citra-emu
/
citra-canary
Archived
1
0
Fork 0

Merge PR 7372

This commit is contained in:
citrabot 2024-03-04 00:25:34 +00:00
parent 0ff3440232
commit ab626208c5
5 changed files with 115 additions and 22 deletions

View File

@ -14,6 +14,7 @@ add_executable(tests
audio_core/audio_fixures.h audio_core/audio_fixures.h
audio_core/decoder_tests.cpp audio_core/decoder_tests.cpp
video_core/shader/shader_jit_compiler.cpp video_core/shader/shader_jit_compiler.cpp
video_core/pica_float.cpp
audio_core/merryhime_3ds_audio/merry_audio/merry_audio.cpp audio_core/merryhime_3ds_audio/merry_audio/merry_audio.cpp
audio_core/merryhime_3ds_audio/merry_audio/merry_audio.h audio_core/merryhime_3ds_audio/merry_audio/merry_audio.h
audio_core/merryhime_3ds_audio/merry_audio/service_fixture.cpp audio_core/merryhime_3ds_audio/merry_audio/service_fixture.cpp

View File

@ -0,0 +1,30 @@
// Copyright 2024 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cmath>
#include <catch2/catch_approx.hpp>
#include <catch2/catch_test_macros.hpp>
#include "video_core/pica_types.h"
using Pica::f24;
TEST_CASE("Infinities", "[video_core][pica_float]") {
REQUIRE(std::isinf(f24::FromFloat32(INFINITY).ToFloat32()));
REQUIRE(std::isinf(f24::FromFloat32(1.e20f).ToFloat32()));
REQUIRE(std::isinf(f24::FromFloat32(-1.e20f).ToFloat32()));
}
TEST_CASE("Subnormals", "[video_core][pica_float]") {
REQUIRE(f24::FromFloat32(1e-20f).ToFloat32() == 0.f);
}
TEST_CASE("NaN", "[video_core][pica_float]") {
const auto inf = f24::FromFloat32(INFINITY);
const auto nan = f24::FromFloat32(NAN);
REQUIRE(std::isnan(nan.ToFloat32()));
REQUIRE(std::isnan((nan * f24::Zero()).ToFloat32()));
REQUIRE(std::isnan((inf - inf).ToFloat32()));
REQUIRE((inf * f24::Zero()).ToFloat32() == 0.f);
}

View File

@ -260,7 +260,7 @@ TEST_CASE("LG2", "[video_core][shader][shader_jit]") {
REQUIRE(std::isinf(shader.Run(0.f).x)); REQUIRE(std::isinf(shader.Run(0.f).x));
REQUIRE(shader.Run(4.f).x == Catch::Approx(2.f)); REQUIRE(shader.Run(4.f).x == Catch::Approx(2.f));
REQUIRE(shader.Run(64.f).x == Catch::Approx(6.f)); REQUIRE(shader.Run(64.f).x == Catch::Approx(6.f));
REQUIRE(shader.Run(1.e24f).x == Catch::Approx(79.7262742773f)); // REQUIRE(std::isinf(shader.Run(INFINITY).x));
} }
TEST_CASE("EX2", "[video_core][shader][shader_jit]") { TEST_CASE("EX2", "[video_core][shader][shader_jit]") {
@ -277,8 +277,9 @@ TEST_CASE("EX2", "[video_core][shader][shader_jit]") {
REQUIRE(shader.Run(0.f).x == Catch::Approx(1.f)); REQUIRE(shader.Run(0.f).x == Catch::Approx(1.f));
REQUIRE(shader.Run(2.f).x == Catch::Approx(4.f)); REQUIRE(shader.Run(2.f).x == Catch::Approx(4.f));
REQUIRE(shader.Run(6.f).x == Catch::Approx(64.f)); REQUIRE(shader.Run(6.f).x == Catch::Approx(64.f));
REQUIRE(shader.Run(79.7262742773f).x == Catch::Approx(1.e24f));
REQUIRE(std::isinf(shader.Run(800.f).x)); REQUIRE(std::isinf(shader.Run(800.f).x));
// If we respect f24 precision, 2^79 = inf, as 79 > 63
// REQUIRE(std::isinf(shader.Run(79.7262742773f).x));
} }
TEST_CASE("MUL", "[video_core][shader][shader_jit]") { TEST_CASE("MUL", "[video_core][shader][shader_jit]") {
@ -469,7 +470,7 @@ TEST_CASE("Uniform Read", "[video_core][shader][shader_jit]") {
const float color = (i * 2.0f) / 255.0f; const float color = (i * 2.0f) / 255.0f;
const auto color_f24 = Pica::f24::FromFloat32(color); const auto color_f24 = Pica::f24::FromFloat32(color);
shader.shader_setup->uniforms.f[i] = {color_f24, color_f24, color_f24, Pica::f24::One()}; shader.shader_setup->uniforms.f[i] = {color_f24, color_f24, color_f24, Pica::f24::One()};
f_uniforms[i] = {color, color, color, 1.0f}; f_uniforms[i] = {color_f24.ToFloat32(), color_f24.ToFloat32(), color_f24.ToFloat32(), 1.0f};
} }
for (u32 i = 0; i < 96; ++i) { for (u32 i = 0; i < 96; ++i) {
@ -506,7 +507,8 @@ TEST_CASE("Address Register Offset", "[video_core][shader][shader_jit]") {
const auto color_f24 = Pica::f24::FromFloat32(color); const auto color_f24 = Pica::f24::FromFloat32(color);
shader.shader_setup->uniforms.f[i] = {color_f24, color_f24, color_f24, shader.shader_setup->uniforms.f[i] = {color_f24, color_f24, color_f24,
Pica::f24::One()}; Pica::f24::One()};
f_uniforms[i] = {color, color, color, 1.f}; f_uniforms[i] = {color_f24.ToFloat32(), color_f24.ToFloat32(), color_f24.ToFloat32(),
1.f};
} else if (i >= 0x60 && i < 0x64) { } else if (i >= 0x60 && i < 0x64) {
const u8 color = static_cast<u8>((i - 0x60) * 0x10); const u8 color = static_cast<u8>((i - 0x60) * 0x10);
shader.shader_setup->uniforms.i[i - 0x60] = {color, color, color, 255}; shader.shader_setup->uniforms.i[i - 0x60] = {color, color, color, 255};

View File

@ -4,8 +4,10 @@
#pragma once #pragma once
#include <bit>
#include <cmath> #include <cmath>
#include <cstring> #include <cstring>
#include <limits>
#include <boost/serialization/access.hpp> #include <boost/serialization/access.hpp>
#include "common/common_types.h" #include "common/common_types.h"
@ -28,6 +30,41 @@ public:
static constexpr Float<M, E> FromFloat32(float val) { static constexpr Float<M, E> FromFloat32(float val) {
Float<M, E> ret; Float<M, E> ret;
ret.value = val; ret.value = val;
return Trunc(ret);
}
static constexpr Float<M, E> MinNormal() {
Float<M, E> ret;
// Mininum normal value = 1.0 / (1 << ((1 << (E - 1)) - 2));
if constexpr (E == 5) {
ret.value = 0x1.p-14;
} else {
// E == 7
ret.value = (0x1.p-62);
}
return ret;
}
// these values are approximate, rounded up
static constexpr Float<M, E> Max() {
Float<M, E> ret;
if constexpr (E == 5) {
ret.value = 0x1.p16;
} else {
// E == 7
ret.value = 0x1.p64;
}
return ret;
}
// before C++23 std::isnormal and std::abs aren't considered constexpr so this function can't be
// used as constexpr until the compilers support that.
static constexpr Float<M, E> Trunc(const Float<M, E>& val) {
Float<M, E> ret = val.Flushed().InfChecked();
if (std::isnormal(val.ToFloat32())) {
u32 hex = std::bit_cast<u32>(ret.ToFloat32()) & (0xffffffff ^ ((1 << (23 - M)) - 1));
ret.value = std::bit_cast<float>(hex);
}
return ret; return ret;
} }
@ -50,17 +87,21 @@ public:
hex = sign; hex = sign;
} }
std::memcpy(&res.value, &hex, sizeof(float)); res.value = std::bit_cast<float>(hex);
return res; return res;
} }
static constexpr Float<M, E> Zero() { static constexpr Float<M, E> Zero() {
return FromFloat32(0.f); Float<M, E> ret;
ret.value = 0.f;
return ret;
} }
static constexpr Float<M, E> One() { static constexpr Float<M, E> One() {
return FromFloat32(1.f); Float<M, E> ret;
ret.value = 1.f;
return ret;
} }
// Not recommended for anything but logging // Not recommended for anything but logging
@ -68,6 +109,24 @@ public:
return value; return value;
} }
constexpr Float<M, E> Flushed() const {
Float<M, E> ret;
ret.value = value;
if (std::abs(value) < MinNormal().ToFloat32()) {
ret.value = 0;
}
return ret;
}
constexpr Float<M, E> InfChecked() const {
Float<M, E> ret;
ret.value = value;
if (std::abs(value) > Max().ToFloat32()) {
ret.value = value * std::numeric_limits<float>::infinity();
}
return ret;
}
constexpr Float<M, E> operator*(const Float<M, E>& flt) const { constexpr Float<M, E> operator*(const Float<M, E>& flt) const {
float result = value * flt.ToFloat32(); float result = value * flt.ToFloat32();
// PICA gives 0 instead of NaN when multiplying by inf // PICA gives 0 instead of NaN when multiplying by inf
@ -95,22 +154,24 @@ public:
} }
constexpr Float<M, E>& operator/=(const Float<M, E>& flt) { constexpr Float<M, E>& operator/=(const Float<M, E>& flt) {
value /= flt.ToFloat32(); value = operator/(flt).value;
return *this; return *this;
} }
constexpr Float<M, E>& operator+=(const Float<M, E>& flt) { constexpr Float<M, E>& operator+=(const Float<M, E>& flt) {
value += flt.ToFloat32(); value = operator+(flt).value;
return *this; return *this;
} }
constexpr Float<M, E>& operator-=(const Float<M, E>& flt) { constexpr Float<M, E>& operator-=(const Float<M, E>& flt) {
value -= flt.ToFloat32(); value = operator-(flt).value;
return *this; return *this;
} }
constexpr Float<M, E> operator-() const { constexpr Float<M, E> operator-() const {
return Float<M, E>::FromFloat32(-ToFloat32()); Float<M, E> ret;
ret.value = -value;
return ret;
} }
constexpr bool operator<(const Float<M, E>& flt) const { constexpr bool operator<(const Float<M, E>& flt) const {

View File

@ -30,7 +30,7 @@ using Pica::Texture::TextureInfo;
// negative/positive z values when computing with f32 precision, // negative/positive z values when computing with f32 precision,
// causing some vertices to get erroneously clipped. To workaround this problem, // causing some vertices to get erroneously clipped. To workaround this problem,
// we can use a very small epsilon value for clip plane comparison. // we can use a very small epsilon value for clip plane comparison.
constexpr f32 EPSILON_Z = 0.00000001f; constexpr f32 EPSILON_Z = 0.f;
struct Vertex : Pica::OutputVertex { struct Vertex : Pica::OutputVertex {
Vertex(const OutputVertex& v) : OutputVertex(v) {} Vertex(const OutputVertex& v) : OutputVertex(v) {}
@ -125,9 +125,8 @@ void RasterizerSoftware::AddTriangle(const Pica::OutputVertex& v0, const Pica::O
auto* input_list = &buffer_b; auto* input_list = &buffer_b;
// NOTE: We clip against a w=epsilon plane to guarantee that the output has a positive w value. // NOTE: We clip against a w=epsilon plane to guarantee that the output has a positive w value.
// TODO: Not sure if this is a valid approach. Also should probably instead use the smallest // TODO: Not sure if this is a valid approach.
// epsilon possible within f24 accuracy. static constexpr f24 EPSILON = f24::MinNormal();
static constexpr f24 EPSILON = f24::FromFloat32(0.00001f);
static constexpr f24 f0 = f24::Zero(); static constexpr f24 f0 = f24::Zero();
static constexpr f24 f1 = f24::One(); static constexpr f24 f1 = f24::One();
static constexpr std::array<ClippingEdge, 7> clipping_edges = {{ static constexpr std::array<ClippingEdge, 7> clipping_edges = {{
@ -287,11 +286,11 @@ void RasterizerSoftware::ProcessTriangle(const Vertex& v0, const Vertex& v1, con
max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask()); max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask());
const int bias0 = const int bias0 =
IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0; IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? 1 : 0;
const int bias1 = const int bias1 =
IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0; IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? 1 : 0;
const int bias2 = const int bias2 =
IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0; IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? 1 : 0;
const auto w_inverse = Common::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w); const auto w_inverse = Common::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w);
@ -314,13 +313,13 @@ void RasterizerSoftware::ProcessTriangle(const Vertex& v0, const Vertex& v1, con
} }
// Calculate the barycentric coordinates w0, w1 and w2 // Calculate the barycentric coordinates w0, w1 and w2
const s32 w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); const s32 w0 = SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
const s32 w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y}); const s32 w1 = SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
const s32 w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y}); const s32 w2 = SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
const s32 wsum = w0 + w1 + w2; const s32 wsum = w0 + w1 + w2;
// If current pixel is not covered by the current primitive // If current pixel is not covered by the current primitive
if (w0 < 0 || w1 < 0 || w2 < 0) { if (w0 < bias0 || w1 < bias1 || w2 < bias2) {
continue; continue;
} }