citra-emu
/
citra-canary
Archived
1
0
Fork 0

Merge pull request #3567 from wwylele/pica-glsl

renderer_opengl: add PICA->GLSL shader decompiler
This commit is contained in:
Weiyi Wang 2018-04-05 14:39:27 +03:00 committed by GitHub
commit e3d25bc6d0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 960 additions and 0 deletions

View File

@ -28,6 +28,8 @@ add_library(video_core STATIC
renderer_opengl/gl_rasterizer_cache.cpp
renderer_opengl/gl_rasterizer_cache.h
renderer_opengl/gl_resource_manager.h
renderer_opengl/gl_shader_decompiler.cpp
renderer_opengl/gl_shader_decompiler.h
renderer_opengl/gl_shader_gen.cpp
renderer_opengl/gl_shader_gen.h
renderer_opengl/gl_shader_util.cpp

View File

@ -0,0 +1,928 @@
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <exception>
#include <map>
#include <set>
#include <string>
#include <tuple>
#include <utility>
#include <nihstro/shader_bytecode.h>
#include "common/assert.h"
#include "common/common_types.h"
#include "video_core/renderer_opengl/gl_shader_decompiler.h"
namespace Pica {
namespace Shader {
namespace Decompiler {
using nihstro::Instruction;
using nihstro::OpCode;
using nihstro::RegisterType;
using nihstro::SourceRegister;
using nihstro::SwizzlePattern;
constexpr u32 PROGRAM_END = MAX_PROGRAM_CODE_LENGTH;
class DecompileFail : public std::runtime_error {
public:
using std::runtime_error::runtime_error;
};
/// Describes the behaviour of code path of a given entry point and a return point.
enum class ExitMethod {
Undetermined, ///< Internal value. Only occur when analyzing JMP loop.
AlwaysReturn, ///< All code paths reach the return point.
Conditional, ///< Code path reaches the return point or an END instruction conditionally.
AlwaysEnd, ///< All code paths reach a END instruction.
};
/// A subroutine is a range of code refereced by a CALL, IF or LOOP instruction.
struct Subroutine {
/// Generates a name suitable for GLSL source code.
std::string GetName() const {
return "sub_" + std::to_string(begin) + "_" + std::to_string(end);
}
u32 begin; ///< Entry point of the subroutine.
u32 end; ///< Return point of the subroutine.
ExitMethod exit_method; ///< Exit method of the subroutine.
std::set<u32> labels; ///< Addresses refereced by JMP instructions.
bool operator<(const Subroutine& rhs) const {
return std::tie(begin, end) < std::tie(rhs.begin, rhs.end);
}
};
/// Analyzes shader code and produces a set of subroutines.
class ControlFlowAnalyzer {
public:
ControlFlowAnalyzer(const ProgramCode& program_code, u32 main_offset)
: program_code(program_code) {
// Recursively finds all subroutines.
const Subroutine& program_main = AddSubroutine(main_offset, PROGRAM_END);
if (program_main.exit_method != ExitMethod::AlwaysEnd)
throw DecompileFail("Program does not always end");
}
std::set<Subroutine> MoveSubroutines() {
return std::move(subroutines);
}
private:
const ProgramCode& program_code;
std::set<Subroutine> subroutines;
std::map<std::pair<u32, u32>, ExitMethod> exit_method_map;
/// Adds and analyzes a new subroutine if it is not added yet.
const Subroutine& AddSubroutine(u32 begin, u32 end) {
auto iter = subroutines.find(Subroutine{begin, end});
if (iter != subroutines.end())
return *iter;
Subroutine subroutine{begin, end};
subroutine.exit_method = Scan(begin, end, subroutine.labels);
if (subroutine.exit_method == ExitMethod::Undetermined)
throw DecompileFail("Recursive function detected");
return *subroutines.insert(std::move(subroutine)).first;
}
/// Merges exit method of two parallel branches.
static ExitMethod ParallelExit(ExitMethod a, ExitMethod b) {
if (a == ExitMethod::Undetermined) {
return b;
}
if (b == ExitMethod::Undetermined) {
return a;
}
if (a == b) {
return a;
}
return ExitMethod::Conditional;
}
/// Cascades exit method of two blocks of code.
static ExitMethod SeriesExit(ExitMethod a, ExitMethod b) {
// This should be handled before evaluating b.
DEBUG_ASSERT(a != ExitMethod::AlwaysEnd);
if (a == ExitMethod::Undetermined) {
return ExitMethod::Undetermined;
}
if (a == ExitMethod::AlwaysReturn) {
return b;
}
if (b == ExitMethod::Undetermined || b == ExitMethod::AlwaysEnd) {
return ExitMethod::AlwaysEnd;
}
return ExitMethod::Conditional;
}
/// Scans a range of code for labels and determines the exit method.
ExitMethod Scan(u32 begin, u32 end, std::set<u32>& labels) {
auto [iter, inserted] =
exit_method_map.emplace(std::make_pair(begin, end), ExitMethod::Undetermined);
ExitMethod& exit_method = iter->second;
if (!inserted)
return exit_method;
for (u32 offset = begin; offset != end && offset != PROGRAM_END; ++offset) {
const Instruction instr = {program_code[offset]};
switch (instr.opcode.Value()) {
case OpCode::Id::END: {
return exit_method = ExitMethod::AlwaysEnd;
}
case OpCode::Id::JMPC:
case OpCode::Id::JMPU: {
labels.insert(instr.flow_control.dest_offset);
ExitMethod no_jmp = Scan(offset + 1, end, labels);
ExitMethod jmp = Scan(instr.flow_control.dest_offset, end, labels);
return exit_method = ParallelExit(no_jmp, jmp);
}
case OpCode::Id::CALL: {
auto& call = AddSubroutine(instr.flow_control.dest_offset,
instr.flow_control.dest_offset +
instr.flow_control.num_instructions);
if (call.exit_method == ExitMethod::AlwaysEnd)
return exit_method = ExitMethod::AlwaysEnd;
ExitMethod after_call = Scan(offset + 1, end, labels);
return exit_method = SeriesExit(call.exit_method, after_call);
}
case OpCode::Id::LOOP: {
auto& loop = AddSubroutine(offset + 1, instr.flow_control.dest_offset + 1);
if (loop.exit_method == ExitMethod::AlwaysEnd)
return exit_method = ExitMethod::AlwaysEnd;
ExitMethod after_loop = Scan(instr.flow_control.dest_offset + 1, end, labels);
return exit_method = SeriesExit(loop.exit_method, after_loop);
}
case OpCode::Id::CALLC:
case OpCode::Id::CALLU: {
auto& call = AddSubroutine(instr.flow_control.dest_offset,
instr.flow_control.dest_offset +
instr.flow_control.num_instructions);
ExitMethod after_call = Scan(offset + 1, end, labels);
return exit_method = SeriesExit(
ParallelExit(call.exit_method, ExitMethod::AlwaysReturn), after_call);
}
case OpCode::Id::IFU:
case OpCode::Id::IFC: {
auto& if_sub = AddSubroutine(offset + 1, instr.flow_control.dest_offset);
ExitMethod else_method;
if (instr.flow_control.num_instructions != 0) {
auto& else_sub = AddSubroutine(instr.flow_control.dest_offset,
instr.flow_control.dest_offset +
instr.flow_control.num_instructions);
else_method = else_sub.exit_method;
} else {
else_method = ExitMethod::AlwaysReturn;
}
ExitMethod both = ParallelExit(if_sub.exit_method, else_method);
if (both == ExitMethod::AlwaysEnd)
return exit_method = ExitMethod::AlwaysEnd;
ExitMethod after_call =
Scan(instr.flow_control.dest_offset + instr.flow_control.num_instructions, end,
labels);
return exit_method = SeriesExit(both, after_call);
}
}
}
return exit_method = ExitMethod::AlwaysReturn;
}
};
class ShaderWriter {
public:
void AddLine(const std::string& text) {
DEBUG_ASSERT(scope >= 0);
if (!text.empty()) {
shader_source += std::string(static_cast<size_t>(scope) * 4, ' ');
}
shader_source += text + '\n';
}
std::string MoveResult() {
return std::move(shader_source);
}
int scope = 0;
private:
std::string shader_source;
};
/// An adaptor for getting swizzle pattern string from nihstro interfaces.
template <SwizzlePattern::Selector (SwizzlePattern::*getter)(int) const>
std::string GetSelectorSrc(const SwizzlePattern& pattern) {
std::string out;
for (std::size_t i = 0; i < 4; ++i) {
switch ((pattern.*getter)(i)) {
case SwizzlePattern::Selector::x:
out += "x";
break;
case SwizzlePattern::Selector::y:
out += "y";
break;
case SwizzlePattern::Selector::z:
out += "z";
break;
case SwizzlePattern::Selector::w:
out += "w";
break;
default:
UNREACHABLE();
return "";
}
}
return out;
}
constexpr auto GetSelectorSrc1 = GetSelectorSrc<&SwizzlePattern::GetSelectorSrc1>;
constexpr auto GetSelectorSrc2 = GetSelectorSrc<&SwizzlePattern::GetSelectorSrc2>;
constexpr auto GetSelectorSrc3 = GetSelectorSrc<&SwizzlePattern::GetSelectorSrc3>;
class GLSLGenerator {
public:
GLSLGenerator(const std::set<Subroutine>& subroutines, const ProgramCode& program_code,
const SwizzleData& swizzle_data, u32 main_offset,
const RegGetter& inputreg_getter, const RegGetter& outputreg_getter,
bool sanitize_mul, bool is_gs)
: subroutines(subroutines), program_code(program_code), swizzle_data(swizzle_data),
main_offset(main_offset), inputreg_getter(inputreg_getter),
outputreg_getter(outputreg_getter), sanitize_mul(sanitize_mul), is_gs(is_gs) {
Generate();
}
std::string MoveShaderCode() {
return shader.MoveResult();
}
private:
/// Gets the Subroutine object corresponding to the specified address.
const Subroutine& GetSubroutine(u32 begin, u32 end) const {
auto iter = subroutines.find(Subroutine{begin, end});
ASSERT(iter != subroutines.end());
return *iter;
}
/// Generates condition evaluation code for the flow control instruction.
static std::string EvaluateCondition(Instruction::FlowControlType flow_control) {
using Op = Instruction::FlowControlType::Op;
std::string result_x =
flow_control.refx.Value() ? "conditional_code.x" : "!conditional_code.x";
std::string result_y =
flow_control.refy.Value() ? "conditional_code.y" : "!conditional_code.y";
switch (flow_control.op) {
case Op::JustX:
return result_x;
case Op::JustY:
return result_y;
case Op::Or:
case Op::And: {
std::string and_or = flow_control.op == Op::Or ? "any" : "all";
std::string bvec;
if (flow_control.refx.Value() && flow_control.refy.Value()) {
bvec = "conditional_code";
} else if (!flow_control.refx.Value() && !flow_control.refy.Value()) {
bvec = "not(conditional_code)";
} else {
bvec = "bvec2(" + result_x + ", " + result_y + ")";
}
return and_or + "(" + bvec + ")";
}
default:
UNREACHABLE();
return "";
}
}
/// Generates code representing a source register.
std::string GetSourceRegister(const SourceRegister& source_reg,
u32 address_register_index) const {
u32 index = static_cast<u32>(source_reg.GetIndex());
std::string index_str = std::to_string(index);
switch (source_reg.GetRegisterType()) {
case RegisterType::Input:
return inputreg_getter(index);
case RegisterType::Temporary:
return "reg_tmp" + index_str;
case RegisterType::FloatUniform:
if (address_register_index != 0) {
index_str +=
std::string(" + address_registers.") + "xyz"[address_register_index - 1];
}
return "uniforms.f[" + index_str + "]";
default:
UNREACHABLE();
return "";
}
}
/// Generates code representing a destination register.
std::string GetDestRegister(const DestRegister& dest_reg) const {
u32 index = static_cast<u32>(dest_reg.GetIndex());
switch (dest_reg.GetRegisterType()) {
case RegisterType::Output:
return outputreg_getter(index);
case RegisterType::Temporary:
return "reg_tmp" + std::to_string(index);
default:
UNREACHABLE();
return "";
}
}
/// Generates code representing a bool uniform
std::string GetUniformBool(u32 index) const {
if (is_gs && index == 15) {
// The uniform b15 is set to true after every geometry shader invocation.
return "((gl_PrimitiveIDIn == 0) || uniforms.b[15])";
}
return "uniforms.b[" + std::to_string(index) + "]";
}
/**
* Adds code that calls a subroutine.
* @param subroutine the subroutine to call.
*/
void CallSubroutine(const Subroutine& subroutine) {
if (subroutine.exit_method == ExitMethod::AlwaysEnd) {
shader.AddLine(subroutine.GetName() + "();");
shader.AddLine("return true;");
} else if (subroutine.exit_method == ExitMethod::Conditional) {
shader.AddLine("if (" + subroutine.GetName() + "()) { return true; }");
} else {
shader.AddLine(subroutine.GetName() + "();");
}
}
/**
* Writes code that does an assignment operation.
* @param swizzle the swizzle data of the current instruction.
* @param reg the destination register code.
* @param value the code representing the value to assign.
* @param dest_num_components number of components of the destination register.
* @param value_num_components number of components of the value to assign.
*/
void SetDest(const SwizzlePattern& swizzle, const std::string& reg, const std::string& value,
u32 dest_num_components, u32 value_num_components) {
u32 dest_mask_num_components = 0;
std::string dest_mask_swizzle = ".";
for (u32 i = 0; i < dest_num_components; ++i) {
if (swizzle.DestComponentEnabled(static_cast<int>(i))) {
dest_mask_swizzle += "xyzw"[i];
++dest_mask_num_components;
}
}
if (reg.empty() || dest_mask_num_components == 0) {
return;
}
DEBUG_ASSERT(value_num_components >= dest_num_components || value_num_components == 1);
std::string dest = reg + (dest_num_components != 1 ? dest_mask_swizzle : "");
std::string src = value;
if (value_num_components == 1) {
if (dest_mask_num_components != 1) {
src = "vec" + std::to_string(dest_mask_num_components) + "(" + value + ")";
}
} else if (value_num_components != dest_mask_num_components) {
src = "(" + value + ")" + dest_mask_swizzle;
}
shader.AddLine(dest + " = " + src + ";");
}
/**
* Compiles a single instruction from PICA to GLSL.
* @param offset the offset of the PICA shader instruction.
* @return the offset of the next instruction to execute. Usually it is the current offset + 1.
* If the current instruction is IF or LOOP, the next instruction is after the IF or LOOP block.
* If the current instruction always terminates the program, returns PROGRAM_END.
*/
u32 CompileInstr(u32 offset) {
const Instruction instr = {program_code[offset]};
size_t swizzle_offset = instr.opcode.Value().GetInfo().type == OpCode::Type::MultiplyAdd
? instr.mad.operand_desc_id
: instr.common.operand_desc_id;
const SwizzlePattern swizzle = {swizzle_data[swizzle_offset]};
shader.AddLine("// " + std::to_string(offset) + ": " + instr.opcode.Value().GetInfo().name);
switch (instr.opcode.Value().GetInfo().type) {
case OpCode::Type::Arithmetic: {
const bool is_inverted =
(0 != (instr.opcode.Value().GetInfo().subtype & OpCode::Info::SrcInversed));
std::string src1 = swizzle.negate_src1 ? "-" : "";
src1 += GetSourceRegister(instr.common.GetSrc1(is_inverted),
!is_inverted * instr.common.address_register_index);
src1 += "." + GetSelectorSrc1(swizzle);
std::string src2 = swizzle.negate_src2 ? "-" : "";
src2 += GetSourceRegister(instr.common.GetSrc2(is_inverted),
is_inverted * instr.common.address_register_index);
src2 += "." + GetSelectorSrc2(swizzle);
std::string dest_reg = GetDestRegister(instr.common.dest.Value());
switch (instr.opcode.Value().EffectiveOpCode()) {
case OpCode::Id::ADD: {
SetDest(swizzle, dest_reg, src1 + " + " + src2, 4, 4);
break;
}
case OpCode::Id::MUL: {
if (sanitize_mul) {
SetDest(swizzle, dest_reg, "sanitize_mul(" + src1 + ", " + src2 + ")", 4, 4);
} else {
SetDest(swizzle, dest_reg, src1 + " * " + src2, 4, 4);
}
break;
}
case OpCode::Id::FLR: {
SetDest(swizzle, dest_reg, "floor(" + src1 + ")", 4, 4);
break;
}
case OpCode::Id::MAX: {
SetDest(swizzle, dest_reg, "max(" + src1 + ", " + src2 + ")", 4, 4);
break;
}
case OpCode::Id::MIN: {
SetDest(swizzle, dest_reg, "min(" + src1 + ", " + src2 + ")", 4, 4);
break;
}
case OpCode::Id::DP3:
case OpCode::Id::DP4:
case OpCode::Id::DPH:
case OpCode::Id::DPHI: {
OpCode::Id opcode = instr.opcode.Value().EffectiveOpCode();
std::string dot;
if (opcode == OpCode::Id::DP3) {
if (sanitize_mul) {
dot = "dot(vec3(sanitize_mul(" + src1 + ", " + src2 + ")), vec3(1.0))";
} else {
dot = "dot(vec3(" + src1 + "), vec3(" + src2 + "))";
}
} else {
std::string src1_ = (opcode == OpCode::Id::DPH || opcode == OpCode::Id::DPHI)
? "vec4(" + src1 + ".xyz, 1.0)"
: src1;
if (sanitize_mul) {
dot = "dot(sanitize_mul(" + src1_ + ", " + src2 + "), vec4(1.0))";
} else {
dot = "dot(" + src1 + ", " + src2 + ")";
}
}
SetDest(swizzle, dest_reg, dot, 4, 1);
break;
}
case OpCode::Id::RCP: {
SetDest(swizzle, dest_reg, "(1.0 / " + src1 + ".x)", 4, 1);
break;
}
case OpCode::Id::RSQ: {
SetDest(swizzle, dest_reg, "inversesqrt(" + src1 + ".x)", 4, 1);
break;
}
case OpCode::Id::MOVA: {
SetDest(swizzle, "address_registers", "ivec2(" + src1 + ")", 2, 2);
break;
}
case OpCode::Id::MOV: {
SetDest(swizzle, dest_reg, src1, 4, 4);
break;
}
case OpCode::Id::SGE:
case OpCode::Id::SGEI: {
SetDest(swizzle, dest_reg, "vec4(greaterThanEqual(" + src1 + "," + src2 + "))", 4,
4);
break;
}
case OpCode::Id::SLT:
case OpCode::Id::SLTI: {
SetDest(swizzle, dest_reg, "vec4(lessThan(" + src1 + "," + src2 + "))", 4, 4);
break;
}
case OpCode::Id::CMP: {
using CompareOp = Instruction::Common::CompareOpType::Op;
const std::map<CompareOp, std::pair<std::string, std::string>> cmp_ops{
{CompareOp::Equal, {"==", "equal"}},
{CompareOp::NotEqual, {"!=", "notEqual"}},
{CompareOp::LessThan, {"<", "lessThan"}},
{CompareOp::LessEqual, {"<=", "lessThanEqual"}},
{CompareOp::GreaterThan, {">", "greaterThan"}},
{CompareOp::GreaterEqual, {">=", "greaterThanEqual"}}};
const CompareOp op_x = instr.common.compare_op.x.Value();
const CompareOp op_y = instr.common.compare_op.y.Value();
if (cmp_ops.find(op_x) == cmp_ops.end()) {
LOG_ERROR(HW_GPU, "Unknown compare mode %x", static_cast<int>(op_x));
} else if (cmp_ops.find(op_y) == cmp_ops.end()) {
LOG_ERROR(HW_GPU, "Unknown compare mode %x", static_cast<int>(op_y));
} else if (op_x != op_y) {
shader.AddLine("conditional_code.x = " + src1 + ".x " +
cmp_ops.find(op_x)->second.first + " " + src2 + ".x;");
shader.AddLine("conditional_code.y = " + src1 + ".y " +
cmp_ops.find(op_y)->second.first + " " + src2 + ".y;");
} else {
shader.AddLine("conditional_code = " + cmp_ops.find(op_x)->second.second +
"(vec2(" + src1 + "), vec2(" + src2 + "));");
}
break;
}
case OpCode::Id::EX2: {
SetDest(swizzle, dest_reg, "exp2(" + src1 + ".x)", 4, 1);
break;
}
case OpCode::Id::LG2: {
SetDest(swizzle, dest_reg, "log2(" + src1 + ".x)", 4, 1);
break;
}
default: {
LOG_ERROR(HW_GPU, "Unhandled arithmetic instruction: 0x%02x (%s): 0x%08x",
(int)instr.opcode.Value().EffectiveOpCode(),
instr.opcode.Value().GetInfo().name, instr.hex);
throw DecompileFail("Unhandled instruction");
break;
}
}
break;
}
case OpCode::Type::MultiplyAdd: {
if ((instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MAD) ||
(instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI)) {
bool is_inverted = (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI);
std::string src1 = swizzle.negate_src1 ? "-" : "";
src1 += GetSourceRegister(instr.mad.GetSrc1(is_inverted), 0);
src1 += "." + GetSelectorSrc1(swizzle);
std::string src2 = swizzle.negate_src2 ? "-" : "";
src2 += GetSourceRegister(instr.mad.GetSrc2(is_inverted),
!is_inverted * instr.mad.address_register_index);
src2 += "." + GetSelectorSrc2(swizzle);
std::string src3 = swizzle.negate_src3 ? "-" : "";
src3 += GetSourceRegister(instr.mad.GetSrc3(is_inverted),
is_inverted * instr.mad.address_register_index);
src3 += "." + GetSelectorSrc3(swizzle);
std::string dest_reg =
(instr.mad.dest.Value() < 0x10)
? outputreg_getter(static_cast<u32>(instr.mad.dest.Value().GetIndex()))
: (instr.mad.dest.Value() < 0x20)
? "reg_tmp" + std::to_string(instr.mad.dest.Value().GetIndex())
: "";
if (sanitize_mul) {
SetDest(swizzle, dest_reg, "sanitize_mul(" + src1 + ", " + src2 + ") + " + src3,
4, 4);
} else {
SetDest(swizzle, dest_reg, src1 + " * " + src2 + " + " + src3, 4, 4);
}
} else {
LOG_ERROR(HW_GPU, "Unhandled multiply-add instruction: 0x%02x (%s): 0x%08x",
(int)instr.opcode.Value().EffectiveOpCode(),
instr.opcode.Value().GetInfo().name, instr.hex);
throw DecompileFail("Unhandled instruction");
}
break;
}
default: {
switch (instr.opcode.Value()) {
case OpCode::Id::END: {
shader.AddLine("return true;");
offset = PROGRAM_END - 1;
break;
}
case OpCode::Id::JMPC:
case OpCode::Id::JMPU: {
std::string condition;
if (instr.opcode.Value() == OpCode::Id::JMPC) {
condition = EvaluateCondition(instr.flow_control);
} else {
bool invert_test = instr.flow_control.num_instructions & 1;
condition = (invert_test ? "!" : "") +
GetUniformBool(instr.flow_control.bool_uniform_id);
}
shader.AddLine("if (" + condition + ") {");
++shader.scope;
shader.AddLine("{ jmp_to = " + std::to_string(instr.flow_control.dest_offset) +
"u; break; }");
--shader.scope;
shader.AddLine("}");
break;
}
case OpCode::Id::CALL:
case OpCode::Id::CALLC:
case OpCode::Id::CALLU: {
std::string condition;
if (instr.opcode.Value() == OpCode::Id::CALLC) {
condition = EvaluateCondition(instr.flow_control);
} else if (instr.opcode.Value() == OpCode::Id::CALLU) {
condition = GetUniformBool(instr.flow_control.bool_uniform_id);
}
shader.AddLine(condition.empty() ? "{" : "if (" + condition + ") {");
++shader.scope;
auto& call_sub = GetSubroutine(instr.flow_control.dest_offset,
instr.flow_control.dest_offset +
instr.flow_control.num_instructions);
CallSubroutine(call_sub);
if (instr.opcode.Value() == OpCode::Id::CALL &&
call_sub.exit_method == ExitMethod::AlwaysEnd) {
offset = PROGRAM_END - 1;
}
--shader.scope;
shader.AddLine("}");
break;
}
case OpCode::Id::NOP: {
break;
}
case OpCode::Id::IFC:
case OpCode::Id::IFU: {
std::string condition;
if (instr.opcode.Value() == OpCode::Id::IFC) {
condition = EvaluateCondition(instr.flow_control);
} else {
condition = GetUniformBool(instr.flow_control.bool_uniform_id);
}
const u32 if_offset = offset + 1;
const u32 else_offset = instr.flow_control.dest_offset;
const u32 endif_offset =
instr.flow_control.dest_offset + instr.flow_control.num_instructions;
shader.AddLine("if (" + condition + ") {");
++shader.scope;
auto& if_sub = GetSubroutine(if_offset, else_offset);
CallSubroutine(if_sub);
offset = else_offset - 1;
if (instr.flow_control.num_instructions != 0) {
--shader.scope;
shader.AddLine("} else {");
++shader.scope;
auto& else_sub = GetSubroutine(else_offset, endif_offset);
CallSubroutine(else_sub);
offset = endif_offset - 1;
if (if_sub.exit_method == ExitMethod::AlwaysEnd &&
else_sub.exit_method == ExitMethod::AlwaysEnd) {
offset = PROGRAM_END - 1;
}
}
--shader.scope;
shader.AddLine("}");
break;
}
case OpCode::Id::LOOP: {
std::string int_uniform =
"uniforms.i[" + std::to_string(instr.flow_control.int_uniform_id) + "]";
shader.AddLine("address_registers.z = int(" + int_uniform + ".y);");
std::string loop_var = "loop" + std::to_string(offset);
shader.AddLine("for (uint " + loop_var + " = 0u; " + loop_var +
" <= " + int_uniform + ".x; address_registers.z += int(" +
int_uniform + ".z), ++" + loop_var + ") {");
++shader.scope;
auto& loop_sub = GetSubroutine(offset + 1, instr.flow_control.dest_offset + 1);
CallSubroutine(loop_sub);
offset = instr.flow_control.dest_offset;
--shader.scope;
shader.AddLine("}");
if (loop_sub.exit_method == ExitMethod::AlwaysEnd) {
offset = PROGRAM_END - 1;
}
break;
}
case OpCode::Id::EMIT: {
if (is_gs) {
shader.AddLine("emit();");
}
break;
}
case OpCode::Id::SETEMIT: {
if (is_gs) {
ASSERT(instr.setemit.vertex_id < 3);
shader.AddLine("setemit(" + std::to_string(instr.setemit.vertex_id) + "u, " +
((instr.setemit.prim_emit != 0) ? "true" : "false") + ", " +
((instr.setemit.winding != 0) ? "true" : "false") + ");");
}
break;
}
default: {
LOG_ERROR(HW_GPU, "Unhandled instruction: 0x%02x (%s): 0x%08x",
(int)instr.opcode.Value().EffectiveOpCode(),
instr.opcode.Value().GetInfo().name, instr.hex);
throw DecompileFail("Unhandled instruction");
break;
}
}
break;
}
}
return offset + 1;
}
/**
* Compiles a range of instructions from PICA to GLSL.
* @param begin the offset of the starting instruction.
* @param end the offset where the compilation should stop (exclusive).
* @return the offset of the next instruction to compile. PROGRAM_END if the program terminates.
*/
u32 CompileRange(u32 begin, u32 end) {
u32 program_counter;
for (program_counter = begin; program_counter < (begin > end ? PROGRAM_END : end);) {
program_counter = CompileInstr(program_counter);
}
return program_counter;
}
void Generate() {
if (sanitize_mul) {
shader.AddLine("vec4 sanitize_mul(vec4 lhs, vec4 rhs) {");
++shader.scope;
shader.AddLine("vec4 product = lhs * rhs;");
shader.AddLine("return mix(product, mix(mix(vec4(0.0), product, isnan(rhs)), product, "
"isnan(lhs)), isnan(product));");
--shader.scope;
shader.AddLine("}\n");
}
// Add declarations for registers
shader.AddLine("bvec2 conditional_code = bvec2(false);");
shader.AddLine("ivec3 address_registers = ivec3(0);");
for (int i = 0; i < 16; ++i) {
shader.AddLine("vec4 reg_tmp" + std::to_string(i) + " = vec4(0.0, 0.0, 0.0, 1.0);");
}
shader.AddLine("");
// Add declarations for all subroutines
for (const auto& subroutine : subroutines) {
shader.AddLine("bool " + subroutine.GetName() + "();");
}
shader.AddLine("");
// Add the main entry point
shader.AddLine("bool exec_shader() {");
++shader.scope;
CallSubroutine(GetSubroutine(main_offset, PROGRAM_END));
--shader.scope;
shader.AddLine("}\n");
// Add definitions for all subroutines
for (const auto& subroutine : subroutines) {
std::set<u32> labels = subroutine.labels;
shader.AddLine("bool " + subroutine.GetName() + "() {");
++shader.scope;
if (labels.empty()) {
if (CompileRange(subroutine.begin, subroutine.end) != PROGRAM_END) {
shader.AddLine("return false;");
}
} else {
labels.insert(subroutine.begin);
shader.AddLine("uint jmp_to = " + std::to_string(subroutine.begin) + "u;");
shader.AddLine("while (true) {");
++shader.scope;
shader.AddLine("switch (jmp_to) {");
for (auto label : labels) {
shader.AddLine("case " + std::to_string(label) + "u: {");
++shader.scope;
auto next_it = labels.lower_bound(label + 1);
u32 next_label = next_it == labels.end() ? subroutine.end : *next_it;
u32 compile_end = CompileRange(label, next_label);
if (compile_end > next_label && compile_end != PROGRAM_END) {
// This happens only when there is a label inside a IF/LOOP block
shader.AddLine("{ jmp_to = " + std::to_string(compile_end) + "u; break; }");
labels.emplace(compile_end);
}
--shader.scope;
shader.AddLine("}");
}
shader.AddLine("default: return false;");
shader.AddLine("}");
--shader.scope;
shader.AddLine("}");
shader.AddLine("return false;");
}
--shader.scope;
shader.AddLine("}\n");
DEBUG_ASSERT(shader.scope == 0);
}
}
private:
const std::set<Subroutine>& subroutines;
const ProgramCode& program_code;
const SwizzleData& swizzle_data;
const u32 main_offset;
const RegGetter& inputreg_getter;
const RegGetter& outputreg_getter;
const bool sanitize_mul;
const bool is_gs;
ShaderWriter shader;
};
std::string GetCommonDeclarations() {
return R"(
struct pica_uniforms {
bool b[16];
uvec4 i[4];
vec4 f[96];
};
bool exec_shader();
)";
}
boost::optional<std::string> DecompileProgram(const ProgramCode& program_code,
const SwizzleData& swizzle_data, u32 main_offset,
const RegGetter& inputreg_getter,
const RegGetter& outputreg_getter, bool sanitize_mul,
bool is_gs) {
try {
auto subroutines = ControlFlowAnalyzer(program_code, main_offset).MoveSubroutines();
GLSLGenerator generator(subroutines, program_code, swizzle_data, main_offset,
inputreg_getter, outputreg_getter, sanitize_mul, is_gs);
return generator.MoveShaderCode();
} catch (const DecompileFail& exception) {
LOG_ERROR(HW_GPU, "Shader decompilation failed: %s", exception.what());
return boost::none;
}
}
} // namespace Decompiler
} // namespace Shader
} // namespace Pica

View File

@ -0,0 +1,30 @@
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <array>
#include <functional>
#include <string>
#include <boost/optional.hpp>
#include "common/common_types.h"
#include "video_core/shader/shader.h"
namespace Pica {
namespace Shader {
namespace Decompiler {
using ProgramCode = std::array<u32, MAX_PROGRAM_CODE_LENGTH>;
using SwizzleData = std::array<u32, MAX_SWIZZLE_DATA_LENGTH>;
using RegGetter = std::function<std::string(u32)>;
std::string GetCommonDeclarations();
boost::optional<std::string> DecompileProgram(const ProgramCode& program_code,
const SwizzleData& swizzle_data, u32 main_offset,
const RegGetter& inputreg_getter,
const RegGetter& outputreg_getter, bool sanitize_mul,
bool is_gs);
} // namespace Decompiler
} // namespace Shader
} // namespace Pica