1
0
Fork 0
This repository has been archived on 2024-03-23. You can view files and clone it, but cannot push or open issues or pull requests.
citra-nightly/src/core/core_timing.cpp

624 lines
14 KiB
C++
Raw Normal View History

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <vector>
#include <cstdio>
#include "msg_handler.h"
#include "std_mutex.h"
#include "atomic.h"
#include "core_timing.h"
#include "core.h"
#include "chunk_file.h"
int g_clock_rate_arm11 = 268123480;
// is this really necessary?
#define INITIAL_SLICE_LENGTH 20000
#define MAX_SLICE_LENGTH 100000000
namespace CoreTiming
{
struct EventType
{
EventType() {}
EventType(TimedCallback cb, const char *n)
: callback(cb), name(n) {}
TimedCallback callback;
const char *name;
};
std::vector<EventType> event_types;
struct BaseEvent
{
s64 time;
u64 userdata;
int type;
// Event *next;
};
typedef LinkedListItem<BaseEvent> Event;
Event *first;
Event *tsFirst;
Event *tsLast;
// event pools
Event *eventPool = 0;
Event *eventTsPool = 0;
int allocatedTsEvents = 0;
// Optimization to skip MoveEvents when possible.
volatile u32 hasTsEvents = false;
// Downcount has been moved to currentMIPS, to save a couple of clocks in every ARM JIT block
// as we can already reach that structure through a register.
int slicelength;
MEMORY_ALIGNED16(s64) globalTimer;
s64 idledCycles;
static std::recursive_mutex externalEventSection;
// Warning: not included in save state.
void(*advanceCallback)(int cyclesExecuted) = NULL;
void SetClockFrequencyMHz(int cpuMhz)
{
g_clock_rate_arm11 = cpuMhz * 1000000;
// TODO: Rescale times of scheduled events?
}
int GetClockFrequencyMHz()
{
return g_clock_rate_arm11 / 1000000;
}
Event* GetNewEvent()
{
if (!eventPool)
return new Event;
Event* ev = eventPool;
eventPool = ev->next;
return ev;
}
Event* GetNewTsEvent()
{
allocatedTsEvents++;
if (!eventTsPool)
return new Event;
Event* ev = eventTsPool;
eventTsPool = ev->next;
return ev;
}
void FreeEvent(Event* ev)
{
ev->next = eventPool;
eventPool = ev;
}
void FreeTsEvent(Event* ev)
{
ev->next = eventTsPool;
eventTsPool = ev;
allocatedTsEvents--;
}
int RegisterEvent(const char *name, TimedCallback callback)
{
event_types.push_back(EventType(callback, name));
return (int)event_types.size() - 1;
}
void AntiCrashCallback(u64 userdata, int cyclesLate)
{
ERROR_LOG(TIME, "Savestate broken: an unregistered event was called.");
Core::Halt("invalid timing events");
}
void RestoreRegisterEvent(int event_type, const char *name, TimedCallback callback)
{
if (event_type >= (int)event_types.size())
event_types.resize(event_type + 1, EventType(AntiCrashCallback, "INVALID EVENT"));
event_types[event_type] = EventType(callback, name);
}
void UnregisterAllEvents()
{
if (first)
PanicAlert("Cannot unregister events with events pending");
event_types.clear();
}
void Init()
{
//currentMIPS->downcount = INITIAL_SLICE_LENGTH;
//slicelength = INITIAL_SLICE_LENGTH;
globalTimer = 0;
idledCycles = 0;
hasTsEvents = 0;
}
void Shutdown()
{
MoveEvents();
ClearPendingEvents();
UnregisterAllEvents();
while (eventPool)
{
Event *ev = eventPool;
eventPool = ev->next;
delete ev;
}
std::lock_guard<std::recursive_mutex> lk(externalEventSection);
while (eventTsPool)
{
Event *ev = eventTsPool;
eventTsPool = ev->next;
delete ev;
}
}
u64 GetTicks()
{
ERROR_LOG(TIME, "Unimplemented function!");
return 0;
//return (u64)globalTimer + slicelength - currentMIPS->downcount;
}
u64 GetIdleTicks()
{
return (u64)idledCycles;
}
// This is to be called when outside threads, such as the graphics thread, wants to
// schedule things to be executed on the main thread.
void ScheduleEvent_Threadsafe(s64 cyclesIntoFuture, int event_type, u64 userdata)
{
std::lock_guard<std::recursive_mutex> lk(externalEventSection);
Event *ne = GetNewTsEvent();
ne->time = GetTicks() + cyclesIntoFuture;
ne->type = event_type;
ne->next = 0;
ne->userdata = userdata;
if (!tsFirst)
tsFirst = ne;
if (tsLast)
tsLast->next = ne;
tsLast = ne;
Common::AtomicStoreRelease(hasTsEvents, 1);
}
// Same as ScheduleEvent_Threadsafe(0, ...) EXCEPT if we are already on the CPU thread
// in which case the event will get handled immediately, before returning.
void ScheduleEvent_Threadsafe_Immediate(int event_type, u64 userdata)
{
if (false) //Core::IsCPUThread())
{
std::lock_guard<std::recursive_mutex> lk(externalEventSection);
event_types[event_type].callback(userdata, 0);
}
else
ScheduleEvent_Threadsafe(0, event_type, userdata);
}
void ClearPendingEvents()
{
while (first)
{
Event *e = first->next;
FreeEvent(first);
first = e;
}
}
void AddEventToQueue(Event* ne)
{
Event* prev = NULL;
Event** pNext = &first;
for (;;)
{
Event*& next = *pNext;
if (!next || ne->time < next->time)
{
ne->next = next;
next = ne;
break;
}
prev = next;
pNext = &prev->next;
}
}
// This must be run ONLY from within the cpu thread
// cyclesIntoFuture may be VERY inaccurate if called from anything else
// than Advance
void ScheduleEvent(s64 cyclesIntoFuture, int event_type, u64 userdata)
{
Event *ne = GetNewEvent();
ne->userdata = userdata;
ne->type = event_type;
ne->time = GetTicks() + cyclesIntoFuture;
AddEventToQueue(ne);
}
// Returns cycles left in timer.
s64 UnscheduleEvent(int event_type, u64 userdata)
{
s64 result = 0;
if (!first)
return result;
while (first)
{
if (first->type == event_type && first->userdata == userdata)
{
result = first->time - globalTimer;
Event *next = first->next;
FreeEvent(first);
first = next;
}
else
{
break;
}
}
if (!first)
return result;
Event *prev = first;
Event *ptr = prev->next;
while (ptr)
{
if (ptr->type == event_type && ptr->userdata == userdata)
{
result = ptr->time - globalTimer;
prev->next = ptr->next;
FreeEvent(ptr);
ptr = prev->next;
}
else
{
prev = ptr;
ptr = ptr->next;
}
}
return result;
}
s64 UnscheduleThreadsafeEvent(int event_type, u64 userdata)
{
s64 result = 0;
std::lock_guard<std::recursive_mutex> lk(externalEventSection);
if (!tsFirst)
return result;
while (tsFirst)
{
if (tsFirst->type == event_type && tsFirst->userdata == userdata)
{
result = tsFirst->time - globalTimer;
Event *next = tsFirst->next;
FreeTsEvent(tsFirst);
tsFirst = next;
}
else
{
break;
}
}
if (!tsFirst)
{
tsLast = NULL;
return result;
}
Event *prev = tsFirst;
Event *ptr = prev->next;
while (ptr)
{
if (ptr->type == event_type && ptr->userdata == userdata)
{
result = ptr->time - globalTimer;
prev->next = ptr->next;
if (ptr == tsLast)
tsLast = prev;
FreeTsEvent(ptr);
ptr = prev->next;
}
else
{
prev = ptr;
ptr = ptr->next;
}
}
return result;
}
// Warning: not included in save state.
void RegisterAdvanceCallback(void(*callback)(int cyclesExecuted))
{
advanceCallback = callback;
}
bool IsScheduled(int event_type)
{
if (!first)
return false;
Event *e = first;
while (e) {
if (e->type == event_type)
return true;
e = e->next;
}
return false;
}
void RemoveEvent(int event_type)
{
if (!first)
return;
while (first)
{
if (first->type == event_type)
{
Event *next = first->next;
FreeEvent(first);
first = next;
}
else
{
break;
}
}
if (!first)
return;
Event *prev = first;
Event *ptr = prev->next;
while (ptr)
{
if (ptr->type == event_type)
{
prev->next = ptr->next;
FreeEvent(ptr);
ptr = prev->next;
}
else
{
prev = ptr;
ptr = ptr->next;
}
}
}
void RemoveThreadsafeEvent(int event_type)
{
std::lock_guard<std::recursive_mutex> lk(externalEventSection);
if (!tsFirst)
{
return;
}
while (tsFirst)
{
if (tsFirst->type == event_type)
{
Event *next = tsFirst->next;
FreeTsEvent(tsFirst);
tsFirst = next;
}
else
{
break;
}
}
if (!tsFirst)
{
tsLast = NULL;
return;
}
Event *prev = tsFirst;
Event *ptr = prev->next;
while (ptr)
{
if (ptr->type == event_type)
{
prev->next = ptr->next;
if (ptr == tsLast)
tsLast = prev;
FreeTsEvent(ptr);
ptr = prev->next;
}
else
{
prev = ptr;
ptr = ptr->next;
}
}
}
void RemoveAllEvents(int event_type)
{
RemoveThreadsafeEvent(event_type);
RemoveEvent(event_type);
}
//This raise only the events required while the fifo is processing data
void ProcessFifoWaitEvents()
{
while (first)
{
if (first->time <= globalTimer)
{
// LOG(TIMER, "[Scheduler] %s (%lld, %lld) ",
// first->name ? first->name : "?", (u64)globalTimer, (u64)first->time);
Event* evt = first;
first = first->next;
event_types[evt->type].callback(evt->userdata, (int)(globalTimer - evt->time));
FreeEvent(evt);
}
else
{
break;
}
}
}
void MoveEvents()
{
Common::AtomicStoreRelease(hasTsEvents, 0);
std::lock_guard<std::recursive_mutex> lk(externalEventSection);
// Move events from async queue into main queue
while (tsFirst)
{
Event *next = tsFirst->next;
AddEventToQueue(tsFirst);
tsFirst = next;
}
tsLast = NULL;
// Move free events to threadsafe pool
while (allocatedTsEvents > 0 && eventPool)
{
Event *ev = eventPool;
eventPool = ev->next;
ev->next = eventTsPool;
eventTsPool = ev;
allocatedTsEvents--;
}
}
void Advance()
{
ERROR_LOG(TIME, "Unimplemented function!");
//int cyclesExecuted = slicelength - currentMIPS->downcount;
//globalTimer += cyclesExecuted;
//currentMIPS->downcount = slicelength;
//if (Common::AtomicLoadAcquire(hasTsEvents))
// MoveEvents();
//ProcessFifoWaitEvents();
//if (!first)
//{
// // WARN_LOG(TIMER, "WARNING - no events in queue. Setting currentMIPS->downcount to 10000");
// currentMIPS->downcount += 10000;
//}
//else
//{
// slicelength = (int)(first->time - globalTimer);
// if (slicelength > MAX_SLICE_LENGTH)
// slicelength = MAX_SLICE_LENGTH;
// currentMIPS->downcount = slicelength;
//}
//if (advanceCallback)
// advanceCallback(cyclesExecuted);
}
void LogPendingEvents()
{
Event *ptr = first;
while (ptr)
{
//INFO_LOG(TIMER, "PENDING: Now: %lld Pending: %lld Type: %d", globalTimer, ptr->time, ptr->type);
ptr = ptr->next;
}
}
void Idle(int maxIdle)
{
ERROR_LOG(TIME, "Unimplemented function!");
//int cyclesDown = currentMIPS->downcount;
//if (maxIdle != 0 && cyclesDown > maxIdle)
// cyclesDown = maxIdle;
//if (first && cyclesDown > 0)
//{
// int cyclesExecuted = slicelength - currentMIPS->downcount;
// int cyclesNextEvent = (int) (first->time - globalTimer);
// if (cyclesNextEvent < cyclesExecuted + cyclesDown)
// {
// cyclesDown = cyclesNextEvent - cyclesExecuted;
// // Now, now... no time machines, please.
// if (cyclesDown < 0)
// cyclesDown = 0;
// }
//}
//INFO_LOG(TIME, "Idle for %i cycles! (%f ms)", cyclesDown, cyclesDown / (float)(g_clock_rate_arm11 * 0.001f));
//idledCycles += cyclesDown;
//currentMIPS->downcount -= cyclesDown;
//if (currentMIPS->downcount == 0)
// currentMIPS->downcount = -1;
}
std::string GetScheduledEventsSummary()
{
Event *ptr = first;
std::string text = "Scheduled events\n";
text.reserve(1000);
while (ptr)
{
unsigned int t = ptr->type;
if (t >= event_types.size())
PanicAlert("Invalid event type"); // %i", t);
const char *name = event_types[ptr->type].name;
if (!name)
name = "[unknown]";
char temp[512];
sprintf(temp, "%s : %i %08x%08x\n", name, (int)ptr->time, (u32)(ptr->userdata >> 32), (u32)(ptr->userdata));
text += temp;
ptr = ptr->next;
}
return text;
}
void Event_DoState(PointerWrap &p, BaseEvent *ev)
{
p.Do(*ev);
}
void DoState(PointerWrap &p)
{
std::lock_guard<std::recursive_mutex> lk(externalEventSection);
auto s = p.Section("CoreTiming", 1);
if (!s)
return;
int n = (int)event_types.size();
p.Do(n);
// These (should) be filled in later by the modules.
event_types.resize(n, EventType(AntiCrashCallback, "INVALID EVENT"));
p.DoLinkedList<BaseEvent, GetNewEvent, FreeEvent, Event_DoState>(first, (Event **)NULL);
p.DoLinkedList<BaseEvent, GetNewTsEvent, FreeTsEvent, Event_DoState>(tsFirst, &tsLast);
p.Do(g_clock_rate_arm11);
p.Do(slicelength);
p.Do(globalTimer);
p.Do(idledCycles);
}
} // namespace