citra-emu
/
citra-canary
Archived
1
0
Fork 0

audio_core: hle: mf: address reviews from @B3N30

This commit is contained in:
liushuyu 2019-01-05 21:53:24 -07:00 committed by B3N30
parent 11e277149c
commit 7f5b54fda4
8 changed files with 113 additions and 105 deletions

View File

@ -30,7 +30,7 @@ add_library(audio_core STATIC
$<$<BOOL:${SDL2_FOUND}>:sdl2_sink.cpp sdl2_sink.h> $<$<BOOL:${SDL2_FOUND}>:sdl2_sink.cpp sdl2_sink.h>
$<$<BOOL:${ENABLE_CUBEB}>:cubeb_sink.cpp cubeb_sink.h> $<$<BOOL:${ENABLE_CUBEB}>:cubeb_sink.cpp cubeb_sink.h>
$<$<BOOL:${FFMPEG_FOUND}>:hle/ffmpeg_decoder.cpp hle/ffmpeg_decoder.h hle/ffmpeg_dl.cpp hle/ffmpeg_dl.h> $<$<BOOL:${FFMPEG_FOUND}>:hle/ffmpeg_decoder.cpp hle/ffmpeg_decoder.h hle/ffmpeg_dl.cpp hle/ffmpeg_dl.h>
$<$<BOOL:${ENABLE_MF}>:hle/wmf_decoder.cpp hle/wmf_decoder.h hle/wmf_decoder_utils.cpp hle/wmf_decoder_utils.h hle/adts_reader.c> $<$<BOOL:${ENABLE_MF}>:hle/wmf_decoder.cpp hle/wmf_decoder.h hle/wmf_decoder_utils.cpp hle/wmf_decoder_utils.h hle/adts_reader.cpp>
) )
create_target_directory_groups(audio_core) create_target_directory_groups(audio_core)

View File

@ -1,20 +1,20 @@
// Copyright 2019 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once #pragma once
#ifndef ADTS_ADT
#define ADTS_ADT
#include <stdbool.h> #include <array>
#include <stdint.h> #include "common/common_types.h"
#include <string.h>
struct ADTSData { struct ADTSData {
bool MPEG2; bool MPEG2;
uint8_t profile; u8 profile;
uint8_t channels; u8 channels;
uint8_t channel_idx; u8 channel_idx;
uint8_t framecount; u8 framecount;
uint8_t samplerate_idx; u8 samplerate_idx;
uint32_t length; u32 length;
uint32_t samplerate; u32 samplerate;
}; };
typedef struct ADTSData ADTSData; typedef struct ADTSData ADTSData;
@ -22,10 +22,9 @@ typedef struct ADTSData ADTSData;
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif // __cplusplus #endif // __cplusplus
uint32_t parse_adts(char* buffer, struct ADTSData* out); u32 parse_adts(char* buffer, struct ADTSData* out);
// last two bytes of MF AAC decoder user data // last two bytes of MF AAC decoder user data
uint16_t mf_get_aac_tag(struct ADTSData input); u16 mf_get_aac_tag(struct ADTSData input);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif // __cplusplus #endif // __cplusplus
#endif // ADTS_ADT

View File

@ -1,12 +1,14 @@
// Copyright 2019 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "adts.h" #include "adts.h"
const uint32_t freq_table[16] = {96000, 88200, 64000, 48000, 44100, 32000, 24000, 22050, constexpr std::array<u32, 16> freq_table = {96000, 88200, 64000, 48000, 44100, 32000, 24000, 22050,
16000, 12000, 11025, 8000, 7350, 0, 0, 0}; 16000, 12000, 11025, 8000, 7350, 0, 0, 0};
const short channel_table[8] = {0, 1, 2, 3, 4, 5, 6, 8}; constexpr std::array<u8, 8> channel_table = {0, 1, 2, 3, 4, 5, 6, 8};
uint32_t parse_adts(char* buffer, struct ADTSData* out) { u32 parse_adts(char* buffer, struct ADTSData* out) {
uint32_t tmp = 0; u32 tmp = 0;
// sync word 0xfff // sync word 0xfff
tmp = (buffer[0] << 8) | (buffer[1] & 0xf0); tmp = (buffer[0] << 8) | (buffer[1] & 0xf0);
@ -38,8 +40,8 @@ uint32_t parse_adts(char* buffer, struct ADTSData* out) {
} }
// last two bytes of MF AAC decoder user data // last two bytes of MF AAC decoder user data
uint16_t mf_get_aac_tag(struct ADTSData input) { u16 mf_get_aac_tag(struct ADTSData input) {
uint16_t tag = 0; u16 tag = 0;
tag |= input.profile << 11; tag |= input.profile << 11;
tag |= input.samplerate_idx << 7; tag |= input.samplerate_idx << 7;

View File

@ -27,13 +27,13 @@ private:
Memory::MemorySystem& memory; Memory::MemorySystem& memory;
IMFTransform* transform = NULL; IMFTransform* transform = nullptr;
DWORD in_stream_id = 0; DWORD in_stream_id = 0;
DWORD out_stream_id = 0; DWORD out_stream_id = 0;
}; };
WMFDecoder::Impl::Impl(Memory::MemorySystem& memory) : memory(memory) { WMFDecoder::Impl::Impl(Memory::MemorySystem& memory) : memory(memory) {
mf_coinit(); MFCoInit();
} }
WMFDecoder::Impl::~Impl() = default; WMFDecoder::Impl::~Impl() = default;
@ -46,7 +46,7 @@ std::optional<BinaryResponse> WMFDecoder::Impl::ProcessRequest(const BinaryReque
switch (request.cmd) { switch (request.cmd) {
case DecoderCommand::Init: { case DecoderCommand::Init: {
LOG_INFO(Audio_DSP, "AACDecoder initializing"); LOG_INFO(Audio_DSP, "WMFDecoder initializing");
return Initalize(request); return Initalize(request);
} }
case DecoderCommand::Decode: { case DecoderCommand::Decode: {
@ -73,7 +73,7 @@ std::optional<BinaryResponse> WMFDecoder::Impl::Initalize(const BinaryRequest& r
std::memcpy(&response, &request, sizeof(response)); std::memcpy(&response, &request, sizeof(response));
response.unknown1 = 0x0; response.unknown1 = 0x0;
if (mf_decoder_init(&transform) != 0) { if (MFDecoderInit(&transform) != 0) {
LOG_CRITICAL(Audio_DSP, "Can't init decoder"); LOG_CRITICAL(Audio_DSP, "Can't init decoder");
return response; return response;
} }
@ -95,8 +95,8 @@ std::optional<BinaryResponse> WMFDecoder::Impl::Initalize(const BinaryRequest& r
void WMFDecoder::Impl::Clear() { void WMFDecoder::Impl::Clear() {
if (initalized) { if (initalized) {
mf_flush(&transform); MFFlush(&transform);
mf_deinit(&transform); MFDeInit(&transform);
} }
initalized = false; initalized = false;
selected = false; selected = false;
@ -105,16 +105,16 @@ void WMFDecoder::Impl::Clear() {
int WMFDecoder::Impl::DecodingLoop(ADTSData adts_header, int WMFDecoder::Impl::DecodingLoop(ADTSData adts_header,
std::array<std::vector<u8>, 2>& out_streams) { std::array<std::vector<u8>, 2>& out_streams) {
int output_status = 0; int output_status = 0;
char* output_buffer = NULL; char* output_buffer = nullptr;
DWORD output_len = 0; DWORD output_len = 0;
IMFSample* output = NULL; IMFSample* output = nullptr;
while (true) { while (true) {
output_status = receive_sample(transform, out_stream_id, &output); output_status = ReceiveSample(transform, out_stream_id, &output);
// 0 -> okay; 3 -> okay but more data available (buffer too small) // 0 -> okay; 3 -> okay but more data available (buffer too small)
if (output_status == 0 || output_status == 3) { if (output_status == 0 || output_status == 3) {
copy_sample_to_buffer(output, (void**)&output_buffer, &output_len); CopySampleToBuffer(output, (void**)&output_buffer, &output_len);
// the following was taken from ffmpeg version of the decoder // the following was taken from ffmpeg version of the decoder
f32 val_f32; f32 val_f32;
@ -174,12 +174,12 @@ std::optional<BinaryResponse> WMFDecoder::Impl::Decode(const BinaryRequest& requ
u8* data = memory.GetFCRAMPointer(request.src_addr - Memory::FCRAM_PADDR); u8* data = memory.GetFCRAMPointer(request.src_addr - Memory::FCRAM_PADDR);
std::array<std::vector<u8>, 2> out_streams; std::array<std::vector<u8>, 2> out_streams;
IMFSample* sample = NULL; IMFSample* sample = nullptr;
ADTSData adts_header; ADTSData adts_header;
char* aac_tag = (char*)calloc(1, 14); char* aac_tag = (char*)calloc(1, 14);
int input_status = 0; int input_status = 0;
if (detect_mediatype((char*)data, request.size, &adts_header, &aac_tag) != 0) { if (DetectMediaType((char*)data, request.size, &adts_header, &aac_tag) != 0) {
LOG_ERROR(Audio_DSP, "Unable to deduce decoding parameters from ADTS stream"); LOG_ERROR(Audio_DSP, "Unable to deduce decoding parameters from ADTS stream");
return response; return response;
} }
@ -187,23 +187,23 @@ std::optional<BinaryResponse> WMFDecoder::Impl::Decode(const BinaryRequest& requ
if (!selected) { if (!selected) {
LOG_DEBUG(Audio_DSP, "New ADTS stream: channels = {}, sample rate = {}", LOG_DEBUG(Audio_DSP, "New ADTS stream: channels = {}, sample rate = {}",
adts_header.channels, adts_header.samplerate); adts_header.channels, adts_header.samplerate);
select_input_mediatype(transform, in_stream_id, adts_header, (UINT8*)aac_tag, 14); SelectInputMediaType(transform, in_stream_id, adts_header, (UINT8*)aac_tag, 14);
select_output_mediatype(transform, out_stream_id); SelectOutputMediaType(transform, out_stream_id);
send_sample(transform, in_stream_id, NULL); SendSample(transform, in_stream_id, nullptr);
// cache the result from detect_mediatype and call select_*_mediatype only once // cache the result from detect_mediatype and call select_*_mediatype only once
// This could increase performance very slightly // This could increase performance very slightly
transform->ProcessMessage(MFT_MESSAGE_NOTIFY_BEGIN_STREAMING, 0); transform->ProcessMessage(MFT_MESSAGE_NOTIFY_BEGIN_STREAMING, 0);
selected = true; selected = true;
} }
sample = create_sample((void*)data, request.size, 1, 0); sample = CreateSample((void*)data, request.size, 1, 0);
sample->SetUINT32(MFSampleExtension_CleanPoint, 1); sample->SetUINT32(MFSampleExtension_CleanPoint, 1);
while (true) { while (true) {
input_status = send_sample(transform, in_stream_id, sample); input_status = SendSample(transform, in_stream_id, sample);
if (DecodingLoop(adts_header, out_streams) < 0) { if (DecodingLoop(adts_header, out_streams) < 0) {
// if the decode issues is caused by MFT not accepting new samples, try again // if the decode issues are caused by MFT not accepting new samples, try again
// NOTICE: you are required to check the output even if you already knew/guessed // NOTICE: you are required to check the output even if you already knew/guessed
// MFT didn't accept the input sample // MFT didn't accept the input sample
if (input_status == 1) { if (input_status == 1) {

View File

@ -1,3 +1,6 @@
// Copyright 2019 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/logging/log.h" #include "common/logging/log.h"
#include "wmf_decoder_utils.h" #include "wmf_decoder_utils.h"
@ -9,17 +12,17 @@ void ReportError(std::string msg, HRESULT hr) {
LPSTR err; LPSTR err;
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER | FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_IGNORE_INSERTS, FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, hr, nullptr, hr,
// hardcode to use en_US because if any user had problems with this // hardcode to use en_US because if any user had problems with this
// we can help them w/o translating anything // we can help them w/o translating anything
MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), (LPSTR)&err, 0, NULL); MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), (LPSTR)&err, 0, nullptr);
if (err != NULL) { if (err != nullptr) {
LOG_CRITICAL(Audio_DSP, "{}: {}", msg, err); LOG_CRITICAL(Audio_DSP, "{}: {}", msg, err);
} }
LOG_CRITICAL(Audio_DSP, "{}: {:08x}", msg, hr); LOG_CRITICAL(Audio_DSP, "{}: {:08x}", msg, hr);
} }
int mf_coinit() { int MFCoInit() {
HRESULT hr = S_OK; HRESULT hr = S_OK;
// lite startup is faster and all what we need is included // lite startup is faster and all what we need is included
@ -35,7 +38,7 @@ int mf_coinit() {
return 0; return 0;
} }
int mf_decoder_init(IMFTransform** transform, GUID audio_format) { int MFDecoderInit(IMFTransform** transform, GUID audio_format) {
HRESULT hr = S_OK; HRESULT hr = S_OK;
MFT_REGISTER_TYPE_INFO reg = {0}; MFT_REGISTER_TYPE_INFO reg = {0};
GUID category = MFT_CATEGORY_AUDIO_DECODER; GUID category = MFT_CATEGORY_AUDIO_DECODER;
@ -47,7 +50,7 @@ int mf_decoder_init(IMFTransform** transform, GUID audio_format) {
hr = MFTEnumEx(category, hr = MFTEnumEx(category,
MFT_ENUM_FLAG_SYNCMFT | MFT_ENUM_FLAG_LOCALMFT | MFT_ENUM_FLAG_SORTANDFILTER, MFT_ENUM_FLAG_SYNCMFT | MFT_ENUM_FLAG_LOCALMFT | MFT_ENUM_FLAG_SORTANDFILTER,
&reg, NULL, &activate, &num_activate); &reg, nullptr, &activate, &num_activate);
if (FAILED(hr) || num_activate < 1) { if (FAILED(hr) || num_activate < 1) {
ReportError("Failed to enumerate decoders", hr); ReportError("Failed to enumerate decoders", hr);
CoTaskMemFree(activate); CoTaskMemFree(activate);
@ -57,10 +60,10 @@ int mf_decoder_init(IMFTransform** transform, GUID audio_format) {
for (unsigned int n = 0; n < num_activate; n++) { for (unsigned int n = 0; n < num_activate; n++) {
hr = activate[n]->ActivateObject(IID_IMFTransform, (void**)transform); hr = activate[n]->ActivateObject(IID_IMFTransform, (void**)transform);
if (FAILED(hr)) if (FAILED(hr))
*transform = NULL; *transform = nullptr;
activate[n]->Release(); activate[n]->Release();
} }
if (*transform == NULL) { if (*transform == nullptr) {
ReportError("Failed to initialize MFT", hr); ReportError("Failed to initialize MFT", hr);
CoTaskMemFree(activate); CoTaskMemFree(activate);
return -1; return -1;
@ -69,37 +72,37 @@ int mf_decoder_init(IMFTransform** transform, GUID audio_format) {
return 0; return 0;
} }
void mf_deinit(IMFTransform** transform) { void MFDeInit(IMFTransform** transform) {
MFShutdownObject(*transform); MFShutdownObject(*transform);
SafeRelease(transform); SafeRelease(transform);
CoUninitialize(); CoUninitialize();
} }
IMFSample* create_sample(void* data, DWORD len, DWORD alignment, LONGLONG duration) { IMFSample* CreateSample(void* data, DWORD len, DWORD alignment, LONGLONG duration) {
HRESULT hr = S_OK; HRESULT hr = S_OK;
IMFMediaBuffer* buf = NULL; IMFMediaBuffer* buf = nullptr;
IMFSample* sample = NULL; IMFSample* sample = nullptr;
hr = MFCreateSample(&sample); hr = MFCreateSample(&sample);
if (FAILED(hr)) { if (FAILED(hr)) {
ReportError("Unable to allocate a sample", hr); ReportError("Unable to allocate a sample", hr);
return NULL; return nullptr;
} }
// Yes, the argument for alignment is the actual alignment - 1 // Yes, the argument for alignment is the actual alignment - 1
hr = MFCreateAlignedMemoryBuffer(len, alignment - 1, &buf); hr = MFCreateAlignedMemoryBuffer(len, alignment - 1, &buf);
if (FAILED(hr)) { if (FAILED(hr)) {
ReportError("Unable to allocate a memory buffer for sample", hr); ReportError("Unable to allocate a memory buffer for sample", hr);
return NULL; return nullptr;
} }
if (data) { if (data) {
BYTE* buffer; BYTE* buffer;
// lock the MediaBuffer // lock the MediaBuffer
// this is actually not a thread-safe lock // this is actually not a thread-safe lock
hr = buf->Lock(&buffer, NULL, NULL); hr = buf->Lock(&buffer, nullptr, nullptr);
if (FAILED(hr)) { if (FAILED(hr)) {
SafeRelease(&sample); SafeRelease(&sample);
SafeRelease(&buf); SafeRelease(&buf);
return NULL; return nullptr;
} }
memcpy(buffer, data, len); memcpy(buffer, data, len);
@ -114,7 +117,7 @@ IMFSample* create_sample(void* data, DWORD len, DWORD alignment, LONGLONG durati
return sample; return sample;
} }
int select_input_mediatype(IMFTransform* transform, int in_stream_id, ADTSData adts, bool SelectInputMediaType(IMFTransform* transform, int in_stream_id, ADTSData adts,
UINT8* user_data, UINT32 user_data_len, GUID audio_format) { UINT8* user_data, UINT32 user_data_len, GUID audio_format) {
HRESULT hr = S_OK; HRESULT hr = S_OK;
IMFMediaType* t; IMFMediaType* t;
@ -124,7 +127,7 @@ int select_input_mediatype(IMFTransform* transform, int in_stream_id, ADTSData a
hr = MFCreateMediaType(&t); hr = MFCreateMediaType(&t);
if (FAILED(hr)) { if (FAILED(hr)) {
ReportError("Unable to create an empty MediaType", hr); ReportError("Unable to create an empty MediaType", hr);
return -1; return false;
} }
// basic definition // basic definition
@ -149,13 +152,13 @@ int select_input_mediatype(IMFTransform* transform, int in_stream_id, ADTSData a
hr = transform->SetInputType(in_stream_id, t, 0); hr = transform->SetInputType(in_stream_id, t, 0);
if (FAILED(hr)) { if (FAILED(hr)) {
ReportError("failed to select input types for MFT", hr); ReportError("failed to select input types for MFT", hr);
return -1; return false;
} }
return 0; return true;
} }
int select_output_mediatype(IMFTransform* transform, int out_stream_id, GUID audio_format) { bool SelectOutputMediaType(IMFTransform* transform, int out_stream_id, GUID audio_format) {
HRESULT hr = S_OK; HRESULT hr = S_OK;
UINT32 tmp; UINT32 tmp;
IMFMediaType* t; IMFMediaType* t;
@ -166,11 +169,11 @@ int select_output_mediatype(IMFTransform* transform, int out_stream_id, GUID aud
for (DWORD i = 0;; i++) { for (DWORD i = 0;; i++) {
hr = transform->GetOutputAvailableType(out_stream_id, i, &t); hr = transform->GetOutputAvailableType(out_stream_id, i, &t);
if (hr == MF_E_NO_MORE_TYPES || hr == E_NOTIMPL) { if (hr == MF_E_NO_MORE_TYPES || hr == E_NOTIMPL) {
return 0; return true;
} }
if (FAILED(hr)) { if (FAILED(hr)) {
ReportError("failed to get output types for MFT", hr); ReportError("failed to get output types for MFT", hr);
return -1; return false;
} }
hr = t->GetUINT32(MF_MT_AUDIO_BITS_PER_SAMPLE, &tmp); hr = t->GetUINT32(MF_MT_AUDIO_BITS_PER_SAMPLE, &tmp);
@ -183,26 +186,26 @@ int select_output_mediatype(IMFTransform* transform, int out_stream_id, GUID aud
if (FAILED(hr)) { if (FAILED(hr)) {
ReportError("failed to set MF_MT_AUDIO_BLOCK_ALIGNMENT for MFT on output stream", ReportError("failed to set MF_MT_AUDIO_BLOCK_ALIGNMENT for MFT on output stream",
hr); hr);
return -1; return false;
} }
hr = transform->SetOutputType(out_stream_id, t, 0); hr = transform->SetOutputType(out_stream_id, t, 0);
if (FAILED(hr)) { if (FAILED(hr)) {
ReportError("failed to select output types for MFT", hr); ReportError("failed to select output types for MFT", hr);
return -1; return false;
} }
return 0; return true;
} else { } else {
continue; continue;
} }
return -1; return false;
} }
ReportError("MFT: Unable to find preferred output format", E_NOTIMPL); ReportError("MFT: Unable to find preferred output format", E_NOTIMPL);
return -1; return false;
} }
int detect_mediatype(char* buffer, size_t len, ADTSData* output, char** aac_tag) { int DetectMediaType(char* buffer, size_t len, ADTSData* output, char** aac_tag) {
if (len < 7) { if (len < 7) {
return -1; return -1;
} }
@ -224,7 +227,7 @@ int detect_mediatype(char* buffer, size_t len, ADTSData* output, char** aac_tag)
return 0; return 0;
} }
int mf_flush(IMFTransform** transform) { void MFFlush(IMFTransform** transform) {
HRESULT hr = (*transform)->ProcessMessage(MFT_MESSAGE_COMMAND_FLUSH, 0); HRESULT hr = (*transform)->ProcessMessage(MFT_MESSAGE_COMMAND_FLUSH, 0);
if (FAILED(hr)) { if (FAILED(hr)) {
ReportError("MFT: Flush command failed", hr); ReportError("MFT: Flush command failed", hr);
@ -233,11 +236,9 @@ int mf_flush(IMFTransform** transform) {
if (FAILED(hr)) { if (FAILED(hr)) {
ReportError("Failed to end streaming for MFT", hr); ReportError("Failed to end streaming for MFT", hr);
} }
return 0;
} }
int send_sample(IMFTransform* transform, DWORD in_stream_id, IMFSample* in_sample) { int SendSample(IMFTransform* transform, DWORD in_stream_id, IMFSample* in_sample) {
HRESULT hr = S_OK; HRESULT hr = S_OK;
if (in_sample) { if (in_sample) {
@ -261,16 +262,16 @@ int send_sample(IMFTransform* transform, DWORD in_stream_id, IMFSample* in_sampl
} }
// return: 0: okay; 1: needs more sample; 2: needs reconfiguring; 3: more data available // return: 0: okay; 1: needs more sample; 2: needs reconfiguring; 3: more data available
int receive_sample(IMFTransform* transform, DWORD out_stream_id, IMFSample** out_sample) { int ReceiveSample(IMFTransform* transform, DWORD out_stream_id, IMFSample** out_sample) {
HRESULT hr; HRESULT hr;
MFT_OUTPUT_DATA_BUFFER out_buffers; MFT_OUTPUT_DATA_BUFFER out_buffers;
IMFSample* sample = NULL; IMFSample* sample = nullptr;
MFT_OUTPUT_STREAM_INFO out_info; MFT_OUTPUT_STREAM_INFO out_info;
DWORD status = 0; DWORD status = 0;
bool mft_create_sample = false; bool mft_create_sample = false;
if (!out_sample) { if (!out_sample) {
ReportError("NULL pointer passed to receive_sample()", MF_E_SAMPLE_NOT_WRITABLE); ReportError("nullptr pointer passed to receive_sample()", MF_E_SAMPLE_NOT_WRITABLE);
return -1; return -1;
} }
@ -284,12 +285,12 @@ int receive_sample(IMFTransform* transform, DWORD out_stream_id, IMFSample** out
(out_info.dwFlags & MFT_OUTPUT_STREAM_CAN_PROVIDE_SAMPLES); (out_info.dwFlags & MFT_OUTPUT_STREAM_CAN_PROVIDE_SAMPLES);
while (true) { while (true) {
sample = NULL; sample = nullptr;
*out_sample = NULL; *out_sample = nullptr;
status = 0; status = 0;
if (!mft_create_sample) { if (!mft_create_sample) {
sample = create_sample(NULL, out_info.cbSize, out_info.cbAlignment); sample = CreateSample(nullptr, out_info.cbSize, out_info.cbAlignment);
if (!sample) { if (!sample) {
ReportError("MFT: Unable to allocate memory for samples", hr); ReportError("MFT: Unable to allocate memory for samples", hr);
return -1; return -1;
@ -307,7 +308,7 @@ int receive_sample(IMFTransform* transform, DWORD out_stream_id, IMFSample** out
} }
if (hr == MF_E_TRANSFORM_NEED_MORE_INPUT) { if (hr == MF_E_TRANSFORM_NEED_MORE_INPUT) {
// TODO: better handling try again and EOF cases using drain value // Most likely reasons: data corrupted; your actions not expected by MFT
return 1; return 1;
} }
@ -320,11 +321,11 @@ int receive_sample(IMFTransform* transform, DWORD out_stream_id, IMFSample** out
} }
if (out_buffers.dwStatus & MFT_OUTPUT_DATA_BUFFER_INCOMPLETE) { if (out_buffers.dwStatus & MFT_OUTPUT_DATA_BUFFER_INCOMPLETE) {
// this status is also unreliable but whatever
return 3; return 3;
} }
// TODO: better handling try again and EOF cases using drain value if (*out_sample == nullptr) {
if (*out_sample == NULL) {
ReportError("MFT: decoding failure", hr); ReportError("MFT: decoding failure", hr);
return -1; return -1;
} }
@ -332,7 +333,7 @@ int receive_sample(IMFTransform* transform, DWORD out_stream_id, IMFSample** out
return 0; return 0;
} }
int copy_sample_to_buffer(IMFSample* sample, void** output, DWORD* len) { int CopySampleToBuffer(IMFSample* sample, void** output, DWORD* len) {
IMFMediaBuffer* buffer; IMFMediaBuffer* buffer;
HRESULT hr = S_OK; HRESULT hr = S_OK;
BYTE* data; BYTE* data;
@ -349,7 +350,7 @@ int copy_sample_to_buffer(IMFSample* sample, void** output, DWORD* len) {
return -1; return -1;
} }
hr = buffer->Lock(&data, NULL, NULL); hr = buffer->Lock(&data, nullptr, nullptr);
if (FAILED(hr)) { if (FAILED(hr)) {
ReportError("Failed to lock the buffer", hr); ReportError("Failed to lock the buffer", hr);
SafeRelease(&buffer); SafeRelease(&buffer);

View File

@ -1,8 +1,9 @@
// Copyright 2019 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once #pragma once
#ifndef MF_DECODER // AAC decoder related APIs are only available with WIN7+
#define MF_DECODER
#define WINVER _WIN32_WINNT_WIN7 #define WINVER _WIN32_WINNT_WIN7
#include <assert.h> #include <assert.h>
@ -23,26 +24,24 @@ template <class T>
void SafeRelease(T** ppT) { void SafeRelease(T** ppT) {
if (*ppT) { if (*ppT) {
(*ppT)->Release(); (*ppT)->Release();
*ppT = NULL; *ppT = nullptr;
} }
} }
void ReportError(std::string msg, HRESULT hr); void ReportError(std::string msg, HRESULT hr);
// exported functions // exported functions
int mf_coinit(); int MFCoInit();
int mf_decoder_init(IMFTransform** transform, GUID audio_format = MFAudioFormat_AAC); int MFDecoderInit(IMFTransform** transform, GUID audio_format = MFAudioFormat_AAC);
void mf_deinit(IMFTransform** transform); void MFDeInit(IMFTransform** transform);
IMFSample* create_sample(void* data, DWORD len, DWORD alignment = 1, LONGLONG duration = 0); IMFSample* CreateSample(void* data, DWORD len, DWORD alignment = 1, LONGLONG duration = 0);
int select_input_mediatype(IMFTransform* transform, int in_stream_id, ADTSData adts, bool SelectInputMediaType(IMFTransform* transform, int in_stream_id, ADTSData adts,
UINT8* user_data, UINT32 user_data_len, UINT8* user_data, UINT32 user_data_len,
GUID audio_format = MFAudioFormat_AAC); GUID audio_format = MFAudioFormat_AAC);
int detect_mediatype(char* buffer, size_t len, ADTSData* output, char** aac_tag); int DetectMediaType(char* buffer, size_t len, ADTSData* output, char** aac_tag);
int select_output_mediatype(IMFTransform* transform, int out_stream_id, bool SelectOutputMediaType(IMFTransform* transform, int out_stream_id,
GUID audio_format = MFAudioFormat_PCM); GUID audio_format = MFAudioFormat_PCM);
int mf_flush(IMFTransform** transform); void MFFlush(IMFTransform** transform);
int send_sample(IMFTransform* transform, DWORD in_stream_id, IMFSample* in_sample); int SendSample(IMFTransform* transform, DWORD in_stream_id, IMFSample* in_sample);
int receive_sample(IMFTransform* transform, DWORD out_stream_id, IMFSample** out_sample); int ReceiveSample(IMFTransform* transform, DWORD out_stream_id, IMFSample** out_sample);
int copy_sample_to_buffer(IMFSample* sample, void** output, DWORD* len); int CopySampleToBuffer(IMFSample* sample, void** output, DWORD* len);
#endif // MF_DECODER

View File

@ -1,5 +1,12 @@
const int fixure_buffer_size = 41; // Copyright 2019 Citra Emulator Project
const unsigned char fixure_buffer[41] = { // Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
constexpr int fixure_buffer_size = 41;
constexpr std::array<u8, 41> fixure_buffer[41] = {
0xff, 0xf1, 0x4c, 0x80, 0x05, 0x3f, 0xfc, 0x21, 0x1a, 0x4e, 0xb0, 0x00, 0x00, 0x00, 0xff, 0xf1, 0x4c, 0x80, 0x05, 0x3f, 0xfc, 0x21, 0x1a, 0x4e, 0xb0, 0x00, 0x00, 0x00,
0x05, 0xfc, 0x4e, 0x1f, 0x08, 0x88, 0x00, 0x00, 0x00, 0xc4, 0x1a, 0x03, 0xfc, 0x9c, 0x05, 0xfc, 0x4e, 0x1f, 0x08, 0x88, 0x00, 0x00, 0x00, 0xc4, 0x1a, 0x03, 0xfc, 0x9c,
0x3e, 0x1d, 0x08, 0x84, 0x03, 0xd8, 0x3f, 0xe4, 0xe1, 0x20, 0x00, 0x0b, 0x38}; 0x3e, 0x1d, 0x08, 0x84, 0x03, 0xd8, 0x3f, 0xe4, 0xe1, 0x20, 0x00, 0x0b, 0x38};

View File

@ -1,4 +1,4 @@
// Copyright 2017 Citra Emulator Project // Copyright 2019 Citra Emulator Project
// Licensed under GPLv2 or any later version // Licensed under GPLv2 or any later version
// Refer to the license.txt file included. // Refer to the license.txt file included.
#if defined(HAVE_MF) || defined(HAVE_FFMPEG) #if defined(HAVE_MF) || defined(HAVE_FFMPEG)