citra-emu
/
citra-canary
Archived
1
0
Fork 0

Merge pull request #358 from neobrain/pica_progress2

pica_progress followups
This commit is contained in:
bunnei 2015-01-01 20:54:45 -05:00
commit 7c8f6ca051
11 changed files with 385 additions and 125 deletions

View File

@ -10,6 +10,7 @@
#include <QPushButton> #include <QPushButton>
#include <QSpinBox> #include <QSpinBox>
#include "video_core/color.h"
#include "video_core/pica.h" #include "video_core/pica.h"
#include "graphics_framebuffer.hxx" #include "graphics_framebuffer.hxx"
@ -202,7 +203,8 @@ void GraphicsFramebufferWidget::OnUpdate()
framebuffer_address = framebuffer.GetColorBufferPhysicalAddress(); framebuffer_address = framebuffer.GetColorBufferPhysicalAddress();
framebuffer_width = framebuffer.GetWidth(); framebuffer_width = framebuffer.GetWidth();
framebuffer_height = framebuffer.GetHeight(); framebuffer_height = framebuffer.GetHeight();
framebuffer_format = static_cast<Format>(framebuffer.color_format); // TODO: It's unknown how this format is actually specified
framebuffer_format = Format::RGBA8;
break; break;
} }
@ -258,10 +260,10 @@ void GraphicsFramebufferWidget::OnUpdate()
for (unsigned y = 0; y < framebuffer_height; ++y) { for (unsigned y = 0; y < framebuffer_height; ++y) {
for (unsigned x = 0; x < framebuffer_width; ++x) { for (unsigned x = 0; x < framebuffer_width; ++x) {
u16 value = *(u16*)(((u8*)color_buffer) + x * 2 + y * framebuffer_width * 2); u16 value = *(u16*)(((u8*)color_buffer) + x * 2 + y * framebuffer_width * 2);
u8 r = (value >> 11) & 0x1F; u8 r = Color::Convert5To8((value >> 11) & 0x1F);
u8 g = (value >> 6) & 0x1F; u8 g = Color::Convert5To8((value >> 6) & 0x1F);
u8 b = (value >> 1) & 0x1F; u8 b = Color::Convert5To8((value >> 1) & 0x1F);
u8 a = value & 1; u8 a = Color::Convert1To8(value & 1);
decoded_image.setPixel(x, y, qRgba(r, g, b, 255/*a*/)); decoded_image.setPixel(x, y, qRgba(r, g, b, 255/*a*/));
} }

View File

@ -94,11 +94,15 @@ inline void Write(u32 addr, const T data) {
int r, g, b, a; int r, g, b, a;
} source_color = { 0, 0, 0, 0 }; } source_color = { 0, 0, 0, 0 };
// Cheap emulation of horizontal scaling: Just skip each second pixel of the
// input framebuffer. We keep track of this in the pixel_skip variable.
unsigned pixel_skip = (config.scale_horizontally != 0) ? 2 : 1;
switch (config.input_format) { switch (config.input_format) {
case Regs::PixelFormat::RGBA8: case Regs::PixelFormat::RGBA8:
{ {
// TODO: Most likely got the component order messed up. // TODO: Most likely got the component order messed up.
u8* srcptr = source_pointer + x * 4 + y * config.input_width * 4; u8* srcptr = source_pointer + x * 4 * pixel_skip + y * config.input_width * 4 * pixel_skip;
source_color.r = srcptr[0]; // blue source_color.r = srcptr[0]; // blue
source_color.g = srcptr[1]; // green source_color.g = srcptr[1]; // green
source_color.b = srcptr[2]; // red source_color.b = srcptr[2]; // red

View File

@ -157,6 +157,9 @@ struct Regs {
BitField< 8, 3, PixelFormat> input_format; BitField< 8, 3, PixelFormat> input_format;
BitField<12, 3, PixelFormat> output_format; BitField<12, 3, PixelFormat> output_format;
BitField<16, 1, u32> output_tiled; // stores output in a tiled format BitField<16, 1, u32> output_tiled; // stores output in a tiled format
// TODO: Not really sure if this actually scales, or even resizes at all.
BitField<24, 1, u32> scale_horizontally;
}; };
INSERT_PADDING_WORDS(0x1); INSERT_PADDING_WORDS(0x1);

32
src/video_core/color.h Normal file
View File

@ -0,0 +1,32 @@
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/common_types.h"
namespace Color {
/// Convert a 1-bit color component to 8 bit
static inline u8 Convert1To8(u8 value) {
return value * 255;
}
/// Convert a 4-bit color component to 8 bit
static inline u8 Convert4To8(u8 value) {
return (value << 4) | value;
}
/// Convert a 5-bit color component to 8 bit
static inline u8 Convert5To8(u8 value) {
return (value << 3) | (value >> 2);
}
/// Convert a 6-bit color component to 8 bit
static inline u8 Convert6To8(u8 value) {
return (value << 2) | (value >> 4);
}
} // namespace

View File

@ -112,6 +112,11 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
// Initialize data for the current vertex // Initialize data for the current vertex
VertexShader::InputVertex input; VertexShader::InputVertex input;
// Load a debugging token to check whether this gets loaded by the running
// application or not.
static const float24 debug_token = float24::FromRawFloat24(0x00abcdef);
input.attr[0].w = debug_token;
for (int i = 0; i < attribute_config.GetNumTotalAttributes(); ++i) { for (int i = 0; i < attribute_config.GetNumTotalAttributes(); ++i) {
for (unsigned int comp = 0; comp < vertex_attribute_elements[i]; ++comp) { for (unsigned int comp = 0; comp < vertex_attribute_elements[i]; ++comp) {
const u8* srcdata = Memory::GetPointer(PAddrToVAddr(vertex_attribute_sources[i] + vertex_attribute_strides[i] * vertex + comp * vertex_attribute_element_size[i])); const u8* srcdata = Memory::GetPointer(PAddrToVAddr(vertex_attribute_sources[i] + vertex_attribute_strides[i] * vertex + comp * vertex_attribute_element_size[i]));
@ -136,6 +141,16 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
} }
} }
// HACK: Some games do not initialize the vertex position's w component. This leads
// to critical issues since it messes up perspective division. As a
// workaround, we force the fourth component to 1.0 if we find this to be the
// case.
// To do this, we additionally have to assume that the first input attribute
// is the vertex position, since there's no information about this other than
// the empiric observation that this is usually the case.
if (input.attr[0].w == debug_token)
input.attr[0].w = float24::FromFloat32(1.0);
if (g_debug_context) if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::VertexLoaded, (void*)&input); g_debug_context->OnEvent(DebugContext::Event::VertexLoaded, (void*)&input);
@ -173,6 +188,19 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
break; break;
case PICA_REG_INDEX_WORKAROUND(vs_int_uniforms[0], 0x2b1):
case PICA_REG_INDEX_WORKAROUND(vs_int_uniforms[1], 0x2b2):
case PICA_REG_INDEX_WORKAROUND(vs_int_uniforms[2], 0x2b3):
case PICA_REG_INDEX_WORKAROUND(vs_int_uniforms[3], 0x2b4):
{
int index = (id - PICA_REG_INDEX_WORKAROUND(vs_int_uniforms[0], 0x2b1));
auto values = registers.vs_int_uniforms[index];
VertexShader::GetIntUniform(index) = Math::Vec4<u8>(values.x, values.y, values.z, values.w);
LOG_TRACE(HW_GPU, "Set integer uniform %d to %02x %02x %02x %02x",
index, values.x.Value(), values.y.Value(), values.z.Value(), values.w.Value());
break;
}
case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[0], 0x2c1): case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[0], 0x2c1):
case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[1], 0x2c2): case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[1], 0x2c2):
case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[2], 0x2c3): case PICA_REG_INDEX_WORKAROUND(vs_uniform_setup.set_value[2], 0x2c3):

View File

@ -19,6 +19,7 @@
#include "common/log.h" #include "common/log.h"
#include "common/file_util.h" #include "common/file_util.h"
#include "video_core/color.h"
#include "video_core/math.h" #include "video_core/math.h"
#include "video_core/pica.h" #include "video_core/pica.h"
@ -359,29 +360,26 @@ const Math::Vec4<u8> LookupTexture(const u8* source, int x, int y, const Texture
u8 g = ((source_ptr) >> 6) & 0x1F; u8 g = ((source_ptr) >> 6) & 0x1F;
u8 b = (source_ptr >> 1) & 0x1F; u8 b = (source_ptr >> 1) & 0x1F;
u8 a = source_ptr & 1; u8 a = source_ptr & 1;
return Math::MakeVec<u8>((r << 3) | (r >> 2), (g << 3) | (g >> 2), (b << 3) | (b >> 2), disable_alpha ? 255 : (a * 255)); return Math::MakeVec<u8>(Color::Convert5To8(r), Color::Convert5To8(g),
Color::Convert5To8(b), disable_alpha ? 255 : Color::Convert1To8(a));
} }
case Regs::TextureFormat::RGB565: case Regs::TextureFormat::RGB565:
{ {
const u16 source_ptr = *(const u16*)(source + offset * 2); const u16 source_ptr = *(const u16*)(source + offset * 2);
u8 r = (source_ptr >> 11) & 0x1F; u8 r = Color::Convert5To8((source_ptr >> 11) & 0x1F);
u8 g = ((source_ptr) >> 5) & 0x3F; u8 g = Color::Convert6To8(((source_ptr) >> 5) & 0x3F);
u8 b = (source_ptr) & 0x1F; u8 b = Color::Convert5To8((source_ptr) & 0x1F);
return Math::MakeVec<u8>((r << 3) | (r >> 2), (g << 2) | (g >> 4), (b << 3) | (b >> 2), 255); return Math::MakeVec<u8>(r, g, b, 255);
} }
case Regs::TextureFormat::RGBA4: case Regs::TextureFormat::RGBA4:
{ {
const u8* source_ptr = source + offset * 2; const u8* source_ptr = source + offset * 2;
u8 r = source_ptr[1] >> 4; u8 r = Color::Convert4To8(source_ptr[1] >> 4);
u8 g = source_ptr[1] & 0xFF; u8 g = Color::Convert4To8(source_ptr[1] & 0xF);
u8 b = source_ptr[0] >> 4; u8 b = Color::Convert4To8(source_ptr[0] >> 4);
u8 a = source_ptr[0] & 0xFF; u8 a = Color::Convert4To8(source_ptr[0] & 0xF);
r = (r << 4) | r;
g = (g << 4) | g;
b = (b << 4) | b;
a = (a << 4) | a;
return { r, g, b, disable_alpha ? (u8)255 : a }; return { r, g, b, disable_alpha ? (u8)255 : a };
} }
@ -389,13 +387,11 @@ const Math::Vec4<u8> LookupTexture(const u8* source, int x, int y, const Texture
{ {
const u8* source_ptr = source + offset * 2; const u8* source_ptr = source + offset * 2;
// TODO: component order not verified
if (disable_alpha) { if (disable_alpha) {
// Show intensity as red, alpha as green // Show intensity as red, alpha as green
return { source_ptr[0], source_ptr[1], 0, 255 }; return { source_ptr[1], source_ptr[0], 0, 255 };
} else { } else {
return { source_ptr[0], source_ptr[0], source_ptr[0], source_ptr[1]}; return { source_ptr[1], source_ptr[1], source_ptr[1], source_ptr[0]};
} }
} }
@ -418,14 +414,10 @@ const Math::Vec4<u8> LookupTexture(const u8* source, int x, int y, const Texture
case Regs::TextureFormat::IA4: case Regs::TextureFormat::IA4:
{ {
const u8* source_ptr = source + offset / 2; const u8* source_ptr = source + offset;
// TODO: component order not verified u8 i = Color::Convert4To8(((*source_ptr) & 0xF0) >> 4);
u8 a = Color::Convert4To8((*source_ptr) & 0xF);
u8 i = (*source_ptr) & 0xF;
u8 a = ((*source_ptr) & 0xF0) >> 4;
a |= a << 4;
i |= i << 4;
if (disable_alpha) { if (disable_alpha) {
// Show intensity as red, alpha as green // Show intensity as red, alpha as green
@ -439,15 +431,13 @@ const Math::Vec4<u8> LookupTexture(const u8* source, int x, int y, const Texture
{ {
const u8* source_ptr = source + offset / 2; const u8* source_ptr = source + offset / 2;
// TODO: component order not verified
u8 a = (coarse_x % 2) ? ((*source_ptr)&0xF) : (((*source_ptr) & 0xF0) >> 4); u8 a = (coarse_x % 2) ? ((*source_ptr)&0xF) : (((*source_ptr) & 0xF0) >> 4);
a |= a << 4; a = Color::Convert4To8(a);
if (disable_alpha) { if (disable_alpha) {
return { *source_ptr, *source_ptr, *source_ptr, 255 }; return { a, a, a, 255 };
} else { } else {
return { 0, 0, 0, *source_ptr }; return { 0, 0, 0, a };
} }
} }

View File

@ -50,7 +50,19 @@ struct Regs {
u32 trigger_irq; u32 trigger_irq;
INSERT_PADDING_WORDS(0x30); INSERT_PADDING_WORDS(0x2f);
enum class CullMode : u32 {
// Select which polygons are considered to be "frontfacing".
KeepAll = 0,
KeepClockWise = 1,
KeepCounterClockWise = 2,
// TODO: What does the third value imply?
};
union {
BitField<0, 2, CullMode> cull_mode;
};
BitField<0, 24, u32> viewport_size_x; BitField<0, 24, u32> viewport_size_x;
@ -289,7 +301,7 @@ struct Regs {
TevStageConfig tev_stage4; TevStageConfig tev_stage4;
INSERT_PADDING_WORDS(0x3); INSERT_PADDING_WORDS(0x3);
TevStageConfig tev_stage5; TevStageConfig tev_stage5;
INSERT_PADDING_WORDS(0x13); INSERT_PADDING_WORDS(0x3);
const std::array<Regs::TevStageConfig,6> GetTevStages() const { const std::array<Regs::TevStageConfig,6> GetTevStages() const {
return { tev_stage0, tev_stage1, return { tev_stage0, tev_stage1,
@ -297,6 +309,60 @@ struct Regs {
tev_stage4, tev_stage5 }; tev_stage4, tev_stage5 };
}; };
struct {
enum DepthFunc : u32 {
Always = 1,
LessThan = 4,
GreaterThan = 6,
};
union {
// If false, logic blending is used
BitField<8, 1, u32> alphablend_enable;
};
union {
enum BlendEquation : u32 {
Add = 0,
};
enum BlendFactor : u32 {
Zero = 0,
One = 1,
SourceAlpha = 6,
OneMinusSourceAlpha = 7,
};
BitField< 0, 8, BlendEquation> blend_equation_rgb;
BitField< 8, 8, BlendEquation> blend_equation_a;
BitField<16, 4, BlendFactor> factor_source_rgb;
BitField<20, 4, BlendFactor> factor_dest_rgb;
BitField<24, 4, BlendFactor> factor_source_a;
BitField<28, 4, BlendFactor> factor_dest_a;
} alpha_blending;
union {
enum Op {
Set = 4,
};
BitField<0, 4, Op> op;
} logic_op;
INSERT_PADDING_WORDS(0x4);
union {
BitField< 0, 1, u32> depth_test_enable;
BitField< 4, 3, DepthFunc> depth_test_func;
BitField<12, 1, u32> depth_write_enable;
};
INSERT_PADDING_WORDS(0x8);
} output_merger;
struct { struct {
enum ColorFormat : u32 { enum ColorFormat : u32 {
RGBA8 = 0, RGBA8 = 0,
@ -495,8 +561,14 @@ struct Regs {
INSERT_PADDING_WORDS(0x51); INSERT_PADDING_WORDS(0x51);
BitField<0, 16, u32> vs_bool_uniforms; BitField<0, 16, u32> vs_bool_uniforms;
union {
BitField< 0, 8, u32> x;
BitField< 8, 8, u32> y;
BitField<16, 8, u32> z;
BitField<24, 8, u32> w;
} vs_int_uniforms[4];
INSERT_PADDING_WORDS(0x9); INSERT_PADDING_WORDS(0x5);
// Offset to shader program entry point (in words) // Offset to shader program entry point (in words)
BitField<0, 16, u32> vs_main_offset; BitField<0, 16, u32> vs_main_offset;
@ -599,6 +671,7 @@ struct Regs {
} while(false) } while(false)
ADD_FIELD(trigger_irq); ADD_FIELD(trigger_irq);
ADD_FIELD(cull_mode);
ADD_FIELD(viewport_size_x); ADD_FIELD(viewport_size_x);
ADD_FIELD(viewport_size_y); ADD_FIELD(viewport_size_y);
ADD_FIELD(viewport_depth_range); ADD_FIELD(viewport_depth_range);
@ -617,6 +690,7 @@ struct Regs {
ADD_FIELD(tev_stage3); ADD_FIELD(tev_stage3);
ADD_FIELD(tev_stage4); ADD_FIELD(tev_stage4);
ADD_FIELD(tev_stage5); ADD_FIELD(tev_stage5);
ADD_FIELD(output_merger);
ADD_FIELD(framebuffer); ADD_FIELD(framebuffer);
ADD_FIELD(vertex_attributes); ADD_FIELD(vertex_attributes);
ADD_FIELD(index_array); ADD_FIELD(index_array);
@ -625,6 +699,7 @@ struct Regs {
ADD_FIELD(trigger_draw_indexed); ADD_FIELD(trigger_draw_indexed);
ADD_FIELD(triangle_topology); ADD_FIELD(triangle_topology);
ADD_FIELD(vs_bool_uniforms); ADD_FIELD(vs_bool_uniforms);
ADD_FIELD(vs_int_uniforms);
ADD_FIELD(vs_main_offset); ADD_FIELD(vs_main_offset);
ADD_FIELD(vs_input_register_map); ADD_FIELD(vs_input_register_map);
ADD_FIELD(vs_uniform_setup); ADD_FIELD(vs_uniform_setup);
@ -668,6 +743,7 @@ private:
#define ASSERT_REG_POSITION(field_name, position) static_assert(offsetof(Regs, field_name) == position * 4, "Field "#field_name" has invalid position") #define ASSERT_REG_POSITION(field_name, position) static_assert(offsetof(Regs, field_name) == position * 4, "Field "#field_name" has invalid position")
ASSERT_REG_POSITION(trigger_irq, 0x10); ASSERT_REG_POSITION(trigger_irq, 0x10);
ASSERT_REG_POSITION(cull_mode, 0x40);
ASSERT_REG_POSITION(viewport_size_x, 0x41); ASSERT_REG_POSITION(viewport_size_x, 0x41);
ASSERT_REG_POSITION(viewport_size_y, 0x43); ASSERT_REG_POSITION(viewport_size_y, 0x43);
ASSERT_REG_POSITION(viewport_depth_range, 0x4d); ASSERT_REG_POSITION(viewport_depth_range, 0x4d);
@ -688,6 +764,7 @@ ASSERT_REG_POSITION(tev_stage2, 0xd0);
ASSERT_REG_POSITION(tev_stage3, 0xd8); ASSERT_REG_POSITION(tev_stage3, 0xd8);
ASSERT_REG_POSITION(tev_stage4, 0xf0); ASSERT_REG_POSITION(tev_stage4, 0xf0);
ASSERT_REG_POSITION(tev_stage5, 0xf8); ASSERT_REG_POSITION(tev_stage5, 0xf8);
ASSERT_REG_POSITION(output_merger, 0x100);
ASSERT_REG_POSITION(framebuffer, 0x110); ASSERT_REG_POSITION(framebuffer, 0x110);
ASSERT_REG_POSITION(vertex_attributes, 0x200); ASSERT_REG_POSITION(vertex_attributes, 0x200);
ASSERT_REG_POSITION(index_array, 0x227); ASSERT_REG_POSITION(index_array, 0x227);
@ -696,6 +773,7 @@ ASSERT_REG_POSITION(trigger_draw, 0x22e);
ASSERT_REG_POSITION(trigger_draw_indexed, 0x22f); ASSERT_REG_POSITION(trigger_draw_indexed, 0x22f);
ASSERT_REG_POSITION(triangle_topology, 0x25e); ASSERT_REG_POSITION(triangle_topology, 0x25e);
ASSERT_REG_POSITION(vs_bool_uniforms, 0x2b0); ASSERT_REG_POSITION(vs_bool_uniforms, 0x2b0);
ASSERT_REG_POSITION(vs_int_uniforms, 0x2b1);
ASSERT_REG_POSITION(vs_main_offset, 0x2ba); ASSERT_REG_POSITION(vs_main_offset, 0x2ba);
ASSERT_REG_POSITION(vs_input_register_map, 0x2bb); ASSERT_REG_POSITION(vs_input_register_map, 0x2bb);
ASSERT_REG_POSITION(vs_uniform_setup, 0x2c0); ASSERT_REG_POSITION(vs_uniform_setup, 0x2c0);

View File

@ -18,31 +18,43 @@ namespace Pica {
namespace Rasterizer { namespace Rasterizer {
static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) { static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
u32* color_buffer = reinterpret_cast<u32*>(Memory::GetPointer(PAddrToVAddr(registers.framebuffer.GetColorBufferPhysicalAddress()))); const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress();
u32* color_buffer = reinterpret_cast<u32*>(Memory::GetPointer(PAddrToVAddr(addr)));
u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b(); u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b();
// Assuming RGBA8 format until actual framebuffer format handling is implemented // Assuming RGBA8 format until actual framebuffer format handling is implemented
*(color_buffer + x + y * registers.framebuffer.GetWidth()) = value; *(color_buffer + x + y * registers.framebuffer.GetWidth()) = value;
} }
static const Math::Vec4<u8> GetPixel(int x, int y) {
const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress();
u32* color_buffer_u32 = reinterpret_cast<u32*>(Memory::GetPointer(PAddrToVAddr(addr)));
u32 value = *(color_buffer_u32 + x + y * registers.framebuffer.GetWidth());
Math::Vec4<u8> ret;
ret.a() = value >> 24;
ret.r() = (value >> 16) & 0xFF;
ret.g() = (value >> 8) & 0xFF;
ret.b() = value & 0xFF;
return ret;
}
static u32 GetDepth(int x, int y) { static u32 GetDepth(int x, int y) {
u16* depth_buffer = reinterpret_cast<u16*>(Memory::GetPointer(PAddrToVAddr(registers.framebuffer.GetDepthBufferPhysicalAddress()))); const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress();
u16* depth_buffer = reinterpret_cast<u16*>(Memory::GetPointer(PAddrToVAddr(addr)));
// Assuming 16-bit depth buffer format until actual format handling is implemented // Assuming 16-bit depth buffer format until actual format handling is implemented
return *(depth_buffer + x + y * registers.framebuffer.GetWidth()); return *(depth_buffer + x + y * registers.framebuffer.GetWidth());
} }
static void SetDepth(int x, int y, u16 value) { static void SetDepth(int x, int y, u16 value) {
u16* depth_buffer = reinterpret_cast<u16*>(Memory::GetPointer(PAddrToVAddr(registers.framebuffer.GetDepthBufferPhysicalAddress()))); const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress();
u16* depth_buffer = reinterpret_cast<u16*>(Memory::GetPointer(PAddrToVAddr(addr)));
// Assuming 16-bit depth buffer format until actual format handling is implemented // Assuming 16-bit depth buffer format until actual format handling is implemented
*(depth_buffer + x + y * registers.framebuffer.GetWidth()) = value; *(depth_buffer + x + y * registers.framebuffer.GetWidth()) = value;
} }
void ProcessTriangle(const VertexShader::OutputVertex& v0,
const VertexShader::OutputVertex& v1,
const VertexShader::OutputVertex& v2)
{
// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values // NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
struct Fix12P4 { struct Fix12P4 {
Fix12P4() {} Fix12P4() {}
@ -63,6 +75,25 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
u16 val; u16 val;
}; };
/**
* Calculate signed area of the triangle spanned by the three argument vertices.
* The sign denotes an orientation.
*
* @todo define orientation concretely.
*/
static int SignedArea (const Math::Vec2<Fix12P4>& vtx1,
const Math::Vec2<Fix12P4>& vtx2,
const Math::Vec2<Fix12P4>& vtx3) {
const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0);
const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0);
// TODO: There is a very small chance this will overflow for sizeof(int) == 4
return Math::Cross(vec1, vec2).z;
};
void ProcessTriangle(const VertexShader::OutputVertex& v0,
const VertexShader::OutputVertex& v1,
const VertexShader::OutputVertex& v2)
{
// vertex positions in rasterizer coordinates // vertex positions in rasterizer coordinates
auto FloatToFix = [](float24 flt) { auto FloatToFix = [](float24 flt) {
return Fix12P4(static_cast<unsigned short>(flt.ToFloat32() * 16.0f)); return Fix12P4(static_cast<unsigned short>(flt.ToFloat32() * 16.0f));
@ -70,10 +101,23 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
auto ScreenToRasterizerCoordinates = [FloatToFix](const Math::Vec3<float24> vec) { auto ScreenToRasterizerCoordinates = [FloatToFix](const Math::Vec3<float24> vec) {
return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)}; return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
}; };
Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos), Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos),
ScreenToRasterizerCoordinates(v1.screenpos), ScreenToRasterizerCoordinates(v1.screenpos),
ScreenToRasterizerCoordinates(v2.screenpos) }; ScreenToRasterizerCoordinates(v2.screenpos) };
if (registers.cull_mode == Regs::CullMode::KeepClockWise) {
// Reverse vertex order and use the CCW code path.
std::swap(vtxpos[1], vtxpos[2]);
}
if (registers.cull_mode != Regs::CullMode::KeepAll) {
// Cull away triangles which are wound clockwise.
// TODO: A check for degenerate triangles ("== 0") should be considered for CullMode::KeepAll
if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0)
return;
}
// TODO: Proper scissor rect test! // TODO: Proper scissor rect test!
u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
@ -116,18 +160,9 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
for (u16 x = min_x; x < max_x; x += 0x10) { for (u16 x = min_x; x < max_x; x += 0x10) {
// Calculate the barycentric coordinates w0, w1 and w2 // Calculate the barycentric coordinates w0, w1 and w2
auto orient2d = [](const Math::Vec2<Fix12P4>& vtx1, int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
const Math::Vec2<Fix12P4>& vtx2, int w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
const Math::Vec2<Fix12P4>& vtx3) { int w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0);
const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0);
// TODO: There is a very small chance this will overflow for sizeof(int) == 4
return Math::Cross(vec1, vec2).z;
};
int w0 = bias0 + orient2d(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
int w1 = bias1 + orient2d(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
int w2 = bias2 + orient2d(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
int wsum = w0 + w1 + w2; int wsum = w0 + w1 + w2;
// If current pixel is not covered by the current primitive // If current pixel is not covered by the current primitive
@ -201,8 +236,8 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
return 0; return 0;
} }
}; };
s = GetWrappedTexCoord(registers.texture0.wrap_s, s, registers.texture0.width); s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width);
t = GetWrappedTexCoord(registers.texture0.wrap_t, t, registers.texture0.height); t = texture.config.height - 1 - GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height);
u8* texture_data = Memory::GetPointer(PAddrToVAddr(texture.config.GetPhysicalAddress())); u8* texture_data = Memory::GetPointer(PAddrToVAddr(texture.config.GetPhysicalAddress()));
auto info = DebugUtils::TextureInfo::FromPicaRegister(texture.config, texture.format); auto info = DebugUtils::TextureInfo::FromPicaRegister(texture.config, texture.format);
@ -279,12 +314,15 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
} }
}; };
auto GetColorModifier = [](ColorModifier factor, const Math::Vec4<u8>& values) -> Math::Vec3<u8> { static auto GetColorModifier = [](ColorModifier factor, const Math::Vec4<u8>& values) -> Math::Vec3<u8> {
switch (factor) switch (factor)
{ {
case ColorModifier::SourceColor: case ColorModifier::SourceColor:
return values.rgb(); return values.rgb();
case ColorModifier::OneMinusSourceColor:
return (Math::Vec3<u8>(255, 255, 255) - values.rgb()).Cast<u8>();
case ColorModifier::SourceAlpha: case ColorModifier::SourceAlpha:
return { values.a(), values.a(), values.a() }; return { values.a(), values.a(), values.a() };
@ -295,7 +333,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
} }
}; };
auto GetAlphaModifier = [](AlphaModifier factor, u8 value) -> u8 { static auto GetAlphaModifier = [](AlphaModifier factor, u8 value) -> u8 {
switch (factor) { switch (factor) {
case AlphaModifier::SourceAlpha: case AlphaModifier::SourceAlpha:
return value; return value;
@ -310,7 +348,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
} }
}; };
auto ColorCombine = [](Operation op, const Math::Vec3<u8> input[3]) -> Math::Vec3<u8> { static auto ColorCombine = [](Operation op, const Math::Vec3<u8> input[3]) -> Math::Vec3<u8> {
switch (op) { switch (op) {
case Operation::Replace: case Operation::Replace:
return input[0]; return input[0];
@ -330,6 +368,15 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
case Operation::Lerp: case Operation::Lerp:
return ((input[0] * input[2] + input[1] * (Math::MakeVec<u8>(255, 255, 255) - input[2]).Cast<u8>()) / 255).Cast<u8>(); return ((input[0] * input[2] + input[1] * (Math::MakeVec<u8>(255, 255, 255) - input[2]).Cast<u8>()) / 255).Cast<u8>();
case Operation::Subtract:
{
auto result = input[0].Cast<int>() - input[1].Cast<int>();
result.r() = std::max(0, result.r());
result.g() = std::max(0, result.g());
result.b() = std::max(0, result.b());
return result.Cast<u8>();
}
default: default:
LOG_ERROR(HW_GPU, "Unknown color combiner operation %d\n", (int)op); LOG_ERROR(HW_GPU, "Unknown color combiner operation %d\n", (int)op);
_dbg_assert_(HW_GPU, 0); _dbg_assert_(HW_GPU, 0);
@ -337,7 +384,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
} }
}; };
auto AlphaCombine = [](Operation op, const std::array<u8,3>& input) -> u8 { static auto AlphaCombine = [](Operation op, const std::array<u8,3>& input) -> u8 {
switch (op) { switch (op) {
case Operation::Replace: case Operation::Replace:
return input[0]; return input[0];
@ -351,6 +398,9 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
case Operation::Lerp: case Operation::Lerp:
return (input[0] * input[2] + input[1] * (255 - input[2])) / 255; return (input[0] * input[2] + input[1] * (255 - input[2])) / 255;
case Operation::Subtract:
return std::max(0, (int)input[0] - (int)input[1]);
default: default:
LOG_ERROR(HW_GPU, "Unknown alpha combiner operation %d\n", (int)op); LOG_ERROR(HW_GPU, "Unknown alpha combiner operation %d\n", (int)op);
_dbg_assert_(HW_GPU, 0); _dbg_assert_(HW_GPU, 0);
@ -381,12 +431,111 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
combiner_output = Math::MakeVec(color_output, alpha_output); combiner_output = Math::MakeVec(color_output, alpha_output);
} }
// TODO: Not sure if the multiplication by 65535 has already been taken care // TODO: Does depth indeed only get written even if depth testing is enabled?
// of when transforming to screen coordinates or not. if (registers.output_merger.depth_test_enable) {
u16 z = (u16)(((float)v0.screenpos[2].ToFloat32() * w0 + u16 z = (u16)(-(v0.screenpos[2].ToFloat32() * w0 +
(float)v1.screenpos[2].ToFloat32() * w1 + v1.screenpos[2].ToFloat32() * w1 +
(float)v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum); v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum);
u16 ref_z = GetDepth(x >> 4, y >> 4);
bool pass = false;
switch (registers.output_merger.depth_test_func) {
case registers.output_merger.Always:
pass = true;
break;
case registers.output_merger.LessThan:
pass = z < ref_z;
break;
case registers.output_merger.GreaterThan:
pass = z > ref_z;
break;
default:
LOG_ERROR(HW_GPU, "Unknown depth test function %x", registers.output_merger.depth_test_func.Value());
break;
}
if (!pass)
continue;
if (registers.output_merger.depth_write_enable)
SetDepth(x >> 4, y >> 4, z); SetDepth(x >> 4, y >> 4, z);
}
auto dest = GetPixel(x >> 4, y >> 4);
if (registers.output_merger.alphablend_enable) {
auto params = registers.output_merger.alpha_blending;
auto LookupFactorRGB = [&](decltype(params)::BlendFactor factor) -> Math::Vec3<u8> {
switch(factor) {
case params.Zero:
return Math::Vec3<u8>(0, 0, 0);
case params.One:
return Math::Vec3<u8>(255, 255, 255);
case params.SourceAlpha:
return Math::MakeVec(combiner_output.a(), combiner_output.a(), combiner_output.a());
case params.OneMinusSourceAlpha:
return Math::Vec3<u8>(255-combiner_output.a(), 255-combiner_output.a(), 255-combiner_output.a());
default:
LOG_CRITICAL(HW_GPU, "Unknown color blend factor %x", factor);
exit(0);
break;
}
};
auto LookupFactorA = [&](decltype(params)::BlendFactor factor) -> u8 {
switch(factor) {
case params.Zero:
return 0;
case params.One:
return 255;
case params.SourceAlpha:
return combiner_output.a();
case params.OneMinusSourceAlpha:
return 255 - combiner_output.a();
default:
LOG_CRITICAL(HW_GPU, "Unknown alpha blend factor %x", factor);
exit(0);
break;
}
};
auto srcfactor = Math::MakeVec(LookupFactorRGB(params.factor_source_rgb),
LookupFactorA(params.factor_source_a));
auto dstfactor = Math::MakeVec(LookupFactorRGB(params.factor_dest_rgb),
LookupFactorA(params.factor_dest_a));
switch (params.blend_equation_rgb) {
case params.Add:
{
auto result = (combiner_output * srcfactor + dest * dstfactor) / 255;
result.r() = std::min(255, result.r());
result.g() = std::min(255, result.g());
result.b() = std::min(255, result.b());
combiner_output = result.Cast<u8>();
break;
}
default:
LOG_CRITICAL(HW_GPU, "Unknown RGB blend equation %x", params.blend_equation_rgb.Value());
exit(0);
}
} else {
LOG_CRITICAL(HW_GPU, "logic op: %x", registers.output_merger.logic_op);
exit(0);
}
DrawPixel(x >> 4, y >> 4, combiner_output); DrawPixel(x >> 4, y >> 4, combiner_output);
} }

View File

@ -8,32 +8,6 @@
#include "common/common_types.h" #include "common/common_types.h"
namespace FormatPrecision {
/// Adjust RGBA8 color with RGBA6 precision
static inline u32 rgba8_with_rgba6(u32 src) {
u32 color = src;
color &= 0xFCFCFCFC;
color |= (color >> 6) & 0x03030303;
return color;
}
/// Adjust RGBA8 color with RGB565 precision
static inline u32 rgba8_with_rgb565(u32 src) {
u32 color = (src & 0xF8FCF8);
color |= (color >> 5) & 0x070007;
color |= (color >> 6) & 0x000300;
color |= 0xFF000000;
return color;
}
/// Adjust Z24 depth value with Z16 precision
static inline u32 z24_with_z16(u32 src) {
return (src & 0xFFFF00) | (src >> 16);
}
} // namespace
namespace VideoCore { namespace VideoCore {
/// Structure for the TGA texture format (for dumping) /// Structure for the TGA texture format (for dumping)

View File

@ -30,6 +30,8 @@ static struct {
Math::Vec4<float24> f[96]; Math::Vec4<float24> f[96];
std::array<bool,16> b; std::array<bool,16> b;
std::array<Math::Vec4<u8>,4> i;
} shader_uniforms; } shader_uniforms;
// TODO: Not sure where the shader binary and swizzle patterns are supposed to be loaded to! // TODO: Not sure where the shader binary and swizzle patterns are supposed to be loaded to!
@ -37,33 +39,31 @@ static struct {
static std::array<u32, 1024> shader_memory; static std::array<u32, 1024> shader_memory;
static std::array<u32, 1024> swizzle_data; static std::array<u32, 1024> swizzle_data;
void SubmitShaderMemoryChange(u32 addr, u32 value) void SubmitShaderMemoryChange(u32 addr, u32 value) {
{
shader_memory[addr] = value; shader_memory[addr] = value;
} }
void SubmitSwizzleDataChange(u32 addr, u32 value) void SubmitSwizzleDataChange(u32 addr, u32 value) {
{
swizzle_data[addr] = value; swizzle_data[addr] = value;
} }
Math::Vec4<float24>& GetFloatUniform(u32 index) Math::Vec4<float24>& GetFloatUniform(u32 index) {
{
return shader_uniforms.f[index]; return shader_uniforms.f[index];
} }
bool& GetBoolUniform(u32 index) bool& GetBoolUniform(u32 index) {
{
return shader_uniforms.b[index]; return shader_uniforms.b[index];
} }
const std::array<u32, 1024>& GetShaderBinary() Math::Vec4<u8>& GetIntUniform(u32 index) {
{ return shader_uniforms.i[index];
}
const std::array<u32, 1024>& GetShaderBinary() {
return shader_memory; return shader_memory;
} }
const std::array<u32, 1024>& GetSwizzlePatterns() const std::array<u32, 1024>& GetSwizzlePatterns() {
{
return swizzle_data; return swizzle_data;
} }
@ -437,8 +437,7 @@ static void ProcessShaderCode(VertexShaderState& state) {
} }
} }
OutputVertex RunShader(const InputVertex& input, int num_attributes) OutputVertex RunShader(const InputVertex& input, int num_attributes) {
{
VertexShaderState state; VertexShaderState state;
const u32* main = &shader_memory[registers.vs_main_offset]; const u32* main = &shader_memory[registers.vs_main_offset];

View File

@ -73,6 +73,7 @@ OutputVertex RunShader(const InputVertex& input, int num_attributes);
Math::Vec4<float24>& GetFloatUniform(u32 index); Math::Vec4<float24>& GetFloatUniform(u32 index);
bool& GetBoolUniform(u32 index); bool& GetBoolUniform(u32 index);
Math::Vec4<u8>& GetIntUniform(u32 index);
const std::array<u32, 1024>& GetShaderBinary(); const std::array<u32, 1024>& GetShaderBinary();
const std::array<u32, 1024>& GetSwizzlePatterns(); const std::array<u32, 1024>& GetSwizzlePatterns();