; // No error cmd_buff[1] = RESULT_SUCCESS.raw; // No error
LOG_WARNING(Service_APT, "(STUBBED) app_id=%u", app_id); LOG_WARNING(Service_APT, "(STUBBED) app_id=%u", app_id);
@ -103,11 +106,6 @@ void GetLockHandle(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer(); u32* cmd_buff = Kernel::GetCommandBuffer();
u32 flags = cmd_buff[1]; // TODO(bunnei): Figure out the purpose of the flag field u32 flags = cmd_buff[1]; // TODO(bunnei): Figure out the purpose of the flag field
if (0 == lock_handle) {
// TODO(bunnei): Verify if this is created here or at application boot?
lock_handle = Kernel::CreateMutex(false, "APT_U:Lock");
Kernel::ReleaseMutex(lock_handle);
}
cmd_buff[1] = RESULT_SUCCESS.raw; // No error cmd_buff[1] = RESULT_SUCCESS.raw; // No error
// Not sure what these parameters are used for, but retail apps check that they are 0 after // Not sure what these parameters are used for, but retail apps check that they are 0 after
@ -116,7 +114,7 @@ void GetLockHandle(Service::Interface* self) {
cmd_buff[3] = 0; cmd_buff[3] = 0;
cmd_buff[4] = 0; cmd_buff[4] = 0;
cmd_buff[5] = lock_handle; cmd_buff[5] = Kernel::g_handle_table.Create(lock).MoveFrom();
LOG_TRACE(Service_APT, "called handle=0x%08X", cmd_buff[5]); LOG_TRACE(Service_APT, "called handle=0x%08X", cmd_buff[5]);
} }
@ -354,7 +352,7 @@ void GetSharedFont(Service::Interface* self) {
cmd_buff[0] = 0x00440082; cmd_buff[0] = 0x00440082;
cmd_buff[1] = RESULT_SUCCESS.raw; // No error cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[2] = SHARED_FONT_VADDR; cmd_buff[2] = SHARED_FONT_VADDR;
cmd_buff[4] = shared_font_mem; cmd_buff[4] = Kernel::g_handle_table.Create(shared_font_mem).MoveFrom();
} else { } else {
cmd_buff[1] = -1; // Generic error (not really possible to verify this on hardware) cmd_buff[1] = -1; // Generic error (not really possible to verify this on hardware)
LOG_ERROR(Kernel_SVC, "called, but %s has not been loaded!", SHARED_FONT); LOG_ERROR(Kernel_SVC, "called, but %s has not been loaded!", SHARED_FONT);
@ -514,13 +512,13 @@ Interface::Interface() {
file.ReadBytes(shared_font.data(), (size_t)file.GetSize()); file.ReadBytes(shared_font.data(), (size_t)file.GetSize());
// Create shared font memory object // Create shared font memory object
shared_font_mem = Kernel::CreateSharedMemory("APT_U:shared_font_mem"); shared_font_mem = Kernel::SharedMemory::Create("APT_U:shared_font_mem").MoveFrom();
} else { } else {
LOG_WARNING(Service_APT, "Unable to load shared font: %s", filepath.c_str()); LOG_WARNING(Service_APT, "Unable to load shared font: %s", filepath.c_str());
shared_font_mem = 0; shared_font_mem = nullptr;
} }
lock_handle = 0; lock = Kernel::Mutex::Create(false, "APT_U:Lock").MoveFrom();
Register(FunctionTable, ARRAY_SIZE(FunctionTable)); Register(FunctionTable, ARRAY_SIZE(FunctionTable));
} }

View File

@ -13,8 +13,8 @@
namespace DSP_DSP { namespace DSP_DSP {
static u32 read_pipe_count = 0; static u32 read_pipe_count = 0;
static Handle semaphore_event = 0; static Kernel::SharedPtr<Kernel::Event> semaphore_event;
static Handle interrupt_event = 0; static Kernel::SharedPtr<Kernel::Event> interrupt_event;
void SignalInterrupt() { void SignalInterrupt() {
// TODO(bunnei): This is just a stub, it does not do anything other than signal to the emulated // TODO(bunnei): This is just a stub, it does not do anything other than signal to the emulated
@ -24,7 +24,7 @@ void SignalInterrupt() {
// DSP interrupts, and trigger them at the appropriate times. // DSP interrupts, and trigger them at the appropriate times.
if (interrupt_event != 0) if (interrupt_event != 0)
Kernel::SignalEvent(interrupt_event); interrupt_event->Signal();
} }
/** /**
@ -78,8 +78,8 @@ void LoadComponent(Service::Interface* self) {
void GetSemaphoreEventHandle(Service::Interface* self) { void GetSemaphoreEventHandle(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer(); u32* cmd_buff = Kernel::GetCommandBuffer();
cmd_buff[1] = 0; // No error cmd_buff[1] = RESULT_SUCCESS.raw; // No error
cmd_buff[3] = semaphore_event; // Event handle cmd_buff[3] = Kernel::g_handle_table.Create(semaphore_event).MoveFrom(); // Event handle
LOG_WARNING(Service_DSP, "(STUBBED) called"); LOG_WARNING(Service_DSP, "(STUBBED) called");
} }
@ -96,9 +96,16 @@ void GetSemaphoreEventHandle(Service::Interface* self) {
void RegisterInterruptEvents(Service::Interface* self) { void RegisterInterruptEvents(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer(); u32* cmd_buff = Kernel::GetCommandBuffer();
interrupt_event = static_cast<Handle>(cmd_buff[4]); auto evt = Kernel::g_handle_table.Get<Kernel::Event>(cmd_buff[4]);
if (evt != nullptr) {
interrupt_event = evt;
cmd_buff[1] = 0; // No error
} else {
LOG_ERROR(Service_DSP, "called with invalid handle=%08X", cmd_buff[4]);
cmd_buff[1] = 0; // No error // TODO(yuriks): An error should be returned from SendSyncRequest, not in the cmdbuf
cmd_buff[1] = -1;
}
LOG_WARNING(Service_DSP, "(STUBBED) called"); LOG_WARNING(Service_DSP, "(STUBBED) called");
} }
@ -194,8 +201,9 @@ const Interface::FunctionInfo FunctionTable[] = {
// Interface class // Interface class
Interface::Interface() { Interface::Interface() {
semaphore_event = Kernel::CreateEvent(RESETTYPE_ONESHOT, "DSP_DSP::semaphore_event"); semaphore_event = Kernel::Event::Create(RESETTYPE_ONESHOT,
interrupt_event = 0; "DSP_DSP::semaphore_event").MoveFrom();
interrupt_event = nullptr;
read_pipe_count = 0; read_pipe_count = 0;
Register(FunctionTable, ARRAY_SIZE(FunctionTable)); Register(FunctionTable, ARRAY_SIZE(FunctionTable));

View File

@ -43,6 +43,11 @@ const std::string SDCARD_ID = "00000000000000000000000000000000";
namespace Service { namespace Service {
namespace FS { namespace FS {
// TODO: Verify code
/// Returned when a function is passed an invalid handle.
const ResultCode ERR_INVALID_HANDLE(ErrorDescription::InvalidHandle, ErrorModule::FS,
ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
// Command to access archive file // Command to access archive file
enum class FileCommand : u32 { enum class FileCommand : u32 {
Dummy1 = 0x000100C6, Dummy1 = 0x000100C6,
@ -280,7 +285,7 @@ ResultVal<ArchiveHandle> OpenArchive(ArchiveIdCode id_code, FileSys::Path& archi
ResultCode CloseArchive(ArchiveHandle handle) { ResultCode CloseArchive(ArchiveHandle handle) {
if (handle_map.erase(handle) == 0) if (handle_map.erase(handle) == 0)
return InvalidHandle(ErrorModule::FS); return ERR_INVALID_HANDLE;
else else
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
@ -301,7 +306,7 @@ ResultCode CreateArchive(std::unique_ptr<FileSys::ArchiveBackend>&& backend, Arc
ResultVal<Handle> OpenFileFromArchive(ArchiveHandle archive_handle, const FileSys::Path& path, const FileSys::Mode mode) { ResultVal<Handle> OpenFileFromArchive(ArchiveHandle archive_handle, const FileSys::Path& path, const FileSys::Mode mode) {
Archive* archive = GetArchive(archive_handle); Archive* archive = GetArchive(archive_handle);
if (archive == nullptr) if (archive == nullptr)
return InvalidHandle(ErrorModule::FS); return ERR_INVALID_HANDLE;
std::unique_ptr<FileSys::FileBackend> backend = archive->backend->OpenFile(path, mode); std::unique_ptr<FileSys::FileBackend> backend = archive->backend->OpenFile(path, mode);
if (backend == nullptr) { if (backend == nullptr) {
@ -318,7 +323,7 @@ ResultVal<Handle> OpenFileFromArchive(ArchiveHandle archive_handle, const FileSy
ResultCode DeleteFileFromArchive(ArchiveHandle archive_handle, const FileSys::Path& path) { ResultCode DeleteFileFromArchive(ArchiveHandle archive_handle, const FileSys::Path& path) {
Archive* archive = GetArchive(archive_handle); Archive* archive = GetArchive(archive_handle);
if (archive == nullptr) if (archive == nullptr)
return InvalidHandle(ErrorModule::FS); return ERR_INVALID_HANDLE;
if (archive->backend->DeleteFile(path)) if (archive->backend->DeleteFile(path))
return RESULT_SUCCESS; return RESULT_SUCCESS;
@ -331,7 +336,7 @@ ResultCode RenameFileBetweenArchives(ArchiveHandle src_archive_handle, const Fil
Archive* src_archive = GetArchive(src_archive_handle); Archive* src_archive = GetArchive(src_archive_handle);
Archive* dest_archive = GetArchive(dest_archive_handle); Archive* dest_archive = GetArchive(dest_archive_handle);
if (src_archive == nullptr || dest_archive == nullptr) if (src_archive == nullptr || dest_archive == nullptr)
return InvalidHandle(ErrorModule::FS); return ERR_INVALID_HANDLE;
if (src_archive == dest_archive) { if (src_archive == dest_archive) {
if (src_archive->backend->RenameFile(src_path, dest_path)) if (src_archive->backend->RenameFile(src_path, dest_path))
@ -350,7 +355,7 @@ ResultCode RenameFileBetweenArchives(ArchiveHandle src_archive_handle, const Fil
ResultCode DeleteDirectoryFromArchive(ArchiveHandle archive_handle, const FileSys::Path& path) { ResultCode DeleteDirectoryFromArchive(ArchiveHandle archive_handle, const FileSys::Path& path) {
Archive* archive = GetArchive(archive_handle); Archive* archive = GetArchive(archive_handle);
if (archive == nullptr) if (archive == nullptr)
return InvalidHandle(ErrorModule::FS); return ERR_INVALID_HANDLE;
if (archive->backend->DeleteDirectory(path)) if (archive->backend->DeleteDirectory(path))
return RESULT_SUCCESS; return RESULT_SUCCESS;
@ -361,7 +366,7 @@ ResultCode DeleteDirectoryFromArchive(ArchiveHandle archive_handle, const FileSy
ResultCode CreateFileInArchive(ArchiveHandle archive_handle, const FileSys::Path& path, u32 file_size) { ResultCode CreateFileInArchive(ArchiveHandle archive_handle, const FileSys::Path& path, u32 file_size) {
Archive* archive = GetArchive(archive_handle); Archive* archive = GetArchive(archive_handle);
if (archive == nullptr) if (archive == nullptr)
return InvalidHandle(ErrorModule::FS); return ERR_INVALID_HANDLE;
return archive->backend->CreateFile(path, file_size); return archive->backend->CreateFile(path, file_size);
} }
@ -369,7 +374,7 @@ ResultCode CreateFileInArchive(ArchiveHandle archive_handle, const FileSys::Path
ResultCode CreateDirectoryFromArchive(ArchiveHandle archive_handle, const FileSys::Path& path) { ResultCode CreateDirectoryFromArchive(ArchiveHandle archive_handle, const FileSys::Path& path) {
Archive* archive = GetArchive(archive_handle); Archive* archive = GetArchive(archive_handle);
if (archive == nullptr) if (archive == nullptr)
return InvalidHandle(ErrorModule::FS); return ERR_INVALID_HANDLE;
if (archive->backend->CreateDirectory(path)) if (archive->backend->CreateDirectory(path))
return RESULT_SUCCESS; return RESULT_SUCCESS;
@ -382,7 +387,7 @@ ResultCode RenameDirectoryBetweenArchives(ArchiveHandle src_archive_handle, cons
Archive* src_archive = GetArchive(src_archive_handle); Archive* src_archive = GetArchive(src_archive_handle);
Archive* dest_archive = GetArchive(dest_archive_handle); Archive* dest_archive = GetArchive(dest_archive_handle);
if (src_archive == nullptr || dest_archive == nullptr) if (src_archive == nullptr || dest_archive == nullptr)
return InvalidHandle(ErrorModule::FS); return ERR_INVALID_HANDLE;
if (src_archive == dest_archive) { if (src_archive == dest_archive) {
if (src_archive->backend->RenameDirectory(src_path, dest_path)) if (src_archive->backend->RenameDirectory(src_path, dest_path))
@ -407,7 +412,7 @@ ResultCode RenameDirectoryBetweenArchives(ArchiveHandle src_archive_handle, cons
ResultVal<Handle> OpenDirectoryFromArchive(ArchiveHandle archive_handle, const FileSys::Path& path) { ResultVal<Handle> OpenDirectoryFromArchive(ArchiveHandle archive_handle, const FileSys::Path& path) {
Archive* archive = GetArchive(archive_handle); Archive* archive = GetArchive(archive_handle);
if (archive == nullptr) if (archive == nullptr)
return InvalidHandle(ErrorModule::FS); return ERR_INVALID_HANDLE;
std::unique_ptr<FileSys::DirectoryBackend> backend = archive->backend->OpenDirectory(path); std::unique_ptr<FileSys::DirectoryBackend> backend = archive->backend->OpenDirectory(path);
if (backend == nullptr) { if (backend == nullptr) {

View File

@ -22,13 +22,16 @@ GraphicsDebugger g_debugger;
namespace GSP_GPU { namespace GSP_GPU {
Handle g_interrupt_event = 0; ///< Handle to event triggered when GSP interrupt has been signalled /// Event triggered when GSP interrupt has been signalled
Handle g_shared_memory = 0; ///< Handle to GSP shared memorys Kernel::SharedPtr<Kernel::Event> g_interrupt_event;
u32 g_thread_id = 1; ///< Thread index into interrupt relay queue, 1 is arbitrary /// GSP shared memoryings
Kernel::SharedPtr<Kernel::SharedMemory> g_shared_memory;
/// Thread index into interrupt relay queue, 1 is arbitrary
u32 g_thread_id = 1;
/// Gets a pointer to a thread command buffer in GSP shared memory /// Gets a pointer to a thread command buffer in GSP shared memory
static inline u8* GetCommandBuffer(u32 thread_id) { static inline u8* GetCommandBuffer(u32 thread_id) {
ResultVal<u8*> ptr = Kernel::GetSharedMemoryPointer(g_shared_memory, 0x800 + (thread_id * sizeof(CommandBuffer))); ResultVal<u8*> ptr = g_shared_memory->GetPointer(0x800 + (thread_id * sizeof(CommandBuffer)));
return ptr.ValueOr(nullptr); return ptr.ValueOr(nullptr);
} }
@ -37,13 +40,13 @@ static inline FrameBufferUpdate* GetFrameBufferInfo(u32 thread_id, u32 screen_in
// For each thread there are two FrameBufferUpdate fields // For each thread there are two FrameBufferUpdate fields
u32 offset = 0x200 + (2 * thread_id + screen_index) * sizeof(FrameBufferUpdate); u32 offset = 0x200 + (2 * thread_id + screen_index) * sizeof(FrameBufferUpdate);
ResultVal<u8*> ptr = Kernel::GetSharedMemoryPointer(g_shared_memory, offset); ResultVal<u8*> ptr = g_shared_memory->GetPointer(offset);
return reinterpret_cast<FrameBufferUpdate*>(ptr.ValueOr(nullptr)); return reinterpret_cast<FrameBufferUpdate*>(ptr.ValueOr(nullptr));
} }
/// Gets a pointer to the interrupt relay queue for a given thread index /// Gets a pointer to the interrupt relay queue for a given thread index
static inline InterruptRelayQueue* GetInterruptRelayQueue(u32 thread_id) { static inline InterruptRelayQueue* GetInterruptRelayQueue(u32 thread_id) {
ResultVal<u8*> ptr = Kernel::GetSharedMemoryPointer(g_shared_memory, sizeof(InterruptRelayQueue) * thread_id); ResultVal<u8*> ptr = g_shared_memory->GetPointer(sizeof(InterruptRelayQueue) * thread_id);
return reinterpret_cast<InterruptRelayQueue*>(ptr.ValueOr(nullptr)); return reinterpret_cast<InterruptRelayQueue*>(ptr.ValueOr(nullptr));
} }
@ -181,16 +184,18 @@ static void FlushDataCache(Service::Interface* self) {
static void RegisterInterruptRelayQueue(Service::Interface* self) { static void RegisterInterruptRelayQueue(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer(); u32* cmd_buff = Kernel::GetCommandBuffer();
u32 flags = cmd_buff[1]; u32 flags = cmd_buff[1];
g_interrupt_event = cmd_buff[3];
g_shared_memory = Kernel::CreateSharedMemory("GSPSharedMem");
_assert_msg_(GSP, (g_interrupt_event != 0), "handle is not valid!"); g_interrupt_event = Kernel::g_handle_table.Get<Kernel::Event>(cmd_buff[3]);
_assert_msg_(GSP, (g_interrupt_event != nullptr), "handle is not valid!");
g_shared_memory = Kernel::SharedMemory::Create("GSPSharedMem").MoveFrom();
Handle shmem_handle = Kernel::g_handle_table.Create(g_shared_memory).MoveFrom();
cmd_buff[1] = 0x2A07; // Value verified by 3dmoo team, purpose unknown, but needed for GSP init cmd_buff[1] = 0x2A07; // Value verified by 3dmoo team, purpose unknown, but needed for GSP init
cmd_buff[2] = g_thread_id++; // Thread ID cmd_buff[2] = g_thread_id++; // Thread ID
cmd_buff[4] = g_shared_memory; // GSP shared memory cmd_buff[4] = shmem_handle; // GSP shared memory
Kernel::SignalEvent(g_interrupt_event); // TODO(bunnei): Is this correct? g_interrupt_event->Signal(); // TODO(bunnei): Is this correct?
} }
/** /**
@ -204,7 +209,7 @@ void SignalInterrupt(InterruptId interrupt_id) {
LOG_WARNING(Service_GSP, "cannot synchronize until GSP event has been created!"); LOG_WARNING(Service_GSP, "cannot synchronize until GSP event has been created!");
return; return;
} }
if (0 == g_shared_memory) { if (nullptr == g_shared_memory) {
LOG_WARNING(Service_GSP, "cannot synchronize until GSP shared memory has been created!"); LOG_WARNING(Service_GSP, "cannot synchronize until GSP shared memory has been created!");
return; return;
} }
@ -232,7 +237,7 @@ void SignalInterrupt(InterruptId interrupt_id) {
info->is_dirty = false; info->is_dirty = false;
} }
} }
Kernel::SignalEvent(g_interrupt_event); g_interrupt_event->Signal();
} }
/// Executes the next GSP command /// Executes the next GSP command

View File

@ -12,13 +12,13 @@
namespace Service { namespace Service {
namespace HID { namespace HID {
Handle g_shared_mem = 0; Kernel::SharedPtr<Kernel::SharedMemory> g_shared_mem = nullptr;
Handle g_event_pad_or_touch_1 = 0; Kernel::SharedPtr<Kernel::Event> g_event_pad_or_touch_1;
Handle g_event_pad_or_touch_2 = 0; Kernel::SharedPtr<Kernel::Event> g_event_pad_or_touch_2;
Handle g_event_accelerometer = 0; Kernel::SharedPtr<Kernel::Event> g_event_accelerometer;
Handle g_event_gyroscope = 0; Kernel::SharedPtr<Kernel::Event> g_event_gyroscope;
Handle g_event_debug_pad = 0; Kernel::SharedPtr<Kernel::Event> g_event_debug_pad;
// Next Pad state update information // Next Pad state update information
static PadState next_state = {{0}}; static PadState next_state = {{0}};
@ -30,7 +30,7 @@ static s16 next_circle_y = 0;
* Gets a pointer to the PadData structure inside HID shared memory * Gets a pointer to the PadData structure inside HID shared memory
*/ */
static inline PadData* GetPadData() { static inline PadData* GetPadData() {
return reinterpret_cast<PadData*>(Kernel::GetSharedMemoryPointer(g_shared_mem, 0).ValueOr(nullptr)); return reinterpret_cast<PadData*>(g_shared_mem->GetPointer().ValueOr(nullptr));
} }
/** /**
@ -115,19 +115,21 @@ void PadUpdateComplete() {
} }
// Signal both handles when there's an update to Pad or touch // Signal both handles when there's an update to Pad or touch
Kernel::SignalEvent(g_event_pad_or_touch_1); g_event_pad_or_touch_1->Signal();
Kernel::SignalEvent(g_event_pad_or_touch_2); g_event_pad_or_touch_2->Signal();
} }
void HIDInit() { void HIDInit() {
g_shared_mem = Kernel::CreateSharedMemory("HID:SharedMem"); // Create shared memory object using namespace Kernel;
g_shared_mem = SharedMemory::Create("HID:SharedMem").MoveFrom();
// Create event handles // Create event handles
g_event_pad_or_touch_1 = Kernel::CreateEvent(RESETTYPE_ONESHOT, "HID:EventPadOrTouch1"); g_event_pad_or_touch_1 = Event::Create(RESETTYPE_ONESHOT, "HID:EventPadOrTouch1").MoveFrom();
g_event_pad_or_touch_2 = Kernel::CreateEvent(RESETTYPE_ONESHOT, "HID:EventPadOrTouch2"); g_event_pad_or_touch_2 = Event::Create(RESETTYPE_ONESHOT, "HID:EventPadOrTouch2").MoveFrom();
g_event_accelerometer = Kernel::CreateEvent(RESETTYPE_ONESHOT, "HID:EventAccelerometer"); g_event_accelerometer = Event::Create(RESETTYPE_ONESHOT, "HID:EventAccelerometer").MoveFrom();
g_event_gyroscope = Kernel::CreateEvent(RESETTYPE_ONESHOT, "HID:EventGyroscope"); g_event_gyroscope = Event::Create(RESETTYPE_ONESHOT, "HID:EventGyroscope").MoveFrom();
g_event_debug_pad = Kernel::CreateEvent(RESETTYPE_ONESHOT, "HID:EventDebugPad"); g_event_debug_pad = Event::Create(RESETTYPE_ONESHOT, "HID:EventDebugPad").MoveFrom();
} }
void HIDShutdown() { void HIDShutdown() {

View File

@ -9,18 +9,23 @@
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
#include "common/bit_field.h" #include "common/bit_field.h"
namespace Kernel {
class SharedMemory;
class Event;
}
namespace Service { namespace Service {
namespace HID { namespace HID {
// Handle to shared memory region designated to HID_User service // Handle to shared memory region designated to HID_User service
extern Handle g_shared_mem; extern Kernel::SharedPtr<Kernel::SharedMemory> g_shared_mem;
// Event handles // Event handles
extern Handle g_event_pad_or_touch_1; extern Kernel::SharedPtr<Kernel::Event> g_event_pad_or_touch_1;
extern Handle g_event_pad_or_touch_2; extern Kernel::SharedPtr<Kernel::Event> g_event_pad_or_touch_2;
extern Handle g_event_accelerometer; extern Kernel::SharedPtr<Kernel::Event> g_event_accelerometer;
extern Handle g_event_gyroscope; extern Kernel::SharedPtr<Kernel::Event> g_event_gyroscope;
extern Handle g_event_debug_pad; extern Kernel::SharedPtr<Kernel::Event> g_event_debug_pad;
/** /**
* Structure of a Pad controller state. * Structure of a Pad controller state.

View File

@ -5,6 +5,8 @@
#include "common/log.h" #include "common/log.h"
#include "core/hle/hle.h" #include "core/hle/hle.h"
#include "core/hle/kernel/event.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/service/hid/hid.h" #include "core/hle/service/hid/hid.h"
#include "hid_user.h" #include "hid_user.h"
@ -46,12 +48,13 @@ void GetIPCHandles(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer(); u32* cmd_buff = Kernel::GetCommandBuffer();
cmd_buff[1] = 0; // No error cmd_buff[1] = 0; // No error
cmd_buff[3] = Service::HID::g_shared_mem; // TODO(yuriks): Return error from SendSyncRequest is this fails (part of IPC marshalling)
cmd_buff[4] = Service::HID::g_event_pad_or_touch_1; cmd_buff[3] = Kernel::g_handle_table.Create(Service::HID::g_shared_mem).MoveFrom();
cmd_buff[5] = Service::HID::g_event_pad_or_touch_2; cmd_buff[4] = Kernel::g_handle_table.Create(Service::HID::g_event_pad_or_touch_1).MoveFrom();
cmd_buff[6] = Service::HID::g_event_accelerometer; cmd_buff[5] = Kernel::g_handle_table.Create(Service::HID::g_event_pad_or_touch_2).MoveFrom();
cmd_buff[7] = Service::HID::g_event_gyroscope; cmd_buff[6] = Kernel::g_handle_table.Create(Service::HID::g_event_accelerometer).MoveFrom();
cmd_buff[8] = Service::HID::g_event_debug_pad; cmd_buff[7] = Kernel::g_handle_table.Create(Service::HID::g_event_gyroscope).MoveFrom();
cmd_buff[8] = Kernel::g_handle_table.Create(Service::HID::g_event_debug_pad).MoveFrom();
} }
const Interface::FunctionInfo FunctionTable[] = { const Interface::FunctionInfo FunctionTable[] = {

View File

@ -11,7 +11,7 @@
namespace SRV { namespace SRV {
static Handle g_event_handle = 0; static Kernel::SharedPtr<Kernel::Event> event_handle;
static void Initialize(Service::Interface* self) { static void Initialize(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer(); u32* cmd_buff = Kernel::GetCommandBuffer();
@ -23,11 +23,11 @@ static void GetProcSemaphore(Service::Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer(); u32* cmd_buff = Kernel::GetCommandBuffer();
// TODO(bunnei): Change to a semaphore once these have been implemented // TODO(bunnei): Change to a semaphore once these have been implemented
g_event_handle = Kernel::CreateEvent(RESETTYPE_ONESHOT, "SRV:Event"); event_handle = Kernel::Event::Create(RESETTYPE_ONESHOT, "SRV:Event").MoveFrom();
Kernel::ClearEvent(g_event_handle); event_handle->Clear();
cmd_buff[1] = 0; // No error cmd_buff[1] = 0; // No error
cmd_buff[3] = g_event_handle; cmd_buff[3] = Kernel::g_handle_table.Create(event_handle).MoveFrom();
} }
static void GetServiceHandle(Service::Interface* self) { static void GetServiceHandle(Service::Interface* self) {

View File

@ -26,6 +26,7 @@
// Namespace SVC // Namespace SVC
using Kernel::SharedPtr; using Kernel::SharedPtr;
using Kernel::ERR_INVALID_HANDLE;
namespace SVC { namespace SVC {
@ -38,7 +39,7 @@ enum ControlMemoryOperation {
}; };
/// Map application or GSP heap memory /// Map application or GSP heap memory
static Result ControlMemory(u32* out_addr, u32 operation, u32 addr0, u32 addr1, u32 size, u32 permissions) { static ResultCode ControlMemory(u32* out_addr, u32 operation, u32 addr0, u32 addr1, u32 size, u32 permissions) {
LOG_TRACE(Kernel_SVC,"called operation=0x%08X, addr0=0x%08X, addr1=0x%08X, size=%08X, permissions=0x%08X", LOG_TRACE(Kernel_SVC,"called operation=0x%08X, addr0=0x%08X, addr1=0x%08X, size=%08X, permissions=0x%08X",
operation, addr0, addr1, size, permissions); operation, addr0, addr1, size, permissions);
@ -58,35 +59,42 @@ static Result ControlMemory(u32* out_addr, u32 operation, u32 addr0, u32 addr1,
default: default:
LOG_ERROR(Kernel_SVC, "unknown operation=0x%08X", operation); LOG_ERROR(Kernel_SVC, "unknown operation=0x%08X", operation);
} }
return 0; return RESULT_SUCCESS;
} }
/// Maps a memory block to specified address /// Maps a memory block to specified address
static Result MapMemoryBlock(Handle handle, u32 addr, u32 permissions, u32 other_permissions) { static ResultCode MapMemoryBlock(Handle handle, u32 addr, u32 permissions, u32 other_permissions) {
using Kernel::SharedMemory;
using Kernel::MemoryPermission;
LOG_TRACE(Kernel_SVC, "called memblock=0x%08X, addr=0x%08X, mypermissions=0x%08X, otherpermission=%d", LOG_TRACE(Kernel_SVC, "called memblock=0x%08X, addr=0x%08X, mypermissions=0x%08X, otherpermission=%d",
handle, addr, permissions, other_permissions); handle, addr, permissions, other_permissions);
Kernel::MemoryPermission permissions_type = static_cast<Kernel::MemoryPermission>(permissions); SharedPtr<SharedMemory> shared_memory = Kernel::g_handle_table.Get<SharedMemory>(handle);
if (shared_memory == nullptr)
return ERR_INVALID_HANDLE;
MemoryPermission permissions_type = static_cast<MemoryPermission>(permissions);
switch (permissions_type) { switch (permissions_type) {
case Kernel::MemoryPermission::Read: case MemoryPermission::Read:
case Kernel::MemoryPermission::Write: case MemoryPermission::Write:
case Kernel::MemoryPermission::ReadWrite: case MemoryPermission::ReadWrite:
case Kernel::MemoryPermission::Execute: case MemoryPermission::Execute:
case Kernel::MemoryPermission::ReadExecute: case MemoryPermission::ReadExecute:
case Kernel::MemoryPermission::WriteExecute: case MemoryPermission::WriteExecute:
case Kernel::MemoryPermission::ReadWriteExecute: case MemoryPermission::ReadWriteExecute:
case Kernel::MemoryPermission::DontCare: case MemoryPermission::DontCare:
Kernel::MapSharedMemory(handle, addr, permissions_type, shared_memory->Map(addr, permissions_type,
static_cast<Kernel::MemoryPermission>(other_permissions)); static_cast<MemoryPermission>(other_permissions));
break; break;
default: default:
LOG_ERROR(Kernel_SVC, "unknown permissions=0x%08X", permissions); LOG_ERROR(Kernel_SVC, "unknown permissions=0x%08X", permissions);
} }
return 0; return RESULT_SUCCESS;
} }
/// Connect to an OS service given the port name, returns the handle to the port to out /// Connect to an OS service given the port name, returns the handle to the port to out
static Result ConnectToPort(Handle* out, const char* port_name) { static ResultCode ConnectToPort(Handle* out, const char* port_name) {
Service::Interface* service = Service::g_manager->FetchFromPortName(port_name); Service::Interface* service = Service::g_manager->FetchFromPortName(port_name);
LOG_TRACE(Kernel_SVC, "called port_name=%s", port_name); LOG_TRACE(Kernel_SVC, "called port_name=%s", port_name);
@ -94,33 +102,33 @@ static Result ConnectToPort(Handle* out, const char* port_name) {
*out = service->GetHandle(); *out = service->GetHandle();
return 0; return RESULT_SUCCESS;
} }
/// Synchronize to an OS service /// Synchronize to an OS service
static Result SendSyncRequest(Handle handle) { static ResultCode SendSyncRequest(Handle handle) {
SharedPtr<Kernel::Session> session = Kernel::g_handle_table.Get<Kernel::Session>(handle); SharedPtr<Kernel::Session> session = Kernel::g_handle_table.Get<Kernel::Session>(handle);
if (session == nullptr) { if (session == nullptr) {
return InvalidHandle(ErrorModule::Kernel).raw; return ERR_INVALID_HANDLE;
} }
LOG_TRACE(Kernel_SVC, "called handle=0x%08X(%s)", handle, session->GetName().c_str()); LOG_TRACE(Kernel_SVC, "called handle=0x%08X(%s)", handle, session->GetName().c_str());
return session->SyncRequest().Code().raw; return session->SyncRequest().Code();
} }
/// Close a handle /// Close a handle
static Result CloseHandle(Handle handle) { static ResultCode CloseHandle(Handle handle) {
// ImplementMe // ImplementMe
LOG_ERROR(Kernel_SVC, "(UNIMPLEMENTED) called handle=0x%08X", handle); LOG_ERROR(Kernel_SVC, "(UNIMPLEMENTED) called handle=0x%08X", handle);
return 0; return RESULT_SUCCESS;
} }
/// Wait for a handle to synchronize, timeout after the specified nanoseconds /// Wait for a handle to synchronize, timeout after the specified nanoseconds
static Result WaitSynchronization1(Handle handle, s64 nano_seconds) { static ResultCode WaitSynchronization1(Handle handle, s64 nano_seconds) {
auto object = Kernel::g_handle_table.GetWaitObject(handle); auto object = Kernel::g_handle_table.GetWaitObject(handle);
if (object == nullptr) if (object == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw; return ERR_INVALID_HANDLE;
LOG_TRACE(Kernel_SVC, "called handle=0x%08X(%s:%s), nanoseconds=%lld", handle, LOG_TRACE(Kernel_SVC, "called handle=0x%08X(%s:%s), nanoseconds=%lld", handle,
object->GetTypeName().c_str(), object->GetName().c_str(), nano_seconds); object->GetTypeName().c_str(), object->GetName().c_str(), nano_seconds);
@ -137,22 +145,22 @@ static Result WaitSynchronization1(Handle handle, s64 nano_seconds) {
HLE::Reschedule(__func__); HLE::Reschedule(__func__);
// NOTE: output of this SVC will be set later depending on how the thread resumes // NOTE: output of this SVC will be set later depending on how the thread resumes
return RESULT_INVALID.raw; return RESULT_INVALID;
} }
object->Acquire(); object->Acquire();
return RESULT_SUCCESS.raw; return RESULT_SUCCESS;
} }
/// Wait for the given handles to synchronize, timeout after the specified nanoseconds /// Wait for the given handles to synchronize, timeout after the specified nanoseconds
static Result WaitSynchronizationN(s32* out, Handle* handles, s32 handle_count, bool wait_all, s64 nano_seconds) { static ResultCode WaitSynchronizationN(s32* out, Handle* handles, s32 handle_count, bool wait_all, s64 nano_seconds) {
bool wait_thread = !wait_all; bool wait_thread = !wait_all;
int handle_index = 0; int handle_index = 0;
// Check if 'handles' is invalid // Check if 'handles' is invalid
if (handles == nullptr) if (handles == nullptr)
return ResultCode(ErrorDescription::InvalidPointer, ErrorModule::Kernel, ErrorSummary::InvalidArgument, ErrorLevel::Permanent).raw; return ResultCode(ErrorDescription::InvalidPointer, ErrorModule::Kernel, ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
// NOTE: on real hardware, there is no nullptr check for 'out' (tested with firmware 4.4). If // NOTE: on real hardware, there is no nullptr check for 'out' (tested with firmware 4.4). If
// this happens, the running application will crash. // this happens, the running application will crash.
@ -160,7 +168,7 @@ static Result WaitSynchronizationN(s32* out, Handle* handles, s32 handle_count,
// Check if 'handle_count' is invalid // Check if 'handle_count' is invalid
if (handle_count < 0) if (handle_count < 0)
return ResultCode(ErrorDescription::OutOfRange, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage).raw; return ResultCode(ErrorDescription::OutOfRange, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage);
// If 'handle_count' is non-zero, iterate through each handle and wait the current thread if // If 'handle_count' is non-zero, iterate through each handle and wait the current thread if
// necessary // necessary
@ -169,7 +177,7 @@ static Result WaitSynchronizationN(s32* out, Handle* handles, s32 handle_count,
for (int i = 0; i < handle_count; ++i) { for (int i = 0; i < handle_count; ++i) {
auto object = Kernel::g_handle_table.GetWaitObject(handles[i]); auto object = Kernel::g_handle_table.GetWaitObject(handles[i]);
if (object == nullptr) if (object == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw; return ERR_INVALID_HANDLE;
// Check if the current thread should wait on this object... // Check if the current thread should wait on this object...
if (object->ShouldWait()) { if (object->ShouldWait()) {
@ -213,7 +221,7 @@ static Result WaitSynchronizationN(s32* out, Handle* handles, s32 handle_count,
HLE::Reschedule(__func__); HLE::Reschedule(__func__);
// NOTE: output of this SVC will be set later depending on how the thread resumes // NOTE: output of this SVC will be set later depending on how the thread resumes
return RESULT_INVALID.raw; return RESULT_INVALID;
} }
// Acquire objects if we did not wait... // Acquire objects if we did not wait...
@ -235,22 +243,32 @@ static Result WaitSynchronizationN(s32* out, Handle* handles, s32 handle_count,
// not seem to set it to any meaningful value. // not seem to set it to any meaningful value.
*out = wait_all ? 0 : handle_index; *out = wait_all ? 0 : handle_index;
return RESULT_SUCCESS.raw; return RESULT_SUCCESS;
} }
/// Create an address arbiter (to allocate access to shared resources) /// Create an address arbiter (to allocate access to shared resources)
static Result CreateAddressArbiter(u32* arbiter) { static ResultCode CreateAddressArbiter(Handle* out_handle) {
Handle handle = Kernel::CreateAddressArbiter(); using Kernel::AddressArbiter;
*arbiter = handle;
return 0; CASCADE_RESULT(SharedPtr<AddressArbiter> arbiter, AddressArbiter::Create());
CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(arbiter)));
LOG_TRACE(Kernel_SVC, "returned handle=0x%08X", *out_handle);
return RESULT_SUCCESS;
} }
/// Arbitrate address /// Arbitrate address
static Result ArbitrateAddress(Handle arbiter, u32 address, u32 type, u32 value, s64 nanoseconds) { static ResultCode ArbitrateAddress(Handle handle, u32 address, u32 type, u32 value, s64 nanoseconds) {
LOG_TRACE(Kernel_SVC, "called handle=0x%08X, address=0x%08X, type=0x%08X, value=0x%08X", arbiter, using Kernel::AddressArbiter;
LOG_TRACE(Kernel_SVC, "called handle=0x%08X, address=0x%08X, type=0x%08X, value=0x%08X", handle,
address, type, value); address, type, value);
return Kernel::ArbitrateAddress(arbiter, static_cast<Kernel::ArbitrationType>(type),
address, value, nanoseconds).raw; SharedPtr<AddressArbiter> arbiter = Kernel::g_handle_table.Get<AddressArbiter>(handle);
if (arbiter == nullptr)
return ERR_INVALID_HANDLE;
return arbiter->ArbitrateAddress(static_cast<Kernel::ArbitrationType>(type),
address, value, nanoseconds);
} }
/// Used to output a message on a debug hardware unit - does nothing on a retail unit /// Used to output a message on a debug hardware unit - does nothing on a retail unit
@ -259,26 +277,26 @@ static void OutputDebugString(const char* string) {
} }
/// Get resource limit /// Get resource limit
static Result GetResourceLimit(Handle* resource_limit, Handle process) { static ResultCode GetResourceLimit(Handle* resource_limit, Handle process) {
// With regards to proceess values: // With regards to proceess values:
// 0xFFFF8001 is a handle alias for the current KProcess, and 0xFFFF8000 is a handle alias for // 0xFFFF8001 is a handle alias for the current KProcess, and 0xFFFF8000 is a handle alias for
// the current KThread. // the current KThread.
*resource_limit = 0xDEADBEEF; *resource_limit = 0xDEADBEEF;
LOG_ERROR(Kernel_SVC, "(UNIMPLEMENTED) called process=0x%08X", process); LOG_ERROR(Kernel_SVC, "(UNIMPLEMENTED) called process=0x%08X", process);
return 0; return RESULT_SUCCESS;
} }
/// Get resource limit current values /// Get resource limit current values
static Result GetResourceLimitCurrentValues(s64* values, Handle resource_limit, void* names, static ResultCode GetResourceLimitCurrentValues(s64* values, Handle resource_limit, void* names,
s32 name_count) { s32 name_count) {
LOG_ERROR(Kernel_SVC, "(UNIMPLEMENTED) called resource_limit=%08X, names=%s, name_count=%d", LOG_ERROR(Kernel_SVC, "(UNIMPLEMENTED) called resource_limit=%08X, names=%s, name_count=%d",
resource_limit, names, name_count); resource_limit, names, name_count);
Memory::Write32(Core::g_app_core->GetReg(0), 0); // Normmatt: Set used memory to 0 for now Memory::Write32(Core::g_app_core->GetReg(0), 0); // Normmatt: Set used memory to 0 for now
return 0; return RESULT_SUCCESS;
} }
/// Creates a new thread /// Creates a new thread
static Result CreateThread(u32 priority, u32 entry_point, u32 arg, u32 stack_top, u32 processor_id) { static ResultCode CreateThread(u32* out_handle, u32 priority, u32 entry_point, u32 arg, u32 stack_top, u32 processor_id) {
using Kernel::Thread; using Kernel::Thread;
std::string name; std::string name;
@ -289,25 +307,20 @@ static Result CreateThread(u32 priority, u32 entry_point, u32 arg, u32 stack_top
name = Common::StringFromFormat("unknown-%08x", entry_point); name = Common::StringFromFormat("unknown-%08x", entry_point);
} }
ResultVal<SharedPtr<Thread>> thread_res = Kernel::Thread::Create( CASCADE_RESULT(SharedPtr<Thread> thread, Kernel::Thread::Create(
name, entry_point, priority, arg, processor_id, stack_top, Kernel::DEFAULT_STACK_SIZE); name, entry_point, priority, arg, processor_id, stack_top, Kernel::DEFAULT_STACK_SIZE));
if (thread_res.Failed()) CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(thread)));
return thread_res.Code().raw;
SharedPtr<Thread> thread = std::move(*thread_res);
// TODO(yuriks): Create new handle instead of using built-in
Core::g_app_core->SetReg(1, thread->GetHandle());
LOG_TRACE(Kernel_SVC, "called entrypoint=0x%08X (%s), arg=0x%08X, stacktop=0x%08X, " LOG_TRACE(Kernel_SVC, "called entrypoint=0x%08X (%s), arg=0x%08X, stacktop=0x%08X, "
"threadpriority=0x%08X, processorid=0x%08X : created handle=0x%08X", entry_point, "threadpriority=0x%08X, processorid=0x%08X : created handle=0x%08X", entry_point,
name.c_str(), arg, stack_top, priority, processor_id, thread->GetHandle()); name.c_str(), arg, stack_top, priority, processor_id, *out_handle);
if (THREADPROCESSORID_1 == processor_id) { if (THREADPROCESSORID_1 == processor_id) {
LOG_WARNING(Kernel_SVC, LOG_WARNING(Kernel_SVC,
"thread designated for system CPU core (UNIMPLEMENTED) will be run with app core scheduling"); "thread designated for system CPU core (UNIMPLEMENTED) will be run with app core scheduling");
} }
return 0; return RESULT_SUCCESS;
} }
/// Called when a thread exits /// Called when a thread exits
@ -319,128 +332,192 @@ static void ExitThread() {
} }
/// Gets the priority for the specified thread /// Gets the priority for the specified thread
static Result GetThreadPriority(s32* priority, Handle handle) { static ResultCode GetThreadPriority(s32* priority, Handle handle) {
const SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle); const SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
if (thread == nullptr) if (thread == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw; return ERR_INVALID_HANDLE;
*priority = thread->GetPriority(); *priority = thread->GetPriority();
return RESULT_SUCCESS.raw; return RESULT_SUCCESS;
} }
/// Sets the priority for the specified thread /// Sets the priority for the specified thread
static Result SetThreadPriority(Handle handle, s32 priority) { static ResultCode SetThreadPriority(Handle handle, s32 priority) {
SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle); SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
if (thread == nullptr) if (thread == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw; return ERR_INVALID_HANDLE;
thread->SetPriority(priority); thread->SetPriority(priority);
return RESULT_SUCCESS.raw; return RESULT_SUCCESS;
} }
/// Create a mutex /// Create a mutex
static Result CreateMutex(Handle* mutex, u32 initial_locked) { static ResultCode CreateMutex(Handle* out_handle, u32 initial_locked) {
*mutex = Kernel::CreateMutex((initial_locked != 0)); using Kernel::Mutex;
CASCADE_RESULT(SharedPtr<Mutex> mutex, Mutex::Create(initial_locked != 0));
CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(mutex)));
LOG_TRACE(Kernel_SVC, "called initial_locked=%s : created handle=0x%08X", LOG_TRACE(Kernel_SVC, "called initial_locked=%s : created handle=0x%08X",
initial_locked ? "true" : "false", *mutex); initial_locked ? "true" : "false", *out_handle);
return 0; return RESULT_SUCCESS;
} }
/// Release a mutex /// Release a mutex
static Result ReleaseMutex(Handle handle) { static ResultCode ReleaseMutex(Handle handle) {
using Kernel::Mutex;
LOG_TRACE(Kernel_SVC, "called handle=0x%08X", handle); LOG_TRACE(Kernel_SVC, "called handle=0x%08X", handle);
ResultCode res = Kernel::ReleaseMutex(handle);
return res.raw; SharedPtr<Mutex> mutex = Kernel::g_handle_table.Get<Mutex>(handle);
if (mutex == nullptr)
return ERR_INVALID_HANDLE;
mutex->Release();
return RESULT_SUCCESS;
} }
/// Get the ID for the specified thread. /// Get the ID for the specified thread.
static Result GetThreadId(u32* thread_id, Handle handle) { static ResultCode GetThreadId(u32* thread_id, Handle handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x%08X", handle); LOG_TRACE(Kernel_SVC, "called thread=0x%08X", handle);
const SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle); const SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
if (thread == nullptr) if (thread == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw; return ERR_INVALID_HANDLE;
*thread_id = thread->GetThreadId(); *thread_id = thread->GetThreadId();
return RESULT_SUCCESS.raw; return RESULT_SUCCESS;
} }
/// Creates a semaphore /// Creates a semaphore
static Result CreateSemaphore(Handle* semaphore, s32 initial_count, s32 max_count) { static ResultCode CreateSemaphore(Handle* out_handle, s32 initial_count, s32 max_count) {
ResultCode res = Kernel::CreateSemaphore(semaphore, initial_count, max_count); using Kernel::Semaphore;
CASCADE_RESULT(SharedPtr<Semaphore> semaphore, Semaphore::Create(initial_count, max_count));
CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(semaphore)));
LOG_TRACE(Kernel_SVC, "called initial_count=%d, max_count=%d, created handle=0x%08X", LOG_TRACE(Kernel_SVC, "called initial_count=%d, max_count=%d, created handle=0x%08X",
initial_count, max_count, *semaphore); initial_count, max_count, *out_handle);
return res.raw; return RESULT_SUCCESS;
} }
/// Releases a certain number of slots in a semaphore /// Releases a certain number of slots in a semaphore
static Result ReleaseSemaphore(s32* count, Handle semaphore, s32 release_count) { static ResultCode ReleaseSemaphore(s32* count, Handle handle, s32 release_count) {
LOG_TRACE(Kernel_SVC, "called release_count=%d, handle=0x%08X", release_count, semaphore); using Kernel::Semaphore;
ResultCode res = Kernel::ReleaseSemaphore(count, semaphore, release_count);
return res.raw; LOG_TRACE(Kernel_SVC, "called release_count=%d, handle=0x%08X", release_count, handle);
SharedPtr<Semaphore> semaphore = Kernel::g_handle_table.Get<Semaphore>(handle);
if (semaphore == nullptr)
return ERR_INVALID_HANDLE;
CASCADE_RESULT(*count, semaphore->Release(release_count));
return RESULT_SUCCESS;
} }
/// Query memory /// Query memory
static Result QueryMemory(void* info, void* out, u32 addr) { static ResultCode QueryMemory(void* info, void* out, u32 addr) {
LOG_ERROR(Kernel_SVC, "(UNIMPLEMENTED) called addr=0x%08X", addr); LOG_ERROR(Kernel_SVC, "(UNIMPLEMENTED) called addr=0x%08X", addr);
return 0; return RESULT_SUCCESS;
} }
/// Create an event /// Create an event
static Result CreateEvent(Handle* evt, u32 reset_type) { static ResultCode CreateEvent(Handle* out_handle, u32 reset_type) {
*evt = Kernel::CreateEvent((ResetType)reset_type); CASCADE_RESULT(auto evt, Kernel::Event::Create(static_cast<ResetType>(reset_type)));
CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(evt)));
LOG_TRACE(Kernel_SVC, "called reset_type=0x%08X : created handle=0x%08X", LOG_TRACE(Kernel_SVC, "called reset_type=0x%08X : created handle=0x%08X",
reset_type, *evt); reset_type, *out_handle);
return 0; return RESULT_SUCCESS;
} }
/// Duplicates a kernel handle /// Duplicates a kernel handle
static Result DuplicateHandle(Handle* out, Handle handle) { static ResultCode DuplicateHandle(Handle* out, Handle handle) {
ResultVal<Handle> out_h = Kernel::g_handle_table.Duplicate(handle); ResultVal<Handle> out_h = Kernel::g_handle_table.Duplicate(handle);
if (out_h.Succeeded()) { if (out_h.Succeeded()) {
*out = *out_h; *out = *out_h;
LOG_TRACE(Kernel_SVC, "duplicated 0x%08X to 0x%08X", handle, *out); LOG_TRACE(Kernel_SVC, "duplicated 0x%08X to 0x%08X", handle, *out);
} }
return out_h.Code().raw; return out_h.Code();
} }
/// Signals an event /// Signals an event
static Result SignalEvent(Handle evt) { static ResultCode SignalEvent(Handle handle) {
LOG_TRACE(Kernel_SVC, "called event=0x%08X", evt); LOG_TRACE(Kernel_SVC, "called event=0x%08X", handle);
auto evt = Kernel::g_handle_table.Get<Kernel::Event>(handle);
if (evt == nullptr)
return ERR_INVALID_HANDLE;
evt->Signal();
HLE::Reschedule(__func__); HLE::Reschedule(__func__);
return Kernel::SignalEvent(evt).raw; return RESULT_SUCCESS;
} }
/// Clears an event /// Clears an event
static Result ClearEvent(Handle evt) { static ResultCode ClearEvent(Handle handle) {
LOG_TRACE(Kernel_SVC, "called event=0x%08X", evt); LOG_TRACE(Kernel_SVC, "called event=0x%08X", handle);
return Kernel::ClearEvent(evt).raw;
auto evt = Kernel::g_handle_table.Get<Kernel::Event>(handle);
if (evt == nullptr)
return ERR_INVALID_HANDLE;
evt->Clear();
return RESULT_SUCCESS;
} }
/// Creates a timer /// Creates a timer
static Result CreateTimer(Handle* handle, u32 reset_type) { static ResultCode CreateTimer(Handle* out_handle, u32 reset_type) {
ResultCode res = Kernel::CreateTimer(handle, static_cast<ResetType>(reset_type)); using Kernel::Timer;
CASCADE_RESULT(auto timer, Timer::Create(static_cast<ResetType>(reset_type)));
CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(timer)));
LOG_TRACE(Kernel_SVC, "called reset_type=0x%08X : created handle=0x%08X", LOG_TRACE(Kernel_SVC, "called reset_type=0x%08X : created handle=0x%08X",
reset_type, *handle); reset_type, *out_handle);
return res.raw; return RESULT_SUCCESS;
} }
/// Clears a timer /// Clears a timer
static Result ClearTimer(Handle handle) { static ResultCode ClearTimer(Handle handle) {
using Kernel::Timer;
LOG_TRACE(Kernel_SVC, "called timer=0x%08X", handle); LOG_TRACE(Kernel_SVC, "called timer=0x%08X", handle);
return Kernel::ClearTimer(handle).raw;
SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(handle);
if (timer == nullptr)
return ERR_INVALID_HANDLE;
timer->Clear();
return RESULT_SUCCESS;
} }
/// Starts a timer /// Starts a timer
static Result SetTimer(Handle handle, s64 initial, s64 interval) { static ResultCode SetTimer(Handle handle, s64 initial, s64 interval) {
using Kernel::Timer;
LOG_TRACE(Kernel_SVC, "called timer=0x%08X", handle); LOG_TRACE(Kernel_SVC, "called timer=0x%08X", handle);
return Kernel::SetTimer(handle, initial, interval).raw;
SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(handle);
if (timer == nullptr)
return ERR_INVALID_HANDLE;
timer->Set(initial, interval);
return RESULT_SUCCESS;
} }
/// Cancels a timer /// Cancels a timer
static Result CancelTimer(Handle handle) { static ResultCode CancelTimer(Handle handle) {
using Kernel::Timer;
LOG_TRACE(Kernel_SVC, "called timer=0x%08X", handle); LOG_TRACE(Kernel_SVC, "called timer=0x%08X", handle);
return Kernel::CancelTimer(handle).raw;
SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(handle);
if (timer == nullptr)
return ERR_INVALID_HANDLE;
timer->Cancel();
return RESULT_SUCCESS;
} }
/// Sleep the current thread /// Sleep the current thread
@ -462,15 +539,16 @@ static s64 GetSystemTick() {
} }
/// Creates a memory block at the specified address with the specified permissions and size /// Creates a memory block at the specified address with the specified permissions and size
static Result CreateMemoryBlock(Handle* memblock, u32 addr, u32 size, u32 my_permission, static ResultCode CreateMemoryBlock(Handle* out_handle, u32 addr, u32 size, u32 my_permission,
u32 other_permission) { u32 other_permission) {
using Kernel::SharedMemory;
// TODO(Subv): Implement this function // TODO(Subv): Implement this function
Handle shared_memory = Kernel::CreateSharedMemory(); CASCADE_RESULT(auto shared_memory, SharedMemory::Create());
*memblock = shared_memory; CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(shared_memory)));
LOG_WARNING(Kernel_SVC, "(STUBBED) called addr=0x%08X", addr); LOG_WARNING(Kernel_SVC, "(STUBBED) called addr=0x%08X", addr);
return 0; return RESULT_SUCCESS;
} }
const HLE::FunctionDef SVC_Table[] = { const HLE::FunctionDef SVC_Table[] = {

View File

@ -7,12 +7,9 @@
#include "common/common.h" #include "common/common.h"
#include "common/common_types.h" #include "common/common_types.h"
namespace Memory { #include "core/hle/kernel/kernel.h"
// TODO: It would be nice to eventually replace these with strong types that prevent accidental namespace Memory {
// conversion between each other.
typedef u32 VAddr; ///< Represents a pointer in the ARM11 virtual address space.
typedef u32 PAddr; ///< Represents a pointer in the physical address space.
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
@ -190,7 +187,3 @@ VAddr PhysicalToVirtualAddress(PAddr addr);
PAddr VirtualToPhysicalAddress(VAddr addr); PAddr VirtualToPhysicalAddress(VAddr addr);
} // namespace } // namespace
// These are used often, so re-export then on the root namespace
using Memory::VAddr;
using Memory::PAddr;