citra-emu
/
citra-canary
Archived
1
0
Fork 0

VideoCore: Convert x64 shader JIT to use Xbyak for assembly

This commit is contained in:
Yuri Kunde Schlesner 2016-12-12 01:23:08 -08:00
parent 17fccb8c5d
commit f4e98ecf3f
6 changed files with 461 additions and 223 deletions

View File

@ -71,9 +71,15 @@ if(ARCHITECTURE_x86_64)
set(HEADERS ${HEADERS} set(HEADERS ${HEADERS}
x64/abi.h x64/abi.h
x64/cpu_detect.h x64/cpu_detect.h
x64/emitter.h) x64/emitter.h
x64/xbyak_abi.h
x64/xbyak_util.h
)
endif() endif()
create_directory_groups(${SRCS} ${HEADERS}) create_directory_groups(${SRCS} ${HEADERS})
add_library(common STATIC ${SRCS} ${HEADERS}) add_library(common STATIC ${SRCS} ${HEADERS})
if (ARCHITECTURE_x86_64)
target_link_libraries(common xbyak)
endif()

178
src/common/x64/xbyak_abi.h Normal file
View File

@ -0,0 +1,178 @@
// Copyright 2016 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <initializer_list>
#include <xbyak.h>
#include "common/assert.h"
#include "common/bit_set.h"
namespace Common {
namespace X64 {
int RegToIndex(const Xbyak::Reg& reg) {
using Kind = Xbyak::Reg::Kind;
ASSERT_MSG((reg.getKind() & (Kind::REG | Kind::XMM)) != 0,
"RegSet only support GPRs and XMM registers.");
ASSERT_MSG(reg.getIdx() < 16, "RegSet only supports XXM0-15.");
return reg.getIdx() + (reg.getKind() == Kind::REG ? 0 : 16);
}
inline Xbyak::Reg64 IndexToReg64(int reg_index) {
ASSERT(reg_index < 16);
return Xbyak::Reg64(reg_index);
}
inline Xbyak::Xmm IndexToXmm(int reg_index) {
ASSERT(reg_index >= 16 && reg_index < 32);
return Xbyak::Xmm(reg_index - 16);
}
inline Xbyak::Reg IndexToReg(int reg_index) {
if (reg_index < 16) {
return IndexToReg64(reg_index);
} else {
return IndexToXmm(reg_index);
}
}
inline BitSet32 BuildRegSet(std::initializer_list<Xbyak::Reg> regs) {
BitSet32 bits;
for (const Xbyak::Reg& reg : regs) {
bits[RegToIndex(reg)] = true;
}
return bits;
}
const BitSet32 ABI_ALL_GPRS(0x0000FFFF);
const BitSet32 ABI_ALL_XMMS(0xFFFF0000);
#ifdef _WIN32
// Microsoft x64 ABI
const Xbyak::Reg ABI_RETURN = Xbyak::util::rax;
const Xbyak::Reg ABI_PARAM1 = Xbyak::util::rcx;
const Xbyak::Reg ABI_PARAM2 = Xbyak::util::rdx;
const Xbyak::Reg ABI_PARAM3 = Xbyak::util::r8;
const Xbyak::Reg ABI_PARAM4 = Xbyak::util::r9;
const BitSet32 ABI_ALL_CALLER_SAVED = BuildRegSet({
// GPRs
Xbyak::util::rcx, Xbyak::util::rdx, Xbyak::util::r8, Xbyak::util::r9, Xbyak::util::r10,
Xbyak::util::r11,
// XMMs
Xbyak::util::xmm0, Xbyak::util::xmm1, Xbyak::util::xmm2, Xbyak::util::xmm3, Xbyak::util::xmm4,
Xbyak::util::xmm5,
});
const BitSet32 ABI_ALL_CALLEE_SAVED = BuildRegSet({
// GPRs
Xbyak::util::rbx, Xbyak::util::rsi, Xbyak::util::rdi, Xbyak::util::rbp, Xbyak::util::r12,
Xbyak::util::r13, Xbyak::util::r14, Xbyak::util::r15,
// XMMs
Xbyak::util::xmm6, Xbyak::util::xmm7, Xbyak::util::xmm8, Xbyak::util::xmm9, Xbyak::util::xmm10,
Xbyak::util::xmm11, Xbyak::util::xmm12, Xbyak::util::xmm13, Xbyak::util::xmm14,
Xbyak::util::xmm15,
});
constexpr size_t ABI_SHADOW_SPACE = 0x20;
#else
// System V x86-64 ABI
const Xbyak::Reg ABI_RETURN = Xbyak::util::rax;
const Xbyak::Reg ABI_PARAM1 = Xbyak::util::rdi;
const Xbyak::Reg ABI_PARAM2 = Xbyak::util::rsi;
const Xbyak::Reg ABI_PARAM3 = Xbyak::util::rdx;
const Xbyak::Reg ABI_PARAM4 = Xbyak::util::rcx;
const BitSet32 ABI_ALL_CALLER_SAVED = BuildRegSet({
// GPRs
Xbyak::util::rcx, Xbyak::util::rdx, Xbyak::util::rdi, Xbyak::util::rsi, Xbyak::util::r8,
Xbyak::util::r9, Xbyak::util::r10, Xbyak::util::r11,
// XMMs
Xbyak::util::xmm0, Xbyak::util::xmm1, Xbyak::util::xmm2, Xbyak::util::xmm3, Xbyak::util::xmm4,
Xbyak::util::xmm5, Xbyak::util::xmm6, Xbyak::util::xmm7, Xbyak::util::xmm8, Xbyak::util::xmm9,
Xbyak::util::xmm10, Xbyak::util::xmm11, Xbyak::util::xmm12, Xbyak::util::xmm13,
Xbyak::util::xmm14, Xbyak::util::xmm15,
});
const BitSet32 ABI_ALL_CALLEE_SAVED = BuildRegSet({
// GPRs
Xbyak::util::rbx, Xbyak::util::rbp, Xbyak::util::r12, Xbyak::util::r13, Xbyak::util::r14,
Xbyak::util::r15,
});
constexpr size_t ABI_SHADOW_SPACE = 0;
#endif
void ABI_CalculateFrameSize(BitSet32 regs, size_t rsp_alignment, size_t needed_frame_size,
s32* out_subtraction, s32* out_xmm_offset) {
int count = (regs & ABI_ALL_GPRS).Count();
rsp_alignment -= count * 8;
size_t subtraction = 0;
int xmm_count = (regs & ABI_ALL_XMMS).Count();
if (xmm_count) {
// If we have any XMMs to save, we must align the stack here.
subtraction = rsp_alignment & 0xF;
}
subtraction += 0x10 * xmm_count;
size_t xmm_base_subtraction = subtraction;
subtraction += needed_frame_size;
subtraction += ABI_SHADOW_SPACE;
// Final alignment.
rsp_alignment -= subtraction;
subtraction += rsp_alignment & 0xF;
*out_subtraction = (s32)subtraction;
*out_xmm_offset = (s32)(subtraction - xmm_base_subtraction);
}
size_t ABI_PushRegistersAndAdjustStack(Xbyak::CodeGenerator& code, BitSet32 regs,
size_t rsp_alignment, size_t needed_frame_size = 0) {
s32 subtraction, xmm_offset;
ABI_CalculateFrameSize(regs, rsp_alignment, needed_frame_size, &subtraction, &xmm_offset);
for (int reg_index : (regs & ABI_ALL_GPRS)) {
code.push(IndexToReg64(reg_index));
}
if (subtraction != 0) {
code.sub(code.rsp, subtraction);
}
for (int reg_index : (regs & ABI_ALL_XMMS)) {
code.movaps(code.xword[code.rsp + xmm_offset], IndexToXmm(reg_index));
xmm_offset += 0x10;
}
return ABI_SHADOW_SPACE;
}
void ABI_PopRegistersAndAdjustStack(Xbyak::CodeGenerator& code, BitSet32 regs, size_t rsp_alignment,
size_t needed_frame_size = 0) {
s32 subtraction, xmm_offset;
ABI_CalculateFrameSize(regs, rsp_alignment, needed_frame_size, &subtraction, &xmm_offset);
for (int reg_index : (regs & ABI_ALL_XMMS)) {
code.movaps(IndexToXmm(reg_index), code.xword[code.rsp + xmm_offset]);
xmm_offset += 0x10;
}
if (subtraction != 0) {
code.add(code.rsp, subtraction);
}
// GPRs need to be popped in reverse order
for (int reg_index = 15; reg_index >= 0; reg_index--) {
if (regs[reg_index]) {
code.pop(IndexToReg64(reg_index));
}
}
}
} // namespace X64
} // namespace Common

View File

@ -0,0 +1,49 @@
// Copyright 2016 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <type_traits>
#include <xbyak.h>
#include "common/x64/xbyak_abi.h"
namespace Common {
namespace X64 {
// Constants for use with cmpps/cmpss
enum {
CMP_EQ = 0,
CMP_LT = 1,
CMP_LE = 2,
CMP_UNORD = 3,
CMP_NEQ = 4,
CMP_NLT = 5,
CMP_NLE = 6,
CMP_ORD = 7,
};
inline bool IsWithin2G(uintptr_t ref, uintptr_t target) {
u64 distance = target - (ref + 5);
return !(distance >= 0x8000'0000ULL && distance <= ~0x8000'0000ULL);
}
inline bool IsWithin2G(const Xbyak::CodeGenerator& code, uintptr_t target) {
return IsWithin2G(reinterpret_cast<uintptr_t>(code.getCurr()), target);
}
template <typename T>
inline void CallFarFunction(Xbyak::CodeGenerator& code, const T f) {
static_assert(std::is_pointer<T>(), "Argument must be a (function) pointer.");
size_t addr = reinterpret_cast<size_t>(f);
if (IsWithin2G(code, addr)) {
code.call(f);
} else {
// ABI_RETURN is a safe temp register to use before a call
code.mov(ABI_RETURN, addr);
code.call(ABI_RETURN);
}
}
} // namespace X64
} // namespace Common

View File

@ -59,6 +59,9 @@ create_directory_groups(${SRCS} ${HEADERS})
add_library(video_core STATIC ${SRCS} ${HEADERS}) add_library(video_core STATIC ${SRCS} ${HEADERS})
target_link_libraries(video_core glad) target_link_libraries(video_core glad)
if (ARCHITECTURE_x86_64)
target_link_libraries(video_core xbyak)
endif()
if (PNG_FOUND) if (PNG_FOUND)
target_link_libraries(video_core ${PNG_LIBRARIES}) target_link_libraries(video_core ${PNG_LIBRARIES})

View File

@ -6,24 +6,30 @@
#include <cmath> #include <cmath>
#include <cstdint> #include <cstdint>
#include <nihstro/shader_bytecode.h> #include <nihstro/shader_bytecode.h>
#include <smmintrin.h>
#include <xmmintrin.h> #include <xmmintrin.h>
#include "common/assert.h" #include "common/assert.h"
#include "common/logging/log.h" #include "common/logging/log.h"
#include "common/vector_math.h" #include "common/vector_math.h"
#include "common/x64/abi.h"
#include "common/x64/cpu_detect.h" #include "common/x64/cpu_detect.h"
#include "common/x64/emitter.h" #include "common/x64/xbyak_abi.h"
#include "shader.h" #include "common/x64/xbyak_util.h"
#include "shader_jit_x64.h"
#include "video_core/pica_state.h" #include "video_core/pica_state.h"
#include "video_core/pica_types.h" #include "video_core/pica_types.h"
#include "video_core/shader/shader.h"
#include "video_core/shader/shader_jit_x64.h"
using namespace Common::X64;
using namespace Xbyak::util;
using Xbyak::Label;
using Xbyak::Reg32;
using Xbyak::Reg64;
using Xbyak::Xmm;
namespace Pica { namespace Pica {
namespace Shader { namespace Shader {
using namespace Gen;
typedef void (JitShader::*JitFunction)(Instruction instr); typedef void (JitShader::*JitFunction)(Instruction instr);
const JitFunction instr_table[64] = { const JitFunction instr_table[64] = {
@ -98,44 +104,47 @@ const JitFunction instr_table[64] = {
// purposes, as documented below: // purposes, as documented below:
/// Pointer to the uniform memory /// Pointer to the uniform memory
static const X64Reg SETUP = R9; static const Reg64 SETUP = r9;
/// The two 32-bit VS address offset registers set by the MOVA instruction /// The two 32-bit VS address offset registers set by the MOVA instruction
static const X64Reg ADDROFFS_REG_0 = R10; static const Reg64 ADDROFFS_REG_0 = r10;
static const X64Reg ADDROFFS_REG_1 = R11; static const Reg64 ADDROFFS_REG_1 = r11;
/// VS loop count register (Multiplied by 16) /// VS loop count register (Multiplied by 16)
static const X64Reg LOOPCOUNT_REG = R12; static const Reg64 LOOPCOUNT_REG = r12;
/// Current VS loop iteration number (we could probably use LOOPCOUNT_REG, but this quicker) /// Current VS loop iteration number (we could probably use LOOPCOUNT_REG, but this quicker)
static const X64Reg LOOPCOUNT = RSI; static const Reg64 LOOPCOUNT = rsi;
/// Number to increment LOOPCOUNT_REG by on each loop iteration (Multiplied by 16) /// Number to increment LOOPCOUNT_REG by on each loop iteration (Multiplied by 16)
static const X64Reg LOOPINC = RDI; static const Reg64 LOOPINC = rdi;
/// Result of the previous CMP instruction for the X-component comparison /// Result of the previous CMP instruction for the X-component comparison
static const X64Reg COND0 = R13; static const Reg64 COND0 = r13;
/// Result of the previous CMP instruction for the Y-component comparison /// Result of the previous CMP instruction for the Y-component comparison
static const X64Reg COND1 = R14; static const Reg64 COND1 = r14;
/// Pointer to the UnitState instance for the current VS unit /// Pointer to the UnitState instance for the current VS unit
static const X64Reg STATE = R15; static const Reg64 STATE = r15;
/// SIMD scratch register /// SIMD scratch register
static const X64Reg SCRATCH = XMM0; static const Xmm SCRATCH = xmm0;
/// Loaded with the first swizzled source register, otherwise can be used as a scratch register /// Loaded with the first swizzled source register, otherwise can be used as a scratch register
static const X64Reg SRC1 = XMM1; static const Xmm SRC1 = xmm1;
/// Loaded with the second swizzled source register, otherwise can be used as a scratch register /// Loaded with the second swizzled source register, otherwise can be used as a scratch register
static const X64Reg SRC2 = XMM2; static const Xmm SRC2 = xmm2;
/// Loaded with the third swizzled source register, otherwise can be used as a scratch register /// Loaded with the third swizzled source register, otherwise can be used as a scratch register
static const X64Reg SRC3 = XMM3; static const Xmm SRC3 = xmm3;
/// Additional scratch register /// Additional scratch register
static const X64Reg SCRATCH2 = XMM4; static const Xmm SCRATCH2 = xmm4;
/// Constant vector of [1.0f, 1.0f, 1.0f, 1.0f], used to efficiently set a vector to one /// Constant vector of [1.0f, 1.0f, 1.0f, 1.0f], used to efficiently set a vector to one
static const X64Reg ONE = XMM14; static const Xmm ONE = xmm14;
/// Constant vector of [-0.f, -0.f, -0.f, -0.f], used to efficiently negate a vector with XOR /// Constant vector of [-0.f, -0.f, -0.f, -0.f], used to efficiently negate a vector with XOR
static const X64Reg NEGBIT = XMM15; static const Xmm NEGBIT = xmm15;
// State registers that must not be modified by external functions calls // State registers that must not be modified by external functions calls
// Scratch registers, e.g., SRC1 and SCRATCH, have to be saved on the side if needed // Scratch registers, e.g., SRC1 and SCRATCH, have to be saved on the side if needed
static const BitSet32 persistent_regs = { static const BitSet32 persistent_regs = BuildRegSet({
SETUP, STATE, // Pointers to register blocks // Pointers to register blocks
ADDROFFS_REG_0, ADDROFFS_REG_1, LOOPCOUNT_REG, COND0, COND1, // Cached registers SETUP, STATE,
ONE + 16, NEGBIT + 16, // Constants // Cached registers
}; ADDROFFS_REG_0, ADDROFFS_REG_1, LOOPCOUNT_REG, COND0, COND1,
// Constants
ONE, NEGBIT,
});
/// Raw constant for the source register selector that indicates no swizzling is performed /// Raw constant for the source register selector that indicates no swizzling is performed
static const u8 NO_SRC_REG_SWIZZLE = 0x1b; static const u8 NO_SRC_REG_SWIZZLE = 0x1b;
@ -157,7 +166,8 @@ static void LogCritical(const char* msg) {
void JitShader::Compile_Assert(bool condition, const char* msg) { void JitShader::Compile_Assert(bool condition, const char* msg) {
if (!condition) { if (!condition) {
ABI_CallFunctionP(reinterpret_cast<const void*>(LogCritical), const_cast<char*>(msg)); mov(ABI_PARAM1, reinterpret_cast<size_t>(msg));
CallFarFunction(*this, LogCritical);
} }
} }
@ -169,8 +179,8 @@ void JitShader::Compile_Assert(bool condition, const char* msg) {
* @param dest Destination XMM register to store the loaded, swizzled source register * @param dest Destination XMM register to store the loaded, swizzled source register
*/ */
void JitShader::Compile_SwizzleSrc(Instruction instr, unsigned src_num, SourceRegister src_reg, void JitShader::Compile_SwizzleSrc(Instruction instr, unsigned src_num, SourceRegister src_reg,
X64Reg dest) { Xmm dest) {
X64Reg src_ptr; Reg64 src_ptr;
size_t src_offset; size_t src_offset;
if (src_reg.GetRegisterType() == RegisterType::FloatUniform) { if (src_reg.GetRegisterType() == RegisterType::FloatUniform) {
@ -206,13 +216,13 @@ void JitShader::Compile_SwizzleSrc(Instruction instr, unsigned src_num, SourceRe
if (src_num == offset_src && address_register_index != 0) { if (src_num == offset_src && address_register_index != 0) {
switch (address_register_index) { switch (address_register_index) {
case 1: // address offset 1 case 1: // address offset 1
MOVAPS(dest, MComplex(src_ptr, ADDROFFS_REG_0, SCALE_1, src_offset_disp)); movaps(dest, xword[src_ptr + ADDROFFS_REG_0 + src_offset_disp]);
break; break;
case 2: // address offset 2 case 2: // address offset 2
MOVAPS(dest, MComplex(src_ptr, ADDROFFS_REG_1, SCALE_1, src_offset_disp)); movaps(dest, xword[src_ptr + ADDROFFS_REG_1 + src_offset_disp]);
break; break;
case 3: // address offset 3 case 3: // address offset 3
MOVAPS(dest, MComplex(src_ptr, LOOPCOUNT_REG, SCALE_1, src_offset_disp)); movaps(dest, xword[src_ptr + LOOPCOUNT_REG + src_offset_disp]);
break; break;
default: default:
UNREACHABLE(); UNREACHABLE();
@ -220,7 +230,7 @@ void JitShader::Compile_SwizzleSrc(Instruction instr, unsigned src_num, SourceRe
} }
} else { } else {
// Load the source // Load the source
MOVAPS(dest, MDisp(src_ptr, src_offset_disp)); movaps(dest, xword[src_ptr + src_offset_disp]);
} }
SwizzlePattern swiz = {g_state.vs.swizzle_data[operand_desc_id]}; SwizzlePattern swiz = {g_state.vs.swizzle_data[operand_desc_id]};
@ -232,17 +242,17 @@ void JitShader::Compile_SwizzleSrc(Instruction instr, unsigned src_num, SourceRe
sel = ((sel & 0xc0) >> 6) | ((sel & 3) << 6) | ((sel & 0xc) << 2) | ((sel & 0x30) >> 2); sel = ((sel & 0xc0) >> 6) | ((sel & 3) << 6) | ((sel & 0xc) << 2) | ((sel & 0x30) >> 2);
// Shuffle inputs for swizzle // Shuffle inputs for swizzle
SHUFPS(dest, R(dest), sel); shufps(dest, dest, sel);
} }
// If the source register should be negated, flip the negative bit using XOR // If the source register should be negated, flip the negative bit using XOR
const bool negate[] = {swiz.negate_src1, swiz.negate_src2, swiz.negate_src3}; const bool negate[] = {swiz.negate_src1, swiz.negate_src2, swiz.negate_src3};
if (negate[src_num - 1]) { if (negate[src_num - 1]) {
XORPS(dest, R(NEGBIT)); xorps(dest, NEGBIT);
} }
} }
void JitShader::Compile_DestEnable(Instruction instr, X64Reg src) { void JitShader::Compile_DestEnable(Instruction instr, Xmm src) {
DestRegister dest; DestRegister dest;
unsigned operand_desc_id; unsigned operand_desc_id;
if (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MAD || if (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MAD ||
@ -263,21 +273,21 @@ void JitShader::Compile_DestEnable(Instruction instr, X64Reg src) {
// If all components are enabled, write the result to the destination register // If all components are enabled, write the result to the destination register
if (swiz.dest_mask == NO_DEST_REG_MASK) { if (swiz.dest_mask == NO_DEST_REG_MASK) {
// Store dest back to memory // Store dest back to memory
MOVAPS(MDisp(STATE, dest_offset_disp), src); movaps(xword[STATE + dest_offset_disp], src);
} else { } else {
// Not all components are enabled, so mask the result when storing to the destination // Not all components are enabled, so mask the result when storing to the destination
// register... // register...
MOVAPS(SCRATCH, MDisp(STATE, dest_offset_disp)); movaps(SCRATCH, xword[STATE + dest_offset_disp]);
if (Common::GetCPUCaps().sse4_1) { if (Common::GetCPUCaps().sse4_1) {
u8 mask = ((swiz.dest_mask & 1) << 3) | ((swiz.dest_mask & 8) >> 3) | u8 mask = ((swiz.dest_mask & 1) << 3) | ((swiz.dest_mask & 8) >> 3) |
((swiz.dest_mask & 2) << 1) | ((swiz.dest_mask & 4) >> 1); ((swiz.dest_mask & 2) << 1) | ((swiz.dest_mask & 4) >> 1);
BLENDPS(SCRATCH, R(src), mask); blendps(SCRATCH, src, mask);
} else { } else {
MOVAPS(SCRATCH2, R(src)); movaps(SCRATCH2, src);
UNPCKHPS(SCRATCH2, R(SCRATCH)); // Unpack X/Y components of source and destination unpckhps(SCRATCH2, SCRATCH); // Unpack X/Y components of source and destination
UNPCKLPS(SCRATCH, R(src)); // Unpack Z/W components of source and destination unpcklps(SCRATCH, src); // Unpack Z/W components of source and destination
// Compute selector to selectively copy source components to destination for SHUFPS // Compute selector to selectively copy source components to destination for SHUFPS
// instruction // instruction
@ -285,62 +295,62 @@ void JitShader::Compile_DestEnable(Instruction instr, X64Reg src) {
((swiz.DestComponentEnabled(1) ? 3 : 2) << 2) | ((swiz.DestComponentEnabled(1) ? 3 : 2) << 2) |
((swiz.DestComponentEnabled(2) ? 0 : 1) << 4) | ((swiz.DestComponentEnabled(2) ? 0 : 1) << 4) |
((swiz.DestComponentEnabled(3) ? 2 : 3) << 6); ((swiz.DestComponentEnabled(3) ? 2 : 3) << 6);
SHUFPS(SCRATCH, R(SCRATCH2), sel); shufps(SCRATCH, SCRATCH2, sel);
} }
// Store dest back to memory // Store dest back to memory
MOVAPS(MDisp(STATE, dest_offset_disp), SCRATCH); movaps(xword[STATE + dest_offset_disp], SCRATCH);
} }
} }
void JitShader::Compile_SanitizedMul(Gen::X64Reg src1, Gen::X64Reg src2, Gen::X64Reg scratch) { void JitShader::Compile_SanitizedMul(Xmm src1, Xmm src2, Xmm scratch) {
MOVAPS(scratch, R(src1)); movaps(scratch, src1);
CMPPS(scratch, R(src2), CMP_ORD); cmpordps(scratch, src2);
MULPS(src1, R(src2)); mulps(src1, src2);
MOVAPS(src2, R(src1)); movaps(src2, src1);
CMPPS(src2, R(src2), CMP_UNORD); cmpunordps(src2, src2);
XORPS(scratch, R(src2)); xorps(scratch, src2);
ANDPS(src1, R(scratch)); andps(src1, scratch);
} }
void JitShader::Compile_EvaluateCondition(Instruction instr) { void JitShader::Compile_EvaluateCondition(Instruction instr) {
// Note: NXOR is used below to check for equality // Note: NXOR is used below to check for equality
switch (instr.flow_control.op) { switch (instr.flow_control.op) {
case Instruction::FlowControlType::Or: case Instruction::FlowControlType::Or:
MOV(32, R(RAX), R(COND0)); mov(eax, COND0);
MOV(32, R(RBX), R(COND1)); mov(ebx, COND1);
XOR(32, R(RAX), Imm32(instr.flow_control.refx.Value() ^ 1)); xor(eax, (instr.flow_control.refx.Value() ^ 1));
XOR(32, R(RBX), Imm32(instr.flow_control.refy.Value() ^ 1)); xor(ebx, (instr.flow_control.refy.Value() ^ 1));
OR(32, R(RAX), R(RBX)); or (eax, ebx);
break; break;
case Instruction::FlowControlType::And: case Instruction::FlowControlType::And:
MOV(32, R(RAX), R(COND0)); mov(eax, COND0);
MOV(32, R(RBX), R(COND1)); mov(ebx, COND1);
XOR(32, R(RAX), Imm32(instr.flow_control.refx.Value() ^ 1)); xor(eax, (instr.flow_control.refx.Value() ^ 1));
XOR(32, R(RBX), Imm32(instr.flow_control.refy.Value() ^ 1)); xor(ebx, (instr.flow_control.refy.Value() ^ 1));
AND(32, R(RAX), R(RBX)); and(eax, ebx);
break; break;
case Instruction::FlowControlType::JustX: case Instruction::FlowControlType::JustX:
MOV(32, R(RAX), R(COND0)); mov(eax, COND0);
XOR(32, R(RAX), Imm32(instr.flow_control.refx.Value() ^ 1)); xor(eax, (instr.flow_control.refx.Value() ^ 1));
break; break;
case Instruction::FlowControlType::JustY: case Instruction::FlowControlType::JustY:
MOV(32, R(RAX), R(COND1)); mov(eax, COND1);
XOR(32, R(RAX), Imm32(instr.flow_control.refy.Value() ^ 1)); xor(eax, (instr.flow_control.refy.Value() ^ 1));
break; break;
} }
} }
void JitShader::Compile_UniformCondition(Instruction instr) { void JitShader::Compile_UniformCondition(Instruction instr) {
int offset = size_t offset =
ShaderSetup::UniformOffset(RegisterType::BoolUniform, instr.flow_control.bool_uniform_id); ShaderSetup::UniformOffset(RegisterType::BoolUniform, instr.flow_control.bool_uniform_id);
CMP(sizeof(bool) * 8, MDisp(SETUP, offset), Imm8(0)); cmp(byte[SETUP + offset], 0);
} }
BitSet32 JitShader::PersistentCallerSavedRegs() { BitSet32 JitShader::PersistentCallerSavedRegs() {
@ -350,7 +360,7 @@ BitSet32 JitShader::PersistentCallerSavedRegs() {
void JitShader::Compile_ADD(Instruction instr) { void JitShader::Compile_ADD(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1); Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2); Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
ADDPS(SRC1, R(SRC2)); addps(SRC1, SRC2);
Compile_DestEnable(instr, SRC1); Compile_DestEnable(instr, SRC1);
} }
@ -360,15 +370,15 @@ void JitShader::Compile_DP3(Instruction instr) {
Compile_SanitizedMul(SRC1, SRC2, SCRATCH); Compile_SanitizedMul(SRC1, SRC2, SCRATCH);
MOVAPS(SRC2, R(SRC1)); movaps(SRC2, SRC1);
SHUFPS(SRC2, R(SRC2), _MM_SHUFFLE(1, 1, 1, 1)); shufps(SRC2, SRC2, _MM_SHUFFLE(1, 1, 1, 1));
MOVAPS(SRC3, R(SRC1)); movaps(SRC3, SRC1);
SHUFPS(SRC3, R(SRC3), _MM_SHUFFLE(2, 2, 2, 2)); shufps(SRC3, SRC3, _MM_SHUFFLE(2, 2, 2, 2));
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(0, 0, 0, 0)); shufps(SRC1, SRC1, _MM_SHUFFLE(0, 0, 0, 0));
ADDPS(SRC1, R(SRC2)); addps(SRC1, SRC2);
ADDPS(SRC1, R(SRC3)); addps(SRC1, SRC3);
Compile_DestEnable(instr, SRC1); Compile_DestEnable(instr, SRC1);
} }
@ -379,13 +389,13 @@ void JitShader::Compile_DP4(Instruction instr) {
Compile_SanitizedMul(SRC1, SRC2, SCRATCH); Compile_SanitizedMul(SRC1, SRC2, SCRATCH);
MOVAPS(SRC2, R(SRC1)); movaps(SRC2, SRC1);
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(2, 3, 0, 1)); // XYZW -> ZWXY shufps(SRC1, SRC1, _MM_SHUFFLE(2, 3, 0, 1)); // XYZW -> ZWXY
ADDPS(SRC1, R(SRC2)); addps(SRC1, SRC2);
MOVAPS(SRC2, R(SRC1)); movaps(SRC2, SRC1);
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(0, 1, 2, 3)); // XYZW -> WZYX shufps(SRC1, SRC1, _MM_SHUFFLE(0, 1, 2, 3)); // XYZW -> WZYX
ADDPS(SRC1, R(SRC2)); addps(SRC1, SRC2);
Compile_DestEnable(instr, SRC1); Compile_DestEnable(instr, SRC1);
} }
@ -401,50 +411,50 @@ void JitShader::Compile_DPH(Instruction instr) {
if (Common::GetCPUCaps().sse4_1) { if (Common::GetCPUCaps().sse4_1) {
// Set 4th component to 1.0 // Set 4th component to 1.0
BLENDPS(SRC1, R(ONE), 0x8); // 0b1000 blendps(SRC1, ONE, 0b1000);
} else { } else {
// Set 4th component to 1.0 // Set 4th component to 1.0
MOVAPS(SCRATCH, R(SRC1)); movaps(SCRATCH, SRC1);
UNPCKHPS(SCRATCH, R(ONE)); // XYZW, 1111 -> Z1__ unpckhps(SCRATCH, ONE); // XYZW, 1111 -> Z1__
UNPCKLPD(SRC1, R(SCRATCH)); // XYZW, Z1__ -> XYZ1 unpcklpd(SRC1, SCRATCH); // XYZW, Z1__ -> XYZ1
} }
Compile_SanitizedMul(SRC1, SRC2, SCRATCH); Compile_SanitizedMul(SRC1, SRC2, SCRATCH);
MOVAPS(SRC2, R(SRC1)); movaps(SRC2, SRC1);
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(2, 3, 0, 1)); // XYZW -> ZWXY shufps(SRC1, SRC1, _MM_SHUFFLE(2, 3, 0, 1)); // XYZW -> ZWXY
ADDPS(SRC1, R(SRC2)); addps(SRC1, SRC2);
MOVAPS(SRC2, R(SRC1)); movaps(SRC2, SRC1);
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(0, 1, 2, 3)); // XYZW -> WZYX shufps(SRC1, SRC1, _MM_SHUFFLE(0, 1, 2, 3)); // XYZW -> WZYX
ADDPS(SRC1, R(SRC2)); addps(SRC1, SRC2);
Compile_DestEnable(instr, SRC1); Compile_DestEnable(instr, SRC1);
} }
void JitShader::Compile_EX2(Instruction instr) { void JitShader::Compile_EX2(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1); Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
MOVSS(XMM0, R(SRC1)); movss(xmm0, SRC1); // ABI_PARAM1
ABI_PushRegistersAndAdjustStack(PersistentCallerSavedRegs(), 0); ABI_PushRegistersAndAdjustStack(*this, PersistentCallerSavedRegs(), 0);
ABI_CallFunction(reinterpret_cast<const void*>(exp2f)); CallFarFunction(*this, exp2f);
ABI_PopRegistersAndAdjustStack(PersistentCallerSavedRegs(), 0); ABI_PopRegistersAndAdjustStack(*this, PersistentCallerSavedRegs(), 0);
SHUFPS(XMM0, R(XMM0), _MM_SHUFFLE(0, 0, 0, 0)); shufps(xmm0, xmm0, _MM_SHUFFLE(0, 0, 0, 0)); // ABI_RETURN
MOVAPS(SRC1, R(XMM0)); movaps(SRC1, xmm0);
Compile_DestEnable(instr, SRC1); Compile_DestEnable(instr, SRC1);
} }
void JitShader::Compile_LG2(Instruction instr) { void JitShader::Compile_LG2(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1); Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
MOVSS(XMM0, R(SRC1)); movss(xmm0, SRC1); // ABI_PARAM1
ABI_PushRegistersAndAdjustStack(PersistentCallerSavedRegs(), 0); ABI_PushRegistersAndAdjustStack(*this, PersistentCallerSavedRegs(), 0);
ABI_CallFunction(reinterpret_cast<const void*>(log2f)); CallFarFunction(*this, log2f);
ABI_PopRegistersAndAdjustStack(PersistentCallerSavedRegs(), 0); ABI_PopRegistersAndAdjustStack(*this, PersistentCallerSavedRegs(), 0);
SHUFPS(XMM0, R(XMM0), _MM_SHUFFLE(0, 0, 0, 0)); shufps(xmm0, xmm0, _MM_SHUFFLE(0, 0, 0, 0)); // ABI_RETURN
MOVAPS(SRC1, R(XMM0)); movaps(SRC1, xmm0);
Compile_DestEnable(instr, SRC1); Compile_DestEnable(instr, SRC1);
} }
@ -464,8 +474,8 @@ void JitShader::Compile_SGE(Instruction instr) {
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2); Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
} }
CMPPS(SRC2, R(SRC1), CMP_LE); cmpleps(SRC2, SRC1);
ANDPS(SRC2, R(ONE)); andps(SRC2, ONE);
Compile_DestEnable(instr, SRC2); Compile_DestEnable(instr, SRC2);
} }
@ -479,8 +489,8 @@ void JitShader::Compile_SLT(Instruction instr) {
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2); Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
} }
CMPPS(SRC1, R(SRC2), CMP_LT); cmpltps(SRC1, SRC2);
ANDPS(SRC1, R(ONE)); andps(SRC1, ONE);
Compile_DestEnable(instr, SRC1); Compile_DestEnable(instr, SRC1);
} }
@ -489,10 +499,10 @@ void JitShader::Compile_FLR(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1); Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
if (Common::GetCPUCaps().sse4_1) { if (Common::GetCPUCaps().sse4_1) {
ROUNDFLOORPS(SRC1, R(SRC1)); roundps(SRC1, SRC1, _MM_FROUND_FLOOR);
} else { } else {
CVTTPS2DQ(SRC1, R(SRC1)); cvttps2dq(SRC1, SRC1);
CVTDQ2PS(SRC1, R(SRC1)); cvtdq2ps(SRC1, SRC1);
} }
Compile_DestEnable(instr, SRC1); Compile_DestEnable(instr, SRC1);
@ -502,7 +512,7 @@ void JitShader::Compile_MAX(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1); Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2); Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
// SSE semantics match PICA200 ones: In case of NaN, SRC2 is returned. // SSE semantics match PICA200 ones: In case of NaN, SRC2 is returned.
MAXPS(SRC1, R(SRC2)); maxps(SRC1, SRC2);
Compile_DestEnable(instr, SRC1); Compile_DestEnable(instr, SRC1);
} }
@ -510,7 +520,7 @@ void JitShader::Compile_MIN(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1); Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2); Compile_SwizzleSrc(instr, 2, instr.common.src2, SRC2);
// SSE semantics match PICA200 ones: In case of NaN, SRC2 is returned. // SSE semantics match PICA200 ones: In case of NaN, SRC2 is returned.
MINPS(SRC1, R(SRC2)); minps(SRC1, SRC2);
Compile_DestEnable(instr, SRC1); Compile_DestEnable(instr, SRC1);
} }
@ -524,37 +534,37 @@ void JitShader::Compile_MOVA(Instruction instr) {
Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1); Compile_SwizzleSrc(instr, 1, instr.common.src1, SRC1);
// Convert floats to integers using truncation (only care about X and Y components) // Convert floats to integers using truncation (only care about X and Y components)
CVTTPS2DQ(SRC1, R(SRC1)); cvttps2dq(SRC1, SRC1);
// Get result // Get result
MOVQ_xmm(R(RAX), SRC1); movq(rax, SRC1);
// Handle destination enable // Handle destination enable
if (swiz.DestComponentEnabled(0) && swiz.DestComponentEnabled(1)) { if (swiz.DestComponentEnabled(0) && swiz.DestComponentEnabled(1)) {
// Move and sign-extend low 32 bits // Move and sign-extend low 32 bits
MOVSX(64, 32, ADDROFFS_REG_0, R(RAX)); movsxd(ADDROFFS_REG_0, eax);
// Move and sign-extend high 32 bits // Move and sign-extend high 32 bits
SHR(64, R(RAX), Imm8(32)); shr(rax, 32);
MOVSX(64, 32, ADDROFFS_REG_1, R(RAX)); movsxd(ADDROFFS_REG_1, eax);
// Multiply by 16 to be used as an offset later // Multiply by 16 to be used as an offset later
SHL(64, R(ADDROFFS_REG_0), Imm8(4)); shl(ADDROFFS_REG_0, 4);
SHL(64, R(ADDROFFS_REG_1), Imm8(4)); shl(ADDROFFS_REG_1, 4);
} else { } else {
if (swiz.DestComponentEnabled(0)) { if (swiz.DestComponentEnabled(0)) {
// Move and sign-extend low 32 bits // Move and sign-extend low 32 bits
MOVSX(64, 32, ADDROFFS_REG_0, R(RAX)); movsxd(ADDROFFS_REG_0, eax);
// Multiply by 16 to be used as an offset later // Multiply by 16 to be used as an offset later
SHL(64, R(ADDROFFS_REG_0), Imm8(4)); shl(ADDROFFS_REG_0, 4);
} else if (swiz.DestComponentEnabled(1)) { } else if (swiz.DestComponentEnabled(1)) {
// Move and sign-extend high 32 bits // Move and sign-extend high 32 bits
SHR(64, R(RAX), Imm8(32)); shr(rax, 32);
MOVSX(64, 32, ADDROFFS_REG_1, R(RAX)); movsxd(ADDROFFS_REG_1, eax);
// Multiply by 16 to be used as an offset later // Multiply by 16 to be used as an offset later
SHL(64, R(ADDROFFS_REG_1), Imm8(4)); shl(ADDROFFS_REG_1, 4);
} }
} }
} }
@ -569,8 +579,8 @@ void JitShader::Compile_RCP(Instruction instr) {
// TODO(bunnei): RCPSS is a pretty rough approximation, this might cause problems if Pica // TODO(bunnei): RCPSS is a pretty rough approximation, this might cause problems if Pica
// performs this operation more accurately. This should be checked on hardware. // performs this operation more accurately. This should be checked on hardware.
RCPSS(SRC1, R(SRC1)); rcpss(SRC1, SRC1);
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(0, 0, 0, 0)); // XYWZ -> XXXX shufps(SRC1, SRC1, _MM_SHUFFLE(0, 0, 0, 0)); // XYWZ -> XXXX
Compile_DestEnable(instr, SRC1); Compile_DestEnable(instr, SRC1);
} }
@ -580,8 +590,8 @@ void JitShader::Compile_RSQ(Instruction instr) {
// TODO(bunnei): RSQRTSS is a pretty rough approximation, this might cause problems if Pica // TODO(bunnei): RSQRTSS is a pretty rough approximation, this might cause problems if Pica
// performs this operation more accurately. This should be checked on hardware. // performs this operation more accurately. This should be checked on hardware.
RSQRTSS(SRC1, R(SRC1)); rsqrtss(SRC1, SRC1);
SHUFPS(SRC1, R(SRC1), _MM_SHUFFLE(0, 0, 0, 0)); // XYWZ -> XXXX shufps(SRC1, SRC1, _MM_SHUFFLE(0, 0, 0, 0)); // XYWZ -> XXXX
Compile_DestEnable(instr, SRC1); Compile_DestEnable(instr, SRC1);
} }
@ -589,34 +599,35 @@ void JitShader::Compile_RSQ(Instruction instr) {
void JitShader::Compile_NOP(Instruction instr) {} void JitShader::Compile_NOP(Instruction instr) {}
void JitShader::Compile_END(Instruction instr) { void JitShader::Compile_END(Instruction instr) {
ABI_PopRegistersAndAdjustStack(ABI_ALL_CALLEE_SAVED, 8); ABI_PopRegistersAndAdjustStack(*this, ABI_ALL_CALLEE_SAVED, 8);
RET(); ret();
} }
void JitShader::Compile_CALL(Instruction instr) { void JitShader::Compile_CALL(Instruction instr) {
// Push offset of the return // Push offset of the return
PUSH(64, Imm32(instr.flow_control.dest_offset + instr.flow_control.num_instructions)); push(qword, (instr.flow_control.dest_offset + instr.flow_control.num_instructions));
// Call the subroutine // Call the subroutine
FixupBranch b = CALL(); call(instruction_labels[instr.flow_control.dest_offset]);
fixup_branches.push_back({b, instr.flow_control.dest_offset});
// Skip over the return offset that's on the stack // Skip over the return offset that's on the stack
ADD(64, R(RSP), Imm32(8)); add(rsp, 8);
} }
void JitShader::Compile_CALLC(Instruction instr) { void JitShader::Compile_CALLC(Instruction instr) {
Compile_EvaluateCondition(instr); Compile_EvaluateCondition(instr);
FixupBranch b = J_CC(CC_Z, true); Label b;
jz(b);
Compile_CALL(instr); Compile_CALL(instr);
SetJumpTarget(b); L(b);
} }
void JitShader::Compile_CALLU(Instruction instr) { void JitShader::Compile_CALLU(Instruction instr) {
Compile_UniformCondition(instr); Compile_UniformCondition(instr);
FixupBranch b = J_CC(CC_Z, true); Label b;
jz(b);
Compile_CALL(instr); Compile_CALL(instr);
SetJumpTarget(b); L(b);
} }
void JitShader::Compile_CMP(Instruction instr) { void JitShader::Compile_CMP(Instruction instr) {
@ -633,33 +644,33 @@ void JitShader::Compile_CMP(Instruction instr) {
static const u8 cmp[] = {CMP_EQ, CMP_NEQ, CMP_LT, CMP_LE, CMP_LT, CMP_LE}; static const u8 cmp[] = {CMP_EQ, CMP_NEQ, CMP_LT, CMP_LE, CMP_LT, CMP_LE};
bool invert_op_x = (op_x == Op::GreaterThan || op_x == Op::GreaterEqual); bool invert_op_x = (op_x == Op::GreaterThan || op_x == Op::GreaterEqual);
Gen::X64Reg lhs_x = invert_op_x ? SRC2 : SRC1; Xmm lhs_x = invert_op_x ? SRC2 : SRC1;
Gen::X64Reg rhs_x = invert_op_x ? SRC1 : SRC2; Xmm rhs_x = invert_op_x ? SRC1 : SRC2;
if (op_x == op_y) { if (op_x == op_y) {
// Compare X-component and Y-component together // Compare X-component and Y-component together
CMPPS(lhs_x, R(rhs_x), cmp[op_x]); cmpps(lhs_x, rhs_x, cmp[op_x]);
MOVQ_xmm(R(COND0), lhs_x); movq(COND0, lhs_x);
MOV(64, R(COND1), R(COND0)); mov(COND1, COND0);
} else { } else {
bool invert_op_y = (op_y == Op::GreaterThan || op_y == Op::GreaterEqual); bool invert_op_y = (op_y == Op::GreaterThan || op_y == Op::GreaterEqual);
Gen::X64Reg lhs_y = invert_op_y ? SRC2 : SRC1; Xmm lhs_y = invert_op_y ? SRC2 : SRC1;
Gen::X64Reg rhs_y = invert_op_y ? SRC1 : SRC2; Xmm rhs_y = invert_op_y ? SRC1 : SRC2;
// Compare X-component // Compare X-component
MOVAPS(SCRATCH, R(lhs_x)); movaps(SCRATCH, lhs_x);
CMPSS(SCRATCH, R(rhs_x), cmp[op_x]); cmpss(SCRATCH, rhs_x, cmp[op_x]);
// Compare Y-component // Compare Y-component
CMPPS(lhs_y, R(rhs_y), cmp[op_y]); cmpps(lhs_y, rhs_y, cmp[op_y]);
MOVQ_xmm(R(COND0), SCRATCH); movq(COND0, SCRATCH);
MOVQ_xmm(R(COND1), lhs_y); movq(COND1, lhs_y);
} }
SHR(32, R(COND0), Imm8(31)); shr(COND0.cvt32(), 31); // ignores upper 32 bits in source
SHR(64, R(COND1), Imm8(63)); shr(COND1, 63);
} }
void JitShader::Compile_MAD(Instruction instr) { void JitShader::Compile_MAD(Instruction instr) {
@ -674,7 +685,7 @@ void JitShader::Compile_MAD(Instruction instr) {
} }
Compile_SanitizedMul(SRC1, SRC2, SCRATCH); Compile_SanitizedMul(SRC1, SRC2, SCRATCH);
ADDPS(SRC1, R(SRC3)); addps(SRC1, SRC3);
Compile_DestEnable(instr, SRC1); Compile_DestEnable(instr, SRC1);
} }
@ -682,6 +693,7 @@ void JitShader::Compile_MAD(Instruction instr) {
void JitShader::Compile_IF(Instruction instr) { void JitShader::Compile_IF(Instruction instr) {
Compile_Assert(instr.flow_control.dest_offset >= program_counter, Compile_Assert(instr.flow_control.dest_offset >= program_counter,
"Backwards if-statements not supported"); "Backwards if-statements not supported");
Label l_else, l_endif;
// Evaluate the "IF" condition // Evaluate the "IF" condition
if (instr.opcode.Value() == OpCode::Id::IFU) { if (instr.opcode.Value() == OpCode::Id::IFU) {
@ -689,26 +701,25 @@ void JitShader::Compile_IF(Instruction instr) {
} else if (instr.opcode.Value() == OpCode::Id::IFC) { } else if (instr.opcode.Value() == OpCode::Id::IFC) {
Compile_EvaluateCondition(instr); Compile_EvaluateCondition(instr);
} }
FixupBranch b = J_CC(CC_Z, true); jz(l_else, T_NEAR);
// Compile the code that corresponds to the condition evaluating as true // Compile the code that corresponds to the condition evaluating as true
Compile_Block(instr.flow_control.dest_offset); Compile_Block(instr.flow_control.dest_offset);
// If there isn't an "ELSE" condition, we are done here // If there isn't an "ELSE" condition, we are done here
if (instr.flow_control.num_instructions == 0) { if (instr.flow_control.num_instructions == 0) {
SetJumpTarget(b); L(l_else);
return; return;
} }
FixupBranch b2 = J(true); jmp(l_endif, T_NEAR);
SetJumpTarget(b);
L(l_else);
// This code corresponds to the "ELSE" condition // This code corresponds to the "ELSE" condition
// Comple the code that corresponds to the condition evaluating as false // Comple the code that corresponds to the condition evaluating as false
Compile_Block(instr.flow_control.dest_offset + instr.flow_control.num_instructions); Compile_Block(instr.flow_control.dest_offset + instr.flow_control.num_instructions);
SetJumpTarget(b2); L(l_endif);
} }
void JitShader::Compile_LOOP(Instruction instr) { void JitShader::Compile_LOOP(Instruction instr) {
@ -721,25 +732,26 @@ void JitShader::Compile_LOOP(Instruction instr) {
// This decodes the fields from the integer uniform at index instr.flow_control.int_uniform_id. // This decodes the fields from the integer uniform at index instr.flow_control.int_uniform_id.
// The Y (LOOPCOUNT_REG) and Z (LOOPINC) component are kept multiplied by 16 (Left shifted by // The Y (LOOPCOUNT_REG) and Z (LOOPINC) component are kept multiplied by 16 (Left shifted by
// 4 bits) to be used as an offset into the 16-byte vector registers later // 4 bits) to be used as an offset into the 16-byte vector registers later
int offset = size_t offset =
ShaderSetup::UniformOffset(RegisterType::IntUniform, instr.flow_control.int_uniform_id); ShaderSetup::UniformOffset(RegisterType::IntUniform, instr.flow_control.int_uniform_id);
MOV(32, R(LOOPCOUNT), MDisp(SETUP, offset)); mov(LOOPCOUNT.cvt32(), dword[SETUP + offset]);
MOV(32, R(LOOPCOUNT_REG), R(LOOPCOUNT)); mov(LOOPCOUNT_REG.cvt32(), LOOPCOUNT.cvt32());
SHR(32, R(LOOPCOUNT_REG), Imm8(4)); shr(LOOPCOUNT_REG.cvt32(), 4);
AND(32, R(LOOPCOUNT_REG), Imm32(0xFF0)); // Y-component is the start and(LOOPCOUNT_REG.cvt32(), 0xFF0); // Y-component is the start
MOV(32, R(LOOPINC), R(LOOPCOUNT)); mov(LOOPINC.cvt32(), LOOPCOUNT.cvt32());
SHR(32, R(LOOPINC), Imm8(12)); shr(LOOPINC.cvt32(), 12);
AND(32, R(LOOPINC), Imm32(0xFF0)); // Z-component is the incrementer and(LOOPINC.cvt32(), 0xFF0); // Z-component is the incrementer
MOVZX(32, 8, LOOPCOUNT, R(LOOPCOUNT)); // X-component is iteration count movzx(LOOPCOUNT.cvt32(), LOOPCOUNT.cvt8()); // X-component is iteration count
ADD(32, R(LOOPCOUNT), Imm8(1)); // Iteration count is X-component + 1 add(LOOPCOUNT.cvt32(), 1); // Iteration count is X-component + 1
auto loop_start = GetCodePtr(); Label l_loop_start;
L(l_loop_start);
Compile_Block(instr.flow_control.dest_offset + 1); Compile_Block(instr.flow_control.dest_offset + 1);
ADD(32, R(LOOPCOUNT_REG), R(LOOPINC)); // Increment LOOPCOUNT_REG by Z-component add(LOOPCOUNT_REG.cvt32(), LOOPINC.cvt32()); // Increment LOOPCOUNT_REG by Z-component
SUB(32, R(LOOPCOUNT), Imm8(1)); // Increment loop count by 1 sub(LOOPCOUNT.cvt32(), 1); // Increment loop count by 1
J_CC(CC_NZ, loop_start); // Loop if not equal jnz(l_loop_start); // Loop if not equal
looping = false; looping = false;
} }
@ -755,8 +767,12 @@ void JitShader::Compile_JMP(Instruction instr) {
bool inverted_condition = bool inverted_condition =
(instr.opcode.Value() == OpCode::Id::JMPU) && (instr.flow_control.num_instructions & 1); (instr.opcode.Value() == OpCode::Id::JMPU) && (instr.flow_control.num_instructions & 1);
FixupBranch b = J_CC(inverted_condition ? CC_Z : CC_NZ, true); Label& b = instruction_labels[instr.flow_control.dest_offset];
fixup_branches.push_back({b, instr.flow_control.dest_offset}); if (inverted_condition) {
jz(b, T_NEAR);
} else {
jnz(b, T_NEAR);
}
} }
void JitShader::Compile_Block(unsigned end) { void JitShader::Compile_Block(unsigned end) {
@ -767,13 +783,14 @@ void JitShader::Compile_Block(unsigned end) {
void JitShader::Compile_Return() { void JitShader::Compile_Return() {
// Peek return offset on the stack and check if we're at that offset // Peek return offset on the stack and check if we're at that offset
MOV(64, R(RAX), MDisp(RSP, 8)); mov(rax, qword[rsp + 8]);
CMP(32, R(RAX), Imm32(program_counter)); cmp(eax, (program_counter));
// If so, jump back to before CALL // If so, jump back to before CALL
FixupBranch b = J_CC(CC_NZ, true); Label b;
RET(); jnz(b);
SetJumpTarget(b); ret();
L(b);
} }
void JitShader::Compile_NextInstr() { void JitShader::Compile_NextInstr() {
@ -781,9 +798,7 @@ void JitShader::Compile_NextInstr() {
Compile_Return(); Compile_Return();
} }
ASSERT_MSG(code_ptr[program_counter] == nullptr, L(instruction_labels[program_counter]);
"Tried to compile already compiled shader location!");
code_ptr[program_counter] = GetCodePtr();
Instruction instr = GetVertexShaderInstruction(program_counter++); Instruction instr = GetVertexShaderInstruction(program_counter++);
@ -824,64 +839,53 @@ void JitShader::FindReturnOffsets() {
void JitShader::Compile() { void JitShader::Compile() {
// Reset flow control state // Reset flow control state
program = (CompiledShader*)GetCodePtr(); program = (CompiledShader*)getCurr();
program_counter = 0; program_counter = 0;
looping = false; looping = false;
code_ptr.fill(nullptr); instruction_labels.fill(Xbyak::Label());
fixup_branches.clear();
// Find all `CALL` instructions and identify return locations // Find all `CALL` instructions and identify return locations
FindReturnOffsets(); FindReturnOffsets();
// The stack pointer is 8 modulo 16 at the entry of a procedure // The stack pointer is 8 modulo 16 at the entry of a procedure
ABI_PushRegistersAndAdjustStack(ABI_ALL_CALLEE_SAVED, 8); ABI_PushRegistersAndAdjustStack(*this, ABI_ALL_CALLEE_SAVED, 8);
MOV(PTRBITS, R(SETUP), R(ABI_PARAM1)); mov(SETUP, ABI_PARAM1);
MOV(PTRBITS, R(STATE), R(ABI_PARAM2)); mov(STATE, ABI_PARAM2);
// Zero address/loop registers // Zero address/loop registers
XOR(64, R(ADDROFFS_REG_0), R(ADDROFFS_REG_0)); xor(ADDROFFS_REG_0.cvt32(), ADDROFFS_REG_0.cvt32());
XOR(64, R(ADDROFFS_REG_1), R(ADDROFFS_REG_1)); xor(ADDROFFS_REG_1.cvt32(), ADDROFFS_REG_1.cvt32());
XOR(64, R(LOOPCOUNT_REG), R(LOOPCOUNT_REG)); xor(LOOPCOUNT_REG.cvt32(), LOOPCOUNT_REG.cvt32());
// Used to set a register to one // Used to set a register to one
static const __m128 one = {1.f, 1.f, 1.f, 1.f}; static const __m128 one = {1.f, 1.f, 1.f, 1.f};
MOV(PTRBITS, R(RAX), ImmPtr(&one)); mov(rax, reinterpret_cast<size_t>(&one));
MOVAPS(ONE, MatR(RAX)); movaps(ONE, xword[rax]);
// Used to negate registers // Used to negate registers
static const __m128 neg = {-0.f, -0.f, -0.f, -0.f}; static const __m128 neg = {-0.f, -0.f, -0.f, -0.f};
MOV(PTRBITS, R(RAX), ImmPtr(&neg)); mov(rax, reinterpret_cast<size_t>(&neg));
MOVAPS(NEGBIT, MatR(RAX)); movaps(NEGBIT, xword[rax]);
// Jump to start of the shader program // Jump to start of the shader program
JMPptr(R(ABI_PARAM3)); jmp(ABI_PARAM3);
// Compile entire program // Compile entire program
Compile_Block(static_cast<unsigned>(g_state.vs.program_code.size())); Compile_Block(static_cast<unsigned>(g_state.vs.program_code.size()));
// Set the target for any incomplete branches now that the entire shader program has been
// emitted
for (const auto& branch : fixup_branches) {
SetJumpTarget(branch.first, code_ptr[branch.second]);
}
// Free memory that's no longer needed // Free memory that's no longer needed
return_offsets.clear(); return_offsets.clear();
return_offsets.shrink_to_fit(); return_offsets.shrink_to_fit();
fixup_branches.clear();
fixup_branches.shrink_to_fit();
uintptr_t size = ready();
reinterpret_cast<uintptr_t>(GetCodePtr()) - reinterpret_cast<uintptr_t>(program);
uintptr_t size = reinterpret_cast<uintptr_t>(getCurr()) - reinterpret_cast<uintptr_t>(program);
ASSERT_MSG(size <= MAX_SHADER_SIZE, "Compiled a shader that exceeds the allocated size!"); ASSERT_MSG(size <= MAX_SHADER_SIZE, "Compiled a shader that exceeds the allocated size!");
LOG_DEBUG(HW_GPU, "Compiled shader size=%lu", size); LOG_DEBUG(HW_GPU, "Compiled shader size=%lu", size);
} }
JitShader::JitShader() { JitShader::JitShader() : Xbyak::CodeGenerator(MAX_SHADER_SIZE) {}
AllocCodeSpace(MAX_SHADER_SIZE);
}
} // namespace Shader } // namespace Shader

View File

@ -9,6 +9,7 @@
#include <utility> #include <utility>
#include <vector> #include <vector>
#include <nihstro/shader_bytecode.h> #include <nihstro/shader_bytecode.h>
#include <xbyak.h>
#include "common/bit_set.h" #include "common/bit_set.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "common/x64/emitter.h" #include "common/x64/emitter.h"
@ -29,12 +30,12 @@ constexpr size_t MAX_SHADER_SIZE = 1024 * 64;
* This class implements the shader JIT compiler. It recompiles a Pica shader program into x86_64 * This class implements the shader JIT compiler. It recompiles a Pica shader program into x86_64
* code that can be executed on the host machine directly. * code that can be executed on the host machine directly.
*/ */
class JitShader : public Gen::XCodeBlock { class JitShader : public Xbyak::CodeGenerator {
public: public:
JitShader(); JitShader();
void Run(const ShaderSetup& setup, UnitState<false>& state, unsigned offset) const { void Run(const ShaderSetup& setup, UnitState<false>& state, unsigned offset) const {
program(&setup, &state, code_ptr[offset]); program(&setup, &state, instruction_labels[offset].getAddress());
} }
void Compile(); void Compile();
@ -71,14 +72,14 @@ private:
void Compile_NextInstr(); void Compile_NextInstr();
void Compile_SwizzleSrc(Instruction instr, unsigned src_num, SourceRegister src_reg, void Compile_SwizzleSrc(Instruction instr, unsigned src_num, SourceRegister src_reg,
Gen::X64Reg dest); Xbyak::Xmm dest);
void Compile_DestEnable(Instruction instr, Gen::X64Reg dest); void Compile_DestEnable(Instruction instr, Xbyak::Xmm dest);
/** /**
* Compiles a `MUL src1, src2` operation, properly handling the PICA semantics when multiplying * Compiles a `MUL src1, src2` operation, properly handling the PICA semantics when multiplying
* zero by inf. Clobbers `src2` and `scratch`. * zero by inf. Clobbers `src2` and `scratch`.
*/ */
void Compile_SanitizedMul(Gen::X64Reg src1, Gen::X64Reg src2, Gen::X64Reg scratch); void Compile_SanitizedMul(Xbyak::Xmm src1, Xbyak::Xmm src2, Xbyak::Xmm scratch);
void Compile_EvaluateCondition(Instruction instr); void Compile_EvaluateCondition(Instruction instr);
void Compile_UniformCondition(Instruction instr); void Compile_UniformCondition(Instruction instr);
@ -103,7 +104,7 @@ private:
void FindReturnOffsets(); void FindReturnOffsets();
/// Mapping of Pica VS instructions to pointers in the emitted code /// Mapping of Pica VS instructions to pointers in the emitted code
std::array<const u8*, 1024> code_ptr; std::array<Xbyak::Label, 1024> instruction_labels;
/// Offsets in code where a return needs to be inserted /// Offsets in code where a return needs to be inserted
std::vector<unsigned> return_offsets; std::vector<unsigned> return_offsets;
@ -111,9 +112,6 @@ private:
unsigned program_counter = 0; ///< Offset of the next instruction to decode unsigned program_counter = 0; ///< Offset of the next instruction to decode
bool looping = false; ///< True if compiling a loop, used to check for nested loops bool looping = false; ///< True if compiling a loop, used to check for nested loops
/// Branches that need to be fixed up once the entire shader program is compiled
std::vector<std::pair<Gen::FixupBranch, unsigned>> fixup_branches;
using CompiledShader = void(const void* setup, void* state, const u8* start_addr); using CompiledShader = void(const void* setup, void* state, const u8* start_addr);
CompiledShader* program = nullptr; CompiledShader* program = nullptr;
}; };