citra-emu
/
citra-canary
Archived
1
0
Fork 0

Removed common/atomic, instead using std::atomic

This commit is contained in:
archshift 2014-09-02 22:40:02 -07:00
parent c0e48432cd
commit 4795a64fc8
5 changed files with 4 additions and 202 deletions

View File

@ -23,9 +23,6 @@ set(SRCS
) )
set(HEADERS set(HEADERS
atomic.h
atomic_gcc.h
atomic_win32.h
bit_field.h bit_field.h
break_points.h break_points.h
chunk_file.h chunk_file.h

View File

@ -1,16 +0,0 @@
// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#ifdef _WIN32
#include "common/atomic_win32.h"
#else
// GCC-compatible compiler assumed!
#include "common/atomic_gcc.h"
#endif

View File

@ -1,110 +0,0 @@
// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include "common/common.h"
// Atomic operations are performed in a single step by the CPU. It is
// impossible for other threads to see the operation "half-done."
//
// Some atomic operations can be combined with different types of memory
// barriers called "Acquire semantics" and "Release semantics", defined below.
//
// Acquire semantics: Future memory accesses cannot be relocated to before the
// operation.
//
// Release semantics: Past memory accesses cannot be relocated to after the
// operation.
//
// These barriers affect not only the compiler, but also the CPU.
namespace Common
{
inline void AtomicAdd(volatile u32& target, u32 value) {
__sync_add_and_fetch(&target, value);
}
inline void AtomicAnd(volatile u32& target, u32 value) {
__sync_and_and_fetch(&target, value);
}
inline void AtomicDecrement(volatile u32& target) {
__sync_add_and_fetch(&target, -1);
}
inline void AtomicIncrement(volatile u32& target) {
__sync_add_and_fetch(&target, 1);
}
inline u32 AtomicLoad(volatile u32& src) {
return src; // 32-bit reads are always atomic.
}
inline u32 AtomicLoadAcquire(volatile u32& src) {
//keep the compiler from caching any memory references
u32 result = src; // 32-bit reads are always atomic.
//__sync_synchronize(); // TODO: May not be necessary.
// Compiler instruction only. x86 loads always have acquire semantics.
__asm__ __volatile__ ( "":::"memory" );
return result;
}
inline void AtomicOr(volatile u32& target, u32 value) {
__sync_or_and_fetch(&target, value);
}
inline void AtomicStore(volatile u32& dest, u32 value) {
dest = value; // 32-bit writes are always atomic.
}
inline void AtomicStoreRelease(volatile u32& dest, u32 value) {
__sync_lock_test_and_set(&dest, value); // TODO: Wrong! This function is has acquire semantics.
}
}
// Old code kept here for reference in case we need the parts with __asm__ __volatile__.
#if 0
LONG SyncInterlockedIncrement(LONG *Dest)
{
#if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__))
return __sync_add_and_fetch(Dest, 1);
#else
register int result;
__asm__ __volatile__("lock; xadd %0,%1"
: "=r" (result), "=m" (*Dest)
: "0" (1), "m" (*Dest)
: "memory");
return result;
#endif
}
LONG SyncInterlockedExchangeAdd(LONG *Dest, LONG Val)
{
#if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__))
return __sync_add_and_fetch(Dest, Val);
#else
register int result;
__asm__ __volatile__("lock; xadd %0,%1"
: "=r" (result), "=m" (*Dest)
: "0" (Val), "m" (*Dest)
: "memory");
return result;
#endif
}
LONG SyncInterlockedExchange(LONG *Dest, LONG Val)
{
#if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__))
return __sync_lock_test_and_set(Dest, Val);
#else
register int result;
__asm__ __volatile__("lock; xchg %0,%1"
: "=r" (result), "=m" (*Dest)
: "0" (Val), "m" (*Dest)
: "memory");
return result;
#endif
}
#endif

View File

@ -1,69 +0,0 @@
// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include "common/common.h"
#include <intrin.h>
#include <Windows.h>
// Atomic operations are performed in a single step by the CPU. It is
// impossible for other threads to see the operation "half-done."
//
// Some atomic operations can be combined with different types of memory
// barriers called "Acquire semantics" and "Release semantics", defined below.
//
// Acquire semantics: Future memory accesses cannot be relocated to before the
// operation.
//
// Release semantics: Past memory accesses cannot be relocated to after the
// operation.
//
// These barriers affect not only the compiler, but also the CPU.
//
// NOTE: Acquire and Release are not differentiated right now. They perform a
// full memory barrier instead of a "one-way" memory barrier. The newest
// Windows SDK has Acquire and Release versions of some Interlocked* functions.
namespace Common
{
inline void AtomicAdd(volatile u32& target, u32 value) {
InterlockedExchangeAdd((volatile LONG*)&target, (LONG)value);
}
inline void AtomicAnd(volatile u32& target, u32 value) {
_InterlockedAnd((volatile LONG*)&target, (LONG)value);
}
inline void AtomicIncrement(volatile u32& target) {
InterlockedIncrement((volatile LONG*)&target);
}
inline void AtomicDecrement(volatile u32& target) {
InterlockedDecrement((volatile LONG*)&target);
}
inline u32 AtomicLoad(volatile u32& src) {
return src; // 32-bit reads are always atomic.
}
inline u32 AtomicLoadAcquire(volatile u32& src) {
u32 result = src; // 32-bit reads are always atomic.
_ReadBarrier(); // Compiler instruction only. x86 loads always have acquire semantics.
return result;
}
inline void AtomicOr(volatile u32& target, u32 value) {
_InterlockedOr((volatile LONG*)&target, (LONG)value);
}
inline void AtomicStore(volatile u32& dest, u32 value) {
dest = value; // 32-bit writes are always atomic.
}
inline void AtomicStoreRelease(volatile u32& dest, u32 value) {
_WriteBarrier(); // Compiler instruction only. x86 stores always have release semantics.
dest = value; // 32-bit writes are always atomic.
}
}

View File

@ -4,10 +4,10 @@
#include <vector> #include <vector>
#include <cstdio> #include <cstdio>
#include <atomic>
#include "common/msg_handler.h" #include "common/msg_handler.h"
#include "common/std_mutex.h" #include "common/std_mutex.h"
#include "common/atomic.h"
#include "common/chunk_file.h" #include "common/chunk_file.h"
#include "core/core_timing.h" #include "core/core_timing.h"
@ -54,7 +54,7 @@ Event *eventPool = 0;
Event *eventTsPool = 0; Event *eventTsPool = 0;
int allocatedTsEvents = 0; int allocatedTsEvents = 0;
// Optimization to skip MoveEvents when possible. // Optimization to skip MoveEvents when possible.
volatile u32 hasTsEvents = false; std::atomic<u32> hasTsEvents;
// Downcount has been moved to currentMIPS, to save a couple of clocks in every ARM JIT block // Downcount has been moved to currentMIPS, to save a couple of clocks in every ARM JIT block
// as we can already reach that structure through a register. // as we can already reach that structure through a register.
@ -202,7 +202,7 @@ void ScheduleEvent_Threadsafe(s64 cyclesIntoFuture, int event_type, u64 userdata
tsLast->next = ne; tsLast->next = ne;
tsLast = ne; tsLast = ne;
Common::AtomicStoreRelease(hasTsEvents, 1); hasTsEvents.store(1, std::memory_order_release);
} }
// Same as ScheduleEvent_Threadsafe(0, ...) EXCEPT if we are already on the CPU thread // Same as ScheduleEvent_Threadsafe(0, ...) EXCEPT if we are already on the CPU thread
@ -484,7 +484,7 @@ void ProcessFifoWaitEvents()
void MoveEvents() void MoveEvents()
{ {
Common::AtomicStoreRelease(hasTsEvents, 0); hasTsEvents.store(0, std::memory_order_release);
std::lock_guard<std::recursive_mutex> lk(externalEventSection); std::lock_guard<std::recursive_mutex> lk(externalEventSection);
// Move events from async queue into main queue // Move events from async queue into main queue