Kernel: Properly implement ControlMemory FREE and COMMIT
This commit is contained in:
parent
ccab02c723
commit
cdeeecf080
|
@ -36,8 +36,7 @@ SharedPtr<Process> Process::Create(SharedPtr<CodeSet> code_set) {
|
|||
process->codeset = std::move(code_set);
|
||||
process->flags.raw = 0;
|
||||
process->flags.memory_region = MemoryRegion::APPLICATION;
|
||||
process->address_space = Common::make_unique<VMManager>();
|
||||
Memory::InitLegacyAddressSpace(*process->address_space);
|
||||
Memory::InitLegacyAddressSpace(process->vm_manager);
|
||||
|
||||
return process;
|
||||
}
|
||||
|
@ -104,19 +103,130 @@ void Process::ParseKernelCaps(const u32* kernel_caps, size_t len) {
|
|||
|
||||
void Process::Run(s32 main_thread_priority, u32 stack_size) {
|
||||
auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions, MemoryState memory_state) {
|
||||
auto vma = address_space->MapMemoryBlock(segment.addr, codeset->memory,
|
||||
auto vma = vm_manager.MapMemoryBlock(segment.addr, codeset->memory,
|
||||
segment.offset, segment.size, memory_state).Unwrap();
|
||||
address_space->Reprotect(vma, permissions);
|
||||
vm_manager.Reprotect(vma, permissions);
|
||||
};
|
||||
|
||||
// Map CodeSet segments
|
||||
MapSegment(codeset->code, VMAPermission::ReadExecute, MemoryState::Code);
|
||||
MapSegment(codeset->rodata, VMAPermission::Read, MemoryState::Code);
|
||||
MapSegment(codeset->data, VMAPermission::ReadWrite, MemoryState::Private);
|
||||
|
||||
address_space->LogLayout(Log::Level::Debug);
|
||||
// Allocate and map stack
|
||||
vm_manager.MapMemoryBlock(Memory::HEAP_VADDR_END - stack_size,
|
||||
std::make_shared<std::vector<u8>>(stack_size, 0), 0, stack_size, MemoryState::Locked
|
||||
).Unwrap();
|
||||
|
||||
vm_manager.LogLayout(Log::Level::Debug);
|
||||
Kernel::SetupMainThread(codeset->entrypoint, main_thread_priority);
|
||||
}
|
||||
|
||||
ResultVal<VAddr> Process::HeapAllocate(VAddr target, u32 size, VMAPermission perms) {
|
||||
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END || target + size < target) {
|
||||
return ERR_INVALID_ADDRESS;
|
||||
}
|
||||
|
||||
if (heap_memory == nullptr) {
|
||||
// Initialize heap
|
||||
heap_memory = std::make_shared<std::vector<u8>>();
|
||||
heap_start = heap_end = target;
|
||||
}
|
||||
|
||||
// If necessary, expand backing vector to cover new heap extents.
|
||||
if (target < heap_start) {
|
||||
heap_memory->insert(begin(*heap_memory), heap_start - target, 0);
|
||||
heap_start = target;
|
||||
vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
|
||||
}
|
||||
if (target + size > heap_end) {
|
||||
heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0);
|
||||
heap_end = target + size;
|
||||
vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
|
||||
}
|
||||
ASSERT(heap_end - heap_start == heap_memory->size());
|
||||
|
||||
CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, heap_memory, target - heap_start, size, MemoryState::Private));
|
||||
vm_manager.Reprotect(vma, perms);
|
||||
|
||||
return MakeResult<VAddr>(heap_end - size);
|
||||
}
|
||||
|
||||
ResultCode Process::HeapFree(VAddr target, u32 size) {
|
||||
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END || target + size < target) {
|
||||
return ERR_INVALID_ADDRESS;
|
||||
}
|
||||
|
||||
ResultCode result = vm_manager.UnmapRange(target, size);
|
||||
if (result.IsError()) return result;
|
||||
|
||||
return RESULT_SUCCESS;
|
||||
}
|
||||
|
||||
ResultVal<VAddr> Process::LinearAllocate(VAddr target, u32 size, VMAPermission perms) {
|
||||
if (linear_heap_memory == nullptr) {
|
||||
// Initialize heap
|
||||
linear_heap_memory = std::make_shared<std::vector<u8>>();
|
||||
}
|
||||
|
||||
VAddr heap_end = Memory::LINEAR_HEAP_VADDR + (u32)linear_heap_memory->size();
|
||||
// Games and homebrew only ever seem to pass 0 here (which lets the kernel decide the address),
|
||||
// but explicit addresses are also accepted and respected.
|
||||
if (target == 0) {
|
||||
target = heap_end;
|
||||
}
|
||||
|
||||
if (target < Memory::LINEAR_HEAP_VADDR || target + size > Memory::LINEAR_HEAP_VADDR_END ||
|
||||
target > heap_end || target + size < target) {
|
||||
|
||||
return ERR_INVALID_ADDRESS;
|
||||
}
|
||||
|
||||
// Expansion of the linear heap is only allowed if you do an allocation immediatelly at its
|
||||
// end. It's possible to free gaps in the middle of the heap and then reallocate them later,
|
||||
// but expansions are only allowed at the end.
|
||||
if (target == heap_end) {
|
||||
linear_heap_memory->insert(linear_heap_memory->end(), size, 0);
|
||||
vm_manager.RefreshMemoryBlockMappings(linear_heap_memory.get());
|
||||
}
|
||||
|
||||
size_t offset = target - Memory::LINEAR_HEAP_VADDR;
|
||||
CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, linear_heap_memory, offset, size, MemoryState::Continuous));
|
||||
vm_manager.Reprotect(vma, perms);
|
||||
|
||||
return MakeResult<VAddr>(target);
|
||||
}
|
||||
|
||||
ResultCode Process::LinearFree(VAddr target, u32 size) {
|
||||
if (linear_heap_memory == nullptr || target < Memory::LINEAR_HEAP_VADDR ||
|
||||
target + size > Memory::LINEAR_HEAP_VADDR_END || target + size < target) {
|
||||
|
||||
return ERR_INVALID_ADDRESS;
|
||||
}
|
||||
|
||||
VAddr heap_end = Memory::LINEAR_HEAP_VADDR + (u32)linear_heap_memory->size();
|
||||
if (target + size > heap_end) {
|
||||
return ERR_INVALID_ADDRESS_STATE;
|
||||
}
|
||||
|
||||
ResultCode result = vm_manager.UnmapRange(target, size);
|
||||
if (result.IsError()) return result;
|
||||
|
||||
if (target + size == heap_end) {
|
||||
// End of linear heap has been freed, so check what's the last allocated block in it and
|
||||
// reduce the size.
|
||||
auto vma = vm_manager.FindVMA(target);
|
||||
ASSERT(vma != vm_manager.vma_map.end());
|
||||
ASSERT(vma->second.type == VMAType::Free);
|
||||
VAddr new_end = vma->second.base;
|
||||
if (new_end >= Memory::LINEAR_HEAP_VADDR) {
|
||||
linear_heap_memory->resize(new_end - Memory::LINEAR_HEAP_VADDR);
|
||||
}
|
||||
}
|
||||
|
||||
return RESULT_SUCCESS;
|
||||
}
|
||||
|
||||
Kernel::Process::Process() {}
|
||||
Kernel::Process::~Process() {}
|
||||
|
||||
|
|
|
@ -15,6 +15,7 @@
|
|||
#include "common/common_types.h"
|
||||
|
||||
#include "core/hle/kernel/kernel.h"
|
||||
#include "core/hle/kernel/vm_manager.h"
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
|
@ -48,7 +49,6 @@ union ProcessFlags {
|
|||
};
|
||||
|
||||
class ResourceLimit;
|
||||
class VMManager;
|
||||
|
||||
struct CodeSet final : public Object {
|
||||
static SharedPtr<CodeSet> Create(std::string name, u64 program_id);
|
||||
|
@ -108,10 +108,6 @@ public:
|
|||
/// The id of this process
|
||||
u32 process_id = next_process_id++;
|
||||
|
||||
/// Bitmask of the used TLS slots
|
||||
std::bitset<300> used_tls_slots;
|
||||
std::unique_ptr<VMManager> address_space;
|
||||
|
||||
/**
|
||||
* Parses a list of kernel capability descriptors (as found in the ExHeader) and applies them
|
||||
* to this process.
|
||||
|
@ -123,6 +119,31 @@ public:
|
|||
*/
|
||||
void Run(s32 main_thread_priority, u32 stack_size);
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Memory Management
|
||||
|
||||
VMManager vm_manager;
|
||||
|
||||
// Memory used to back the allocations in the regular heap. A single vector is used to cover
|
||||
// the entire virtual address space extents that bound the allocations, including any holes.
|
||||
// This makes deallocation and reallocation of holes fast and keeps process memory contiguous
|
||||
// in the emulator address space, allowing Memory::GetPointer to be reasonably safe.
|
||||
std::shared_ptr<std::vector<u8>> heap_memory;
|
||||
// The left/right bounds of the address space covered by heap_memory.
|
||||
VAddr heap_start = 0, heap_end = 0;
|
||||
|
||||
std::shared_ptr<std::vector<u8>> linear_heap_memory;
|
||||
|
||||
/// Bitmask of the used TLS slots
|
||||
std::bitset<300> used_tls_slots;
|
||||
|
||||
ResultVal<VAddr> HeapAllocate(VAddr target, u32 size, VMAPermission perms);
|
||||
ResultCode HeapFree(VAddr target, u32 size);
|
||||
|
||||
ResultVal<VAddr> LinearAllocate(VAddr target, u32 size, VMAPermission perms);
|
||||
ResultCode LinearFree(VAddr target, u32 size);
|
||||
|
||||
private:
|
||||
Process();
|
||||
~Process() override;
|
||||
|
|
|
@ -60,7 +60,11 @@ void VMManager::Reset() {
|
|||
}
|
||||
|
||||
VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
|
||||
return std::prev(vma_map.upper_bound(target));
|
||||
if (target >= MAX_ADDRESS) {
|
||||
return vma_map.end();
|
||||
} else {
|
||||
return std::prev(vma_map.upper_bound(target));
|
||||
}
|
||||
}
|
||||
|
||||
ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
|
||||
|
@ -115,10 +119,8 @@ ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u3
|
|||
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
|
||||
}
|
||||
|
||||
void VMManager::Unmap(VMAHandle vma_handle) {
|
||||
VMAIter iter = StripIterConstness(vma_handle);
|
||||
|
||||
VirtualMemoryArea& vma = iter->second;
|
||||
VMManager::VMAIter VMManager::Unmap(VMAIter vma_handle) {
|
||||
VirtualMemoryArea& vma = vma_handle->second;
|
||||
vma.type = VMAType::Free;
|
||||
vma.permissions = VMAPermission::None;
|
||||
vma.meminfo_state = MemoryState::Free;
|
||||
|
@ -130,17 +132,57 @@ void VMManager::Unmap(VMAHandle vma_handle) {
|
|||
|
||||
UpdatePageTableForVMA(vma);
|
||||
|
||||
MergeAdjacent(iter);
|
||||
return MergeAdjacent(vma_handle);
|
||||
}
|
||||
|
||||
void VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) {
|
||||
ResultCode VMManager::UnmapRange(VAddr target, u32 size) {
|
||||
CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
|
||||
VAddr target_end = target + size;
|
||||
|
||||
VMAIter end = vma_map.end();
|
||||
// The comparison against the end of the range must be done using addresses since VMAs can be
|
||||
// merged during this process, causing invalidation of the iterators.
|
||||
while (vma != end && vma->second.base < target_end) {
|
||||
vma = std::next(Unmap(vma));
|
||||
}
|
||||
|
||||
ASSERT(FindVMA(target)->second.size >= size);
|
||||
return RESULT_SUCCESS;
|
||||
}
|
||||
|
||||
VMManager::VMAHandle VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) {
|
||||
VMAIter iter = StripIterConstness(vma_handle);
|
||||
|
||||
VirtualMemoryArea& vma = iter->second;
|
||||
vma.permissions = new_perms;
|
||||
UpdatePageTableForVMA(vma);
|
||||
|
||||
MergeAdjacent(iter);
|
||||
return MergeAdjacent(iter);
|
||||
}
|
||||
|
||||
ResultCode VMManager::ReprotectRange(VAddr target, u32 size, VMAPermission new_perms) {
|
||||
CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
|
||||
VAddr target_end = target + size;
|
||||
|
||||
VMAIter end = vma_map.end();
|
||||
// The comparison against the end of the range must be done using addresses since VMAs can be
|
||||
// merged during this process, causing invalidation of the iterators.
|
||||
while (vma != end && vma->second.base < target_end) {
|
||||
vma = std::next(StripIterConstness(Reprotect(vma, new_perms)));
|
||||
}
|
||||
|
||||
return RESULT_SUCCESS;
|
||||
}
|
||||
|
||||
void VMManager::RefreshMemoryBlockMappings(const std::vector<u8>* block) {
|
||||
// If this ever proves to have a noticeable performance impact, allow users of the function to
|
||||
// specify a specific range of addresses to limit the scan to.
|
||||
for (const auto& p : vma_map) {
|
||||
const VirtualMemoryArea& vma = p.second;
|
||||
if (block == vma.backing_block.get()) {
|
||||
UpdatePageTableForVMA(vma);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void VMManager::LogLayout(Log::Level log_level) const {
|
||||
|
@ -161,8 +203,8 @@ VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle & iter) {
|
|||
}
|
||||
|
||||
ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) {
|
||||
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: %8X", size);
|
||||
ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: %08X", base);
|
||||
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size);
|
||||
ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", base);
|
||||
|
||||
VMAIter vma_handle = StripIterConstness(FindVMA(base));
|
||||
if (vma_handle == vma_map.end()) {
|
||||
|
@ -196,6 +238,35 @@ ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) {
|
|||
return MakeResult<VMAIter>(vma_handle);
|
||||
}
|
||||
|
||||
ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u32 size) {
|
||||
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size);
|
||||
ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", target);
|
||||
|
||||
VAddr target_end = target + size;
|
||||
ASSERT(target_end >= target);
|
||||
ASSERT(target_end <= MAX_ADDRESS);
|
||||
ASSERT(size > 0);
|
||||
|
||||
VMAIter begin_vma = StripIterConstness(FindVMA(target));
|
||||
VMAIter i_end = vma_map.lower_bound(target_end);
|
||||
for (auto i = begin_vma; i != i_end; ++i) {
|
||||
if (i->second.type == VMAType::Free) {
|
||||
return ERR_INVALID_ADDRESS_STATE;
|
||||
}
|
||||
}
|
||||
|
||||
if (target != begin_vma->second.base) {
|
||||
begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
|
||||
}
|
||||
|
||||
VMAIter end_vma = StripIterConstness(FindVMA(target_end));
|
||||
if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
|
||||
end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
|
||||
}
|
||||
|
||||
return MakeResult<VMAIter>(begin_vma);
|
||||
}
|
||||
|
||||
VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u32 offset_in_vma) {
|
||||
VirtualMemoryArea& old_vma = vma_handle->second;
|
||||
VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA
|
||||
|
|
|
@ -171,11 +171,20 @@ public:
|
|||
*/
|
||||
ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u32 size, MemoryState state);
|
||||
|
||||
/// Unmaps the given VMA.
|
||||
void Unmap(VMAHandle vma);
|
||||
/// Unmaps a range of addresses, splitting VMAs as necessary.
|
||||
ResultCode UnmapRange(VAddr target, u32 size);
|
||||
|
||||
/// Changes the permissions of the given VMA.
|
||||
void Reprotect(VMAHandle vma, VMAPermission new_perms);
|
||||
VMAHandle Reprotect(VMAHandle vma, VMAPermission new_perms);
|
||||
|
||||
/// Changes the permissions of a range of addresses, splitting VMAs as necessary.
|
||||
ResultCode ReprotectRange(VAddr target, u32 size, VMAPermission new_perms);
|
||||
|
||||
/**
|
||||
* Scans all VMAs and updates the page table range of any that use the given vector as backing
|
||||
* memory. This should be called after any operation that causes reallocation of the vector.
|
||||
*/
|
||||
void RefreshMemoryBlockMappings(const std::vector<u8>* block);
|
||||
|
||||
/// Dumps the address space layout to the log, for debugging
|
||||
void LogLayout(Log::Level log_level) const;
|
||||
|
@ -186,12 +195,21 @@ private:
|
|||
/// Converts a VMAHandle to a mutable VMAIter.
|
||||
VMAIter StripIterConstness(const VMAHandle& iter);
|
||||
|
||||
/// Unmaps the given VMA.
|
||||
VMAIter Unmap(VMAIter vma);
|
||||
|
||||
/**
|
||||
* Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
|
||||
* the appropriate error checking.
|
||||
*/
|
||||
ResultVal<VMAIter> CarveVMA(VAddr base, u32 size);
|
||||
|
||||
/**
|
||||
* Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each
|
||||
* end of the range.
|
||||
*/
|
||||
ResultVal<VMAIter> CarveVMARange(VAddr base, u32 size);
|
||||
|
||||
/**
|
||||
* Splits a VMA in two, at the specified offset.
|
||||
* @returns the right side of the split, with the original iterator becoming the left side.
|
||||
|
|
|
@ -41,32 +41,114 @@ const ResultCode ERR_NOT_FOUND(ErrorDescription::NotFound, ErrorModule::Kernel,
|
|||
const ResultCode ERR_PORT_NAME_TOO_LONG(ErrorDescription(30), ErrorModule::OS,
|
||||
ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E0181E
|
||||
|
||||
const ResultCode ERR_MISALIGNED_ADDRESS{ // 0xE0E01BF1
|
||||
ErrorDescription::MisalignedAddress, ErrorModule::OS,
|
||||
ErrorSummary::InvalidArgument, ErrorLevel::Usage};
|
||||
const ResultCode ERR_MISALIGNED_SIZE{ // 0xE0E01BF2
|
||||
ErrorDescription::MisalignedSize, ErrorModule::OS,
|
||||
ErrorSummary::InvalidArgument, ErrorLevel::Usage};
|
||||
const ResultCode ERR_INVALID_COMBINATION{ // 0xE0E01BEE
|
||||
ErrorDescription::InvalidCombination, ErrorModule::OS,
|
||||
ErrorSummary::InvalidArgument, ErrorLevel::Usage};
|
||||
|
||||
enum ControlMemoryOperation {
|
||||
MEMORY_OPERATION_HEAP = 0x00000003,
|
||||
MEMORY_OPERATION_GSP_HEAP = 0x00010003,
|
||||
MEMOP_FREE = 1,
|
||||
MEMOP_RESERVE = 2, // This operation seems to be unsupported in the kernel
|
||||
MEMOP_COMMIT = 3,
|
||||
MEMOP_MAP = 4,
|
||||
MEMOP_UNMAP = 5,
|
||||
MEMOP_PROTECT = 6,
|
||||
MEMOP_OPERATION_MASK = 0xFF,
|
||||
|
||||
MEMOP_REGION_APP = 0x100,
|
||||
MEMOP_REGION_SYSTEM = 0x200,
|
||||
MEMOP_REGION_BASE = 0x300,
|
||||
MEMOP_REGION_MASK = 0xF00,
|
||||
|
||||
MEMOP_LINEAR = 0x10000,
|
||||
};
|
||||
|
||||
/// Map application or GSP heap memory
|
||||
static ResultCode ControlMemory(u32* out_addr, u32 operation, u32 addr0, u32 addr1, u32 size, u32 permissions) {
|
||||
LOG_TRACE(Kernel_SVC,"called operation=0x%08X, addr0=0x%08X, addr1=0x%08X, size=%08X, permissions=0x%08X",
|
||||
using namespace Kernel;
|
||||
|
||||
LOG_DEBUG(Kernel_SVC,"called operation=0x%08X, addr0=0x%08X, addr1=0x%08X, size=0x%X, permissions=0x%08X",
|
||||
operation, addr0, addr1, size, permissions);
|
||||
|
||||
switch (operation) {
|
||||
if ((addr0 & Memory::PAGE_MASK) != 0 || (addr1 & Memory::PAGE_MASK) != 0) {
|
||||
return ERR_MISALIGNED_ADDRESS;
|
||||
}
|
||||
if ((size & Memory::PAGE_MASK) != 0) {
|
||||
return ERR_MISALIGNED_SIZE;
|
||||
}
|
||||
|
||||
// Map normal heap memory
|
||||
case MEMORY_OPERATION_HEAP:
|
||||
*out_addr = Memory::MapBlock_Heap(size, operation, permissions);
|
||||
u32 region = operation & MEMOP_REGION_MASK;
|
||||
operation &= ~MEMOP_REGION_MASK;
|
||||
|
||||
if (region != 0) {
|
||||
LOG_WARNING(Kernel_SVC, "ControlMemory with specified region not supported, region=%X", region);
|
||||
}
|
||||
|
||||
if ((permissions & (u32)MemoryPermission::ReadWrite) != permissions) {
|
||||
return ERR_INVALID_COMBINATION;
|
||||
}
|
||||
VMAPermission vma_permissions = (VMAPermission)permissions;
|
||||
|
||||
auto& process = *g_current_process;
|
||||
|
||||
switch (operation & MEMOP_OPERATION_MASK) {
|
||||
case MEMOP_FREE:
|
||||
{
|
||||
if (addr0 >= Memory::HEAP_VADDR && addr0 < Memory::HEAP_VADDR_END) {
|
||||
ResultCode result = process.HeapFree(addr0, size);
|
||||
if (result.IsError()) return result;
|
||||
} else if (addr0 >= Memory::LINEAR_HEAP_VADDR && addr0 < Memory::LINEAR_HEAP_VADDR_END) {
|
||||
ResultCode result = process.LinearFree(addr0, size);
|
||||
if (result.IsError()) return result;
|
||||
} else {
|
||||
return ERR_INVALID_ADDRESS;
|
||||
}
|
||||
*out_addr = addr0;
|
||||
break;
|
||||
}
|
||||
|
||||
// Map GSP heap memory
|
||||
case MEMORY_OPERATION_GSP_HEAP:
|
||||
*out_addr = Memory::MapBlock_HeapLinear(size, operation, permissions);
|
||||
case MEMOP_COMMIT:
|
||||
{
|
||||
if (operation & MEMOP_LINEAR) {
|
||||
CASCADE_RESULT(*out_addr, process.LinearAllocate(addr0, size, vma_permissions));
|
||||
} else {
|
||||
CASCADE_RESULT(*out_addr, process.HeapAllocate(addr0, size, vma_permissions));
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case MEMOP_MAP: // TODO: This is just a hack to avoid regressions until memory aliasing is implemented
|
||||
{
|
||||
CASCADE_RESULT(*out_addr, process.HeapAllocate(addr0, size, vma_permissions));
|
||||
break;
|
||||
}
|
||||
|
||||
case MEMOP_UNMAP: // TODO: This is just a hack to avoid regressions until memory aliasing is implemented
|
||||
{
|
||||
ResultCode result = process.HeapFree(addr0, size);
|
||||
if (result.IsError()) return result;
|
||||
break;
|
||||
}
|
||||
|
||||
case MEMOP_PROTECT:
|
||||
{
|
||||
ResultCode result = process.vm_manager.ReprotectRange(addr0, size, vma_permissions);
|
||||
if (result.IsError()) return result;
|
||||
break;
|
||||
}
|
||||
|
||||
// Unknown ControlMemory operation
|
||||
default:
|
||||
LOG_ERROR(Kernel_SVC, "unknown operation=0x%08X", operation);
|
||||
return ERR_INVALID_COMBINATION;
|
||||
}
|
||||
|
||||
process.vm_manager.LogLayout(Log::Level::Trace);
|
||||
|
||||
return RESULT_SUCCESS;
|
||||
}
|
||||
|
||||
|
@ -537,9 +619,9 @@ static ResultCode QueryProcessMemory(MemoryInfo* memory_info, PageInfo* page_inf
|
|||
if (process == nullptr)
|
||||
return ERR_INVALID_HANDLE;
|
||||
|
||||
auto vma = process->address_space->FindVMA(addr);
|
||||
auto vma = process->vm_manager.FindVMA(addr);
|
||||
|
||||
if (vma == process->address_space->vma_map.end())
|
||||
if (vma == Kernel::g_current_process->vm_manager.vma_map.end())
|
||||
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage);
|
||||
|
||||
memory_info->base_address = vma->second.base;
|
||||
|
|
|
@ -32,9 +32,7 @@ struct MemoryArea {
|
|||
|
||||
// We don't declare the IO regions in here since its handled by other means.
|
||||
static MemoryArea memory_areas[] = {
|
||||
{HEAP_VADDR, HEAP_SIZE, "Heap"}, // Application heap (main memory)
|
||||
{SHARED_MEMORY_VADDR, SHARED_MEMORY_SIZE, "Shared Memory"}, // Shared memory
|
||||
{LINEAR_HEAP_VADDR, LINEAR_HEAP_SIZE, "Linear Heap"}, // Linear heap (main memory)
|
||||
{VRAM_VADDR, VRAM_SIZE, "VRAM"}, // Video memory (VRAM)
|
||||
{DSP_RAM_VADDR, DSP_RAM_SIZE, "DSP RAM"}, // DSP memory
|
||||
{TLS_AREA_VADDR, TLS_AREA_SIZE, "TLS Area"}, // TLS memory
|
||||
|
|
Reference in New Issue