Uses arithmetic that can be identified more trivially by compilers for
optimizations. e.g. Rather than shifting the halves of the value and
then swapping and combining them, we can swap them in place.
e.g. for the original swap32 code on x86-64, clang 8.0 would generate:
mov ecx, edi
rol cx, 8
shl ecx, 16
shr edi, 16
rol di, 8
movzx eax, di
or eax, ecx
ret
while GCC 8.3 would generate the ideal:
mov eax, edi
bswap eax
ret
now both generate the same optimal output.
MSVC used to generate the following with the old code:
mov eax, ecx
rol cx, 8
shr eax, 16
rol ax, 8
movzx ecx, cx
movzx eax, ax
shl ecx, 16
or eax, ecx
ret 0
Now MSVC also generates a similar, but equally optimal result as clang/GCC:
bswap ecx
mov eax, ecx
ret 0
====
In the swap64 case, for the original code, clang 8.0 would generate:
mov eax, edi
bswap eax
shl rax, 32
shr rdi, 32
bswap edi
or rax, rdi
ret
(almost there, but still missing the mark)
while, again, GCC 8.3 would generate the more ideal:
mov rax, rdi
bswap rax
ret
now clang also generates the optimal sequence for this fallback as well.
This is a case where MSVC unfortunately falls short, despite the new
code, this one still generates a doozy of an output.
mov r8, rcx
mov r9, rcx
mov rax, 71776119061217280
mov rdx, r8
and r9, rax
and edx, 65280
mov rax, rcx
shr rax, 16
or r9, rax
mov rax, rcx
shr r9, 16
mov rcx, 280375465082880
and rax, rcx
mov rcx, 1095216660480
or r9, rax
mov rax, r8
and rax, rcx
shr r9, 16
or r9, rax
mov rcx, r8
mov rax, r8
shr r9, 8
shl rax, 16
and ecx, 16711680
or rdx, rax
mov eax, -16777216
and rax, r8
shl rdx, 16
or rdx, rcx
shl rdx, 16
or rax, rdx
shl rax, 8
or rax, r9
ret 0
which is pretty unfortunate.