1
0
Fork 0

Merge pull request #4400 from wwylele/core-timing-global

CoreTiming: wrap into class
This commit is contained in:
Weiyi Wang 2018-11-06 20:04:56 -05:00 committed by GitHub
commit 1444d60109
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
34 changed files with 413 additions and 413 deletions

View File

@ -12,6 +12,7 @@
#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/core_timing.h"
using InterruptType = Service::DSP::DSP_DSP::InterruptType;
@ -63,7 +64,7 @@ private:
HLE::Mixers mixers;
DspHle& parent;
CoreTiming::EventType* tick_event;
Core::TimingEventType* tick_event;
std::weak_ptr<DSP_DSP> dsp_dsp;
};
@ -71,15 +72,17 @@ private:
DspHle::Impl::Impl(DspHle& parent_) : parent(parent_) {
dsp_memory.raw_memory.fill(0);
Core::Timing& timing = Core::System::GetInstance().CoreTiming();
tick_event =
CoreTiming::RegisterEvent("AudioCore::DspHle::tick_event", [this](u64, s64 cycles_late) {
timing.RegisterEvent("AudioCore::DspHle::tick_event", [this](u64, s64 cycles_late) {
this->AudioTickCallback(cycles_late);
});
CoreTiming::ScheduleEvent(audio_frame_ticks, tick_event);
timing.ScheduleEvent(audio_frame_ticks, tick_event);
}
DspHle::Impl::~Impl() {
CoreTiming::UnscheduleEvent(tick_event, 0);
Core::Timing& timing = Core::System::GetInstance().CoreTiming();
timing.UnscheduleEvent(tick_event, 0);
}
DspState DspHle::Impl::GetDspState() const {
@ -328,7 +331,8 @@ void DspHle::Impl::AudioTickCallback(s64 cycles_late) {
}
// Reschedule recurrent event
CoreTiming::ScheduleEvent(audio_frame_ticks - cycles_late, tick_event);
Core::Timing& timing = Core::System::GetInstance().CoreTiming();
timing.ScheduleEvent(audio_frame_ticks - cycles_late, tick_event);
}
DspHle::DspHle() : impl(std::make_unique<Impl>(*this)) {}

View File

@ -71,7 +71,8 @@ private:
class DynarmicUserCallbacks final : public Dynarmic::A32::UserCallbacks {
public:
explicit DynarmicUserCallbacks(ARM_Dynarmic& parent) : parent(parent) {}
explicit DynarmicUserCallbacks(ARM_Dynarmic& parent)
: parent(parent), timing(parent.system.CoreTiming()) {}
~DynarmicUserCallbacks() = default;
std::uint8_t MemoryRead8(VAddr vaddr) override {
@ -148,18 +149,19 @@ public:
}
void AddTicks(std::uint64_t ticks) override {
CoreTiming::AddTicks(ticks);
timing.AddTicks(ticks);
}
std::uint64_t GetTicksRemaining() override {
s64 ticks = CoreTiming::GetDowncount();
s64 ticks = timing.GetDowncount();
return static_cast<u64>(ticks <= 0 ? 0 : ticks);
}
ARM_Dynarmic& parent;
Core::Timing& timing;
};
ARM_Dynarmic::ARM_Dynarmic(PrivilegeMode initial_mode)
: cb(std::make_unique<DynarmicUserCallbacks>(*this)) {
ARM_Dynarmic::ARM_Dynarmic(Core::System& system, PrivilegeMode initial_mode)
: system(system), cb(std::make_unique<DynarmicUserCallbacks>(*this)) {
interpreter_state = std::make_shared<ARMul_State>(initial_mode);
PageTableChanged();
}

View File

@ -15,11 +15,15 @@ namespace Memory {
struct PageTable;
} // namespace Memory
namespace Core {
struct System;
}
class DynarmicUserCallbacks;
class ARM_Dynarmic final : public ARM_Interface {
public:
explicit ARM_Dynarmic(PrivilegeMode initial_mode);
ARM_Dynarmic(Core::System& system, PrivilegeMode initial_mode);
~ARM_Dynarmic();
void Run() override;
@ -50,6 +54,7 @@ public:
private:
friend class DynarmicUserCallbacks;
Core::System& system;
std::unique_ptr<DynarmicUserCallbacks> cb;
std::unique_ptr<Dynarmic::A32::Jit> MakeJit();

View File

@ -75,7 +75,7 @@ ARM_DynCom::ARM_DynCom(PrivilegeMode initial_mode) {
ARM_DynCom::~ARM_DynCom() {}
void ARM_DynCom::Run() {
ExecuteInstructions(std::max<s64>(CoreTiming::GetDowncount(), 0));
ExecuteInstructions(std::max<s64>(Core::System::GetInstance().CoreTiming().GetDowncount(), 0));
}
void ARM_DynCom::Step() {
@ -146,7 +146,7 @@ void ARM_DynCom::SetCP15Register(CP15Register reg, u32 value) {
void ARM_DynCom::ExecuteInstructions(u64 num_instructions) {
state->NumInstrsToExecute = num_instructions;
unsigned ticks_executed = InterpreterMainLoop(state.get());
CoreTiming::AddTicks(ticks_executed);
Core::System::GetInstance().CoreTiming().AddTicks(ticks_executed);
state->ServeBreak();
}

View File

@ -18,6 +18,7 @@
#include "core/arm/skyeye_common/armstate.h"
#include "core/arm/skyeye_common/armsupp.h"
#include "core/arm/skyeye_common/vfp/vfp.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/gdbstub/gdbstub.h"
#include "core/hle/kernel/svc.h"
@ -3859,7 +3860,7 @@ SUB_INST : {
SWI_INST : {
if (inst_base->cond == ConditionCode::AL || CondPassed(cpu, inst_base->cond)) {
swi_inst* const inst_cream = (swi_inst*)inst_base->component;
CoreTiming::AddTicks(num_instrs);
Core::System::GetInstance().CoreTiming().AddTicks(num_instrs);
cpu->NumInstrsToExecute =
num_instrs >= cpu->NumInstrsToExecute ? 0 : cpu->NumInstrsToExecute - num_instrs;
num_instrs = 0;

View File

@ -61,11 +61,11 @@ System::ResultStatus System::RunLoop(bool tight_loop) {
// instead advance to the next event and try to yield to the next thread
if (kernel->GetThreadManager().GetCurrentThread() == nullptr) {
LOG_TRACE(Core_ARM11, "Idling");
CoreTiming::Idle();
CoreTiming::Advance();
timing->Idle();
timing->Advance();
PrepareReschedule();
} else {
CoreTiming::Advance();
timing->Advance();
if (tight_loop) {
cpu_core->Run();
} else {
@ -155,7 +155,7 @@ void System::PrepareReschedule() {
}
PerfStats::Results System::GetAndResetPerfStats() {
return perf_stats.GetAndResetStats(CoreTiming::GetGlobalTimeUs());
return perf_stats.GetAndResetStats(timing->GetGlobalTimeUs());
}
void System::Reschedule() {
@ -170,11 +170,11 @@ void System::Reschedule() {
System::ResultStatus System::Init(EmuWindow& emu_window, u32 system_mode) {
LOG_DEBUG(HW_Memory, "initialized OK");
CoreTiming::Init();
timing = std::make_unique<Timing>();
if (Settings::values.use_cpu_jit) {
#ifdef ARCHITECTURE_x86_64
cpu_core = std::make_unique<ARM_Dynarmic>(USER32MODE);
cpu_core = std::make_unique<ARM_Dynarmic>(*this, USER32MODE);
#else
cpu_core = std::make_unique<ARM_DynCom>(USER32MODE);
LOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
@ -239,6 +239,14 @@ const Kernel::KernelSystem& System::Kernel() const {
return *kernel;
}
Timing& System::CoreTiming() {
return *timing;
}
const Timing& System::CoreTiming() const {
return *timing;
}
void System::RegisterSoftwareKeyboard(std::shared_ptr<Frontend::SoftwareKeyboard> swkbd) {
registered_swkbd = std::move(swkbd);
}
@ -265,7 +273,7 @@ void System::Shutdown() {
service_manager.reset();
dsp_core.reset();
cpu_core.reset();
CoreTiming::Shutdown();
timing.reset();
app_loader.reset();
if (auto room_member = Network::GetRoomMember().lock()) {

View File

@ -41,6 +41,8 @@ class KernelSystem;
namespace Core {
class Timing;
class System {
public:
/**
@ -176,6 +178,12 @@ public:
/// Gets a const reference to the kernel
const Kernel::KernelSystem& Kernel() const;
/// Gets a reference to the timing system
Timing& CoreTiming();
/// Gets a const reference to the timing system
const Timing& CoreTiming() const;
PerfStats perf_stats;
FrameLimiter frame_limiter;
@ -246,6 +254,7 @@ private:
public: // HACK: this is temporary exposed for tests,
// due to WIP kernel refactor causing desync state in memory
std::unique_ptr<Kernel::KernelSystem> kernel;
std::unique_ptr<Timing> timing;
private:
static System s_instance;

View File

@ -2,75 +2,25 @@
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "core/core_timing.h"
#include <algorithm>
#include <cinttypes>
#include <mutex>
#include <string>
#include <tuple>
#include <unordered_map>
#include <vector>
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/thread.h"
#include "common/threadsafe_queue.h"
#include "core/core_timing.h"
namespace CoreTiming {
static s64 global_timer;
static s64 slice_length;
static s64 downcount;
struct EventType {
TimedCallback callback;
const std::string* name;
};
struct Event {
s64 time;
u64 fifo_order;
u64 userdata;
const EventType* type;
};
namespace Core {
// Sort by time, unless the times are the same, in which case sort by the order added to the queue
static bool operator>(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
bool Timing::Event::operator>(const Event& right) const {
return std::tie(time, fifo_order) > std::tie(right.time, right.fifo_order);
}
static bool operator<(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
bool Timing::Event::operator<(const Event& right) const {
return std::tie(time, fifo_order) < std::tie(right.time, right.fifo_order);
}
// unordered_map stores each element separately as a linked list node so pointers to elements
// remain stable regardless of rehashes/resizing.
static std::unordered_map<std::string, EventType> event_types;
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't accomodated
// by the standard adaptor class.
static std::vector<Event> event_queue;
static u64 event_fifo_id;
// the queue for storing the events from other threads threadsafe until they will be added
// to the event_queue by the emu thread
static Common::MPSCQueue<Event, false> ts_queue;
static constexpr int MAX_SLICE_LENGTH = 20000;
static s64 idled_cycles;
// Are we in a function that has been called from Advance()
// If events are sheduled from a function that gets called from Advance(),
// don't change slice_length and downcount.
static bool is_global_timer_sane;
static EventType* ev_lost = nullptr;
static void EmptyTimedCallback(u64 userdata, s64 cyclesLate) {}
EventType* RegisterEvent(const std::string& name, TimedCallback callback) {
TimingEventType* Timing::RegisterEvent(const std::string& name, TimedCallback callback) {
// check for existing type with same name.
// we want event type names to remain unique so that we can use them for serialization.
ASSERT_MSG(event_types.find(name) == event_types.end(),
@ -78,42 +28,17 @@ EventType* RegisterEvent(const std::string& name, TimedCallback callback) {
"during Init to avoid breaking save states.",
name);
auto info = event_types.emplace(name, EventType{callback, nullptr});
EventType* event_type = &info.first->second;
auto info = event_types.emplace(name, TimingEventType{callback, nullptr});
TimingEventType* event_type = &info.first->second;
event_type->name = &info.first->first;
return event_type;
}
void UnregisterAllEvents() {
ASSERT_MSG(event_queue.empty(), "Cannot unregister events with events pending");
event_types.clear();
}
void Init() {
downcount = MAX_SLICE_LENGTH;
slice_length = MAX_SLICE_LENGTH;
global_timer = 0;
idled_cycles = 0;
// The time between CoreTiming being intialized and the first call to Advance() is considered
// the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
// executing the first cycle of each slice to prepare the slice length and downcount for
// that slice.
is_global_timer_sane = true;
event_fifo_id = 0;
ev_lost = RegisterEvent("_lost_event", &EmptyTimedCallback);
}
void Shutdown() {
Timing::~Timing() {
MoveEvents();
ClearPendingEvents();
UnregisterAllEvents();
}
// This should only be called from the CPU thread. If you are calling
// it from any other thread, you are doing something evil
u64 GetTicks() {
u64 Timing::GetTicks() const {
u64 ticks = static_cast<u64>(global_timer);
if (!is_global_timer_sane) {
ticks += slice_length - downcount;
@ -121,19 +46,16 @@ u64 GetTicks() {
return ticks;
}
void AddTicks(u64 ticks) {
void Timing::AddTicks(u64 ticks) {
downcount -= ticks;
}
u64 GetIdleTicks() {
u64 Timing::GetIdleTicks() const {
return static_cast<u64>(idled_cycles);
}
void ClearPendingEvents() {
event_queue.clear();
}
void ScheduleEvent(s64 cycles_into_future, const EventType* event_type, u64 userdata) {
void Timing::ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type,
u64 userdata) {
ASSERT(event_type != nullptr);
s64 timeout = GetTicks() + cycles_into_future;
@ -145,11 +67,12 @@ void ScheduleEvent(s64 cycles_into_future, const EventType* event_type, u64 user
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
void ScheduleEventThreadsafe(s64 cycles_into_future, const EventType* event_type, u64 userdata) {
void Timing::ScheduleEventThreadsafe(s64 cycles_into_future, const TimingEventType* event_type,
u64 userdata) {
ts_queue.Push(Event{global_timer + cycles_into_future, 0, userdata, event_type});
}
void UnscheduleEvent(const EventType* event_type, u64 userdata) {
void Timing::UnscheduleEvent(const TimingEventType* event_type, u64 userdata) {
auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type == event_type && e.userdata == userdata;
});
@ -161,7 +84,7 @@ void UnscheduleEvent(const EventType* event_type, u64 userdata) {
}
}
void RemoveEvent(const EventType* event_type) {
void Timing::RemoveEvent(const TimingEventType* event_type) {
auto itr = std::remove_if(event_queue.begin(), event_queue.end(),
[&](const Event& e) { return e.type == event_type; });
@ -172,12 +95,12 @@ void RemoveEvent(const EventType* event_type) {
}
}
void RemoveNormalAndThreadsafeEvent(const EventType* event_type) {
void Timing::RemoveNormalAndThreadsafeEvent(const TimingEventType* event_type) {
MoveEvents();
RemoveEvent(event_type);
}
void ForceExceptionCheck(s64 cycles) {
void Timing::ForceExceptionCheck(s64 cycles) {
cycles = std::max<s64>(0, cycles);
if (downcount > cycles) {
slice_length -= downcount - cycles;
@ -185,7 +108,7 @@ void ForceExceptionCheck(s64 cycles) {
}
}
void MoveEvents() {
void Timing::MoveEvents() {
for (Event ev; ts_queue.Pop(ev);) {
ev.fifo_order = event_fifo_id++;
event_queue.emplace_back(std::move(ev));
@ -193,7 +116,7 @@ void MoveEvents() {
}
}
void Advance() {
void Timing::Advance() {
MoveEvents();
s64 cycles_executed = slice_length - downcount;
@ -220,17 +143,17 @@ void Advance() {
downcount = slice_length;
}
void Idle() {
void Timing::Idle() {
idled_cycles += downcount;
downcount = 0;
}
std::chrono::microseconds GetGlobalTimeUs() {
std::chrono::microseconds Timing::GetGlobalTimeUs() const {
return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE_ARM11};
}
s64 GetDowncount() {
s64 Timing::GetDowncount() const {
return downcount;
}
} // namespace CoreTiming
} // namespace Core

View File

@ -21,8 +21,11 @@
#include <functional>
#include <limits>
#include <string>
#include <unordered_map>
#include <vector>
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/threadsafe_queue.h"
// The timing we get from the assembly is 268,111,855.956 Hz
// It is possible that this number isn't just an integer because the compiler could have
@ -120,39 +123,38 @@ inline u64 cyclesToMs(s64 cycles) {
return cycles * 1000 / BASE_CLOCK_RATE_ARM11;
}
namespace CoreTiming {
struct EventType;
namespace Core {
using TimedCallback = std::function<void(u64 userdata, int cycles_late)>;
/**
* CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is
* required to end slice -1 and start slice 0 before the first cycle of code is executed.
*/
void Init();
void Shutdown();
struct TimingEventType {
TimedCallback callback;
const std::string* name;
};
class Timing {
public:
~Timing();
/**
* This should only be called from the emu thread, if you are calling it any other thread, you are
* doing something evil
* This should only be called from the emu thread, if you are calling it any other thread, you
* are doing something evil
*/
u64 GetTicks();
u64 GetIdleTicks();
u64 GetTicks() const;
u64 GetIdleTicks() const;
void AddTicks(u64 ticks);
/**
* Returns the event_type identifier. if name is not unique, it will assert.
*/
EventType* RegisterEvent(const std::string& name, TimedCallback callback);
void UnregisterAllEvents();
TimingEventType* RegisterEvent(const std::string& name, TimedCallback callback);
/**
* After the first Advance, the slice lengths and the downcount will be reduced whenever an event
* is scheduled earlier than the current values.
* Scheduling from a callback will not update the downcount until the Advance() completes.
* After the first Advance, the slice lengths and the downcount will be reduced whenever an
* event is scheduled earlier than the current values. Scheduling from a callback will not
* update the downcount until the Advance() completes.
*/
void ScheduleEvent(s64 cycles_into_future, const EventType* event_type, u64 userdata = 0);
void ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, u64 userdata = 0);
/**
* This is to be called when outside of hle threads, such as the graphics thread, wants to
@ -160,13 +162,14 @@ void ScheduleEvent(s64 cycles_into_future, const EventType* event_type, u64 user
* Not that this doesn't change slice_length and thus events scheduled by this might be called
* with a delay of up to MAX_SLICE_LENGTH
*/
void ScheduleEventThreadsafe(s64 cycles_into_future, const EventType* event_type, u64 userdata);
void ScheduleEventThreadsafe(s64 cycles_into_future, const TimingEventType* event_type,
u64 userdata);
void UnscheduleEvent(const EventType* event_type, u64 userdata);
void UnscheduleEvent(const TimingEventType* event_type, u64 userdata);
/// We only permit one event of each type in the queue at a time.
void RemoveEvent(const EventType* event_type);
void RemoveNormalAndThreadsafeEvent(const EventType* event_type);
void RemoveEvent(const TimingEventType* event_type);
void RemoveNormalAndThreadsafeEvent(const TimingEventType* event_type);
/** Advance must be called at the beginning of dispatcher loops, not the end. Advance() ends
* the previous timing slice and begins the next one, you must Advance from the previous
@ -180,13 +183,52 @@ void MoveEvents();
/// Pretend that the main CPU has executed enough cycles to reach the next event.
void Idle();
/// Clear all pending events. This should ONLY be done on exit.
void ClearPendingEvents();
void ForceExceptionCheck(s64 cycles);
std::chrono::microseconds GetGlobalTimeUs();
std::chrono::microseconds GetGlobalTimeUs() const;
s64 GetDowncount();
s64 GetDowncount() const;
} // namespace CoreTiming
private:
struct Event {
s64 time;
u64 fifo_order;
u64 userdata;
const TimingEventType* type;
bool operator>(const Event& right) const;
bool operator<(const Event& right) const;
};
static constexpr int MAX_SLICE_LENGTH = 20000;
s64 global_timer = 0;
s64 slice_length = MAX_SLICE_LENGTH;
s64 downcount = MAX_SLICE_LENGTH;
// unordered_map stores each element separately as a linked list node so pointers to
// elements remain stable regardless of rehashes/resizing.
std::unordered_map<std::string, TimingEventType> event_types;
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't
// accomodated by the standard adaptor class.
std::vector<Event> event_queue;
u64 event_fifo_id = 0;
// the queue for storing the events from other threads threadsafe until they will be added
// to the event_queue by the emu thread
Common::MPSCQueue<Event, false> ts_queue;
s64 idled_cycles = 0;
// Are we in a function that has been called from Advance()
// If events are sheduled from a function that gets called from Advance(),
// don't change slice_length and downcount.
// The time between CoreTiming being intialized and the first call to Advance() is considered
// the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
// executing the first cycle of each slice to prepare the slice length and downcount for
// that slice.
bool is_global_timer_sane = true;
};
} // namespace Core

View File

@ -8,6 +8,7 @@
#include <unordered_map>
#include "common/assert.h"
#include "common/common_types.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/applets/applet.h"
#include "core/hle/applets/erreula.h"
@ -38,7 +39,7 @@ namespace Applets {
static std::unordered_map<Service::APT::AppletId, std::shared_ptr<Applet>> applets;
/// The CoreTiming event identifier for the Applet update callback.
static CoreTiming::EventType* applet_update_event = nullptr;
static Core::TimingEventType* applet_update_event = nullptr;
/// The interval at which the Applet update callback will be called, 16.6ms
static const u64 applet_update_interval_us = 16666;
@ -88,8 +89,8 @@ static void AppletUpdateEvent(u64 applet_id, s64 cycles_late) {
// If the applet is still running after the last update, reschedule the event
if (applet->IsRunning()) {
CoreTiming::ScheduleEvent(usToCycles(applet_update_interval_us) - cycles_late,
applet_update_event, applet_id);
Core::System::GetInstance().CoreTiming().ScheduleEvent(
usToCycles(applet_update_interval_us) - cycles_late, applet_update_event, applet_id);
} else {
// Otherwise the applet has terminated, in which case we should clean it up
applets[id] = nullptr;
@ -101,8 +102,8 @@ ResultCode Applet::Start(const Service::APT::AppletStartupParameter& parameter)
if (result.IsError())
return result;
// Schedule the update event
CoreTiming::ScheduleEvent(usToCycles(applet_update_interval_us), applet_update_event,
static_cast<u64>(id));
Core::System::GetInstance().CoreTiming().ScheduleEvent(
usToCycles(applet_update_interval_us), applet_update_event, static_cast<u64>(id));
return result;
}
@ -128,11 +129,12 @@ bool IsLibraryAppletRunning() {
void Init() {
// Register the applet update callback
applet_update_event = CoreTiming::RegisterEvent("HLE Applet Update Event", AppletUpdateEvent);
applet_update_event = Core::System::GetInstance().CoreTiming().RegisterEvent(
"HLE Applet Update Event", AppletUpdateEvent);
}
void Shutdown() {
CoreTiming::RemoveEvent(applet_update_event);
Core::System::GetInstance().CoreTiming().RemoveEvent(applet_update_event);
}
} // namespace Applets
} // namespace HLE

View File

@ -4,6 +4,7 @@
#include <chrono>
#include <cstring>
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/shared_page.h"
#include "core/hle/service/ptm/ptm.h"
@ -53,9 +54,9 @@ Handler::Handler() {
init_time = GetInitTime();
using namespace std::placeholders;
update_time_event = CoreTiming::RegisterEvent(
update_time_event = Core::System::GetInstance().CoreTiming().RegisterEvent(
"SharedPage::UpdateTimeCallback", std::bind(&Handler::UpdateTimeCallback, this, _1, _2));
CoreTiming::ScheduleEvent(0, update_time_event);
Core::System::GetInstance().CoreTiming().ScheduleEvent(0, update_time_event);
float slidestate =
Settings::values.toggle_3d ? (float_le)Settings::values.factor_3d / 100 : 0.0f;
@ -65,8 +66,8 @@ Handler::Handler() {
/// Gets system time in 3DS format. The epoch is Jan 1900, and the unit is millisecond.
u64 Handler::GetSystemTime() const {
std::chrono::milliseconds now =
init_time +
std::chrono::duration_cast<std::chrono::milliseconds>(CoreTiming::GetGlobalTimeUs());
init_time + std::chrono::duration_cast<std::chrono::milliseconds>(
Core::System::GetInstance().CoreTiming().GetGlobalTimeUs());
// 3DS system does't allow user to set a time before Jan 1 2000,
// so we use it as an auxiliary epoch to calculate the console time.
@ -97,14 +98,15 @@ void Handler::UpdateTimeCallback(u64 userdata, int cycles_late) {
shared_page.date_time_counter % 2 ? shared_page.date_time_0 : shared_page.date_time_1;
date_time.date_time = GetSystemTime();
date_time.update_tick = CoreTiming::GetTicks();
date_time.update_tick = Core::System::GetInstance().CoreTiming().GetTicks();
date_time.tick_to_second_coefficient = BASE_CLOCK_RATE_ARM11;
date_time.tick_offset = 0;
++shared_page.date_time_counter;
// system time is updated hourly
CoreTiming::ScheduleEvent(msToCycles(60 * 60 * 1000) - cycles_late, update_time_event);
Core::System::GetInstance().CoreTiming().ScheduleEvent(msToCycles(60 * 60 * 1000) - cycles_late,
update_time_event);
}
void Handler::SetMacAddress(const MacAddress& addr) {

View File

@ -21,8 +21,8 @@
////////////////////////////////////////////////////////////////////////////////////////////////////
namespace CoreTiming {
struct EventType;
namespace Core {
struct TimingEventType;
}
namespace SharedPage {
@ -96,7 +96,7 @@ public:
private:
u64 GetSystemTime() const;
void UpdateTimeCallback(u64 userdata, int cycles_late);
CoreTiming::EventType* update_time_event;
Core::TimingEventType* update_time_event;
std::chrono::seconds init_time;
SharedPageDef shared_page;

View File

@ -1107,9 +1107,10 @@ static void SleepThread(s64 nanoseconds) {
/// This returns the total CPU ticks elapsed since the CPU was powered-on
static s64 GetSystemTick() {
s64 result = CoreTiming::GetTicks();
s64 result = Core::System::GetInstance().CoreTiming().GetTicks();
// Advance time to defeat dumb games (like Cubic Ninja) that busy-wait for the frame to end.
CoreTiming::AddTicks(150); // Measured time between two calls on a 9.2 o3DS with Ninjhax 1.1b
// Measured time between two calls on a 9.2 o3DS with Ninjhax 1.1b
Core::System::GetInstance().CoreTiming().AddTicks(150);
return result;
}

View File

@ -48,7 +48,8 @@ Thread* ThreadManager::GetCurrentThread() const {
void Thread::Stop() {
// Cancel any outstanding wakeup events for this thread
CoreTiming::UnscheduleEvent(thread_manager.ThreadWakeupEventType, thread_id);
Core::System::GetInstance().CoreTiming().UnscheduleEvent(thread_manager.ThreadWakeupEventType,
thread_id);
thread_manager.wakeup_callback_table.erase(thread_id);
// Clean up thread from ready queue
@ -80,9 +81,11 @@ void Thread::Stop() {
void ThreadManager::SwitchContext(Thread* new_thread) {
Thread* previous_thread = GetCurrentThread();
Core::Timing& timing = Core::System::GetInstance().CoreTiming();
// Save context for previous thread
if (previous_thread) {
previous_thread->last_running_ticks = CoreTiming::GetTicks();
previous_thread->last_running_ticks = timing.GetTicks();
Core::CPU().SaveContext(previous_thread->context);
if (previous_thread->status == ThreadStatus::Running) {
@ -99,7 +102,7 @@ void ThreadManager::SwitchContext(Thread* new_thread) {
"Thread must be ready to become running.");
// Cancel any outstanding wakeup events for this thread
CoreTiming::UnscheduleEvent(ThreadWakeupEventType, new_thread->thread_id);
timing.UnscheduleEvent(ThreadWakeupEventType, new_thread->thread_id);
auto previous_process = Core::System::GetInstance().Kernel().GetCurrentProcess();
@ -182,8 +185,8 @@ void Thread::WakeAfterDelay(s64 nanoseconds) {
if (nanoseconds == -1)
return;
CoreTiming::ScheduleEvent(nsToCycles(nanoseconds), thread_manager.ThreadWakeupEventType,
thread_id);
Core::System::GetInstance().CoreTiming().ScheduleEvent(
nsToCycles(nanoseconds), thread_manager.ThreadWakeupEventType, thread_id);
}
void Thread::ResumeFromWait() {
@ -316,7 +319,7 @@ ResultVal<SharedPtr<Thread>> KernelSystem::CreateThread(std::string name, VAddr
thread->entry_point = entry_point;
thread->stack_top = stack_top;
thread->nominal_priority = thread->current_priority = priority;
thread->last_running_ticks = CoreTiming::GetTicks();
thread->last_running_ticks = Core::System::GetInstance().CoreTiming().GetTicks();
thread->processor_id = processor_id;
thread->wait_objects.clear();
thread->wait_address = 0;
@ -459,10 +462,9 @@ VAddr Thread::GetCommandBufferAddress() const {
}
ThreadManager::ThreadManager() {
ThreadWakeupEventType =
CoreTiming::RegisterEvent("ThreadWakeupCallback", [this](u64 thread_id, s64 cycle_late) {
ThreadWakeupCallback(thread_id, cycle_late);
});
ThreadWakeupEventType = Core::System::GetInstance().CoreTiming().RegisterEvent(
"ThreadWakeupCallback",
[this](u64 thread_id, s64 cycle_late) { ThreadWakeupCallback(thread_id, cycle_late); });
}
ThreadManager::~ThreadManager() {

View File

@ -127,7 +127,7 @@ private:
std::unordered_map<u64, Thread*> wakeup_callback_table;
/// Event type for the thread wake up event
CoreTiming::EventType* ThreadWakeupEventType = nullptr;
Core::TimingEventType* ThreadWakeupEventType = nullptr;
// Lists all threadsthat aren't deleted.
std::vector<SharedPtr<Thread>> thread_list;

View File

@ -6,6 +6,7 @@
#include <unordered_map>
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/thread.h"
@ -55,13 +56,14 @@ void Timer::Set(s64 initial, s64 interval) {
// Immediately invoke the callback
Signal(0);
} else {
CoreTiming::ScheduleEvent(nsToCycles(initial), timer_manager.timer_callback_event_type,
callback_id);
Core::System::GetInstance().CoreTiming().ScheduleEvent(
nsToCycles(initial), timer_manager.timer_callback_event_type, callback_id);
}
}
void Timer::Cancel() {
CoreTiming::UnscheduleEvent(timer_manager.timer_callback_event_type, callback_id);
Core::System::GetInstance().CoreTiming().UnscheduleEvent(
timer_manager.timer_callback_event_type, callback_id);
}
void Timer::Clear() {
@ -85,8 +87,9 @@ void Timer::Signal(s64 cycles_late) {
if (interval_delay != 0) {
// Reschedule the timer with the interval delay
CoreTiming::ScheduleEvent(nsToCycles(interval_delay) - cycles_late,
timer_manager.timer_callback_event_type, callback_id);
Core::System::GetInstance().CoreTiming().ScheduleEvent(
nsToCycles(interval_delay) - cycles_late, timer_manager.timer_callback_event_type,
callback_id);
}
}
@ -103,10 +106,9 @@ void TimerManager::TimerCallback(u64 callback_id, s64 cycles_late) {
}
TimerManager::TimerManager() {
timer_callback_event_type =
CoreTiming::RegisterEvent("TimerCallback", [this](u64 thread_id, s64 cycle_late) {
TimerCallback(thread_id, cycle_late);
});
timer_callback_event_type = Core::System::GetInstance().CoreTiming().RegisterEvent(
"TimerCallback",
[this](u64 thread_id, s64 cycle_late) { TimerCallback(thread_id, cycle_late); });
}
} // namespace Kernel

View File

@ -20,7 +20,7 @@ private:
void TimerCallback(u64 callback_id, s64 cycles_late);
/// The event type of the generic timer callback event
CoreTiming::EventType* timer_callback_event_type = nullptr;
Core::TimingEventType* timer_callback_event_type = nullptr;
u64 next_timer_callback_id = 0;
std::unordered_map<u64, Timer*> timer_callback_table;

View File

@ -151,7 +151,7 @@ void Module::StartReceiving(int port_id) {
// schedules a completion event according to the frame rate. The event will block on the
// capture task if it is not finished within the expected time
CoreTiming::ScheduleEvent(
system.CoreTiming().ScheduleEvent(
msToCycles(LATENCY_BY_FRAME_RATE[static_cast<int>(camera.frame_rate)]),
completion_event_callback, port_id);
}
@ -160,7 +160,7 @@ void Module::CancelReceiving(int port_id) {
if (!ports[port_id].is_receiving)
return;
LOG_WARNING(Service_CAM, "tries to cancel an ongoing receiving process.");
CoreTiming::UnscheduleEvent(completion_event_callback, port_id);
system.CoreTiming().UnscheduleEvent(completion_event_callback, port_id);
ports[port_id].capture_result.wait();
ports[port_id].is_receiving = false;
}
@ -1019,7 +1019,7 @@ void Module::Interface::DriverFinalize(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_CAM, "called");
}
Module::Module(Core::System& system) {
Module::Module(Core::System& system) : system(system) {
using namespace Kernel;
for (PortConfig& port : ports) {
port.completion_event =
@ -1029,7 +1029,7 @@ Module::Module(Core::System& system) {
port.vsync_interrupt_event =
system.Kernel().CreateEvent(ResetType::OneShot, "CAM::vsync_interrupt_event");
}
completion_event_callback = CoreTiming::RegisterEvent(
completion_event_callback = system.CoreTiming().RegisterEvent(
"CAM::CompletionEventCallBack",
[this](u64 userdata, s64 cycles_late) { CompletionEventCallBack(userdata, cycles_late); });
}

View File

@ -21,8 +21,8 @@ namespace Camera {
class CameraInterface;
}
namespace CoreTiming {
struct EventType;
namespace Core {
struct TimingEventType;
}
namespace Kernel {
@ -779,9 +779,10 @@ private:
void LoadCameraImplementation(CameraConfig& camera, int camera_id);
Core::System& system;
std::array<CameraConfig, NumCameras> cameras;
std::array<PortConfig, 2> ports;
CoreTiming::EventType* completion_event_callback;
Core::TimingEventType* completion_event_callback;
std::atomic<bool> is_camera_reload_pending{false};
};

View File

@ -128,7 +128,7 @@ void Module::UpdatePadCallback(u64 userdata, s64 cycles_late) {
// If we just updated index 0, provide a new timestamp
if (mem->pad.index == 0) {
mem->pad.index_reset_ticks_previous = mem->pad.index_reset_ticks;
mem->pad.index_reset_ticks = (s64)CoreTiming::GetTicks();
mem->pad.index_reset_ticks = (s64)system.CoreTiming().GetTicks();
}
mem->touch.index = next_touch_index;
@ -152,7 +152,7 @@ void Module::UpdatePadCallback(u64 userdata, s64 cycles_late) {
// If we just updated index 0, provide a new timestamp
if (mem->touch.index == 0) {
mem->touch.index_reset_ticks_previous = mem->touch.index_reset_ticks;
mem->touch.index_reset_ticks = (s64)CoreTiming::GetTicks();
mem->touch.index_reset_ticks = (s64)system.CoreTiming().GetTicks();
}
// Signal both handles when there's an update to Pad or touch
@ -160,7 +160,7 @@ void Module::UpdatePadCallback(u64 userdata, s64 cycles_late) {
event_pad_or_touch_2->Signal();
// Reschedule recurrent event
CoreTiming::ScheduleEvent(pad_update_ticks - cycles_late, pad_update_event);
system.CoreTiming().ScheduleEvent(pad_update_ticks - cycles_late, pad_update_event);
}
void Module::UpdateAccelerometerCallback(u64 userdata, s64 cycles_late) {
@ -198,13 +198,14 @@ void Module::UpdateAccelerometerCallback(u64 userdata, s64 cycles_late) {
// If we just updated index 0, provide a new timestamp
if (mem->accelerometer.index == 0) {
mem->accelerometer.index_reset_ticks_previous = mem->accelerometer.index_reset_ticks;
mem->accelerometer.index_reset_ticks = (s64)CoreTiming::GetTicks();
mem->accelerometer.index_reset_ticks = (s64)system.CoreTiming().GetTicks();
}
event_accelerometer->Signal();
// Reschedule recurrent event
CoreTiming::ScheduleEvent(accelerometer_update_ticks - cycles_late, accelerometer_update_event);
system.CoreTiming().ScheduleEvent(accelerometer_update_ticks - cycles_late,
accelerometer_update_event);
}
void Module::UpdateGyroscopeCallback(u64 userdata, s64 cycles_late) {
@ -233,13 +234,13 @@ void Module::UpdateGyroscopeCallback(u64 userdata, s64 cycles_late) {
// If we just updated index 0, provide a new timestamp
if (mem->gyroscope.index == 0) {
mem->gyroscope.index_reset_ticks_previous = mem->gyroscope.index_reset_ticks;
mem->gyroscope.index_reset_ticks = (s64)CoreTiming::GetTicks();
mem->gyroscope.index_reset_ticks = (s64)system.CoreTiming().GetTicks();
}
event_gyroscope->Signal();
// Reschedule recurrent event
CoreTiming::ScheduleEvent(gyroscope_update_ticks - cycles_late, gyroscope_update_event);
system.CoreTiming().ScheduleEvent(gyroscope_update_ticks - cycles_late, gyroscope_update_event);
}
void Module::Interface::GetIPCHandles(Kernel::HLERequestContext& ctx) {
@ -257,7 +258,8 @@ void Module::Interface::EnableAccelerometer(Kernel::HLERequestContext& ctx) {
// Schedules the accelerometer update event if the accelerometer was just enabled
if (hid->enable_accelerometer_count == 1) {
CoreTiming::ScheduleEvent(accelerometer_update_ticks, hid->accelerometer_update_event);
hid->system.CoreTiming().ScheduleEvent(accelerometer_update_ticks,
hid->accelerometer_update_event);
}
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
@ -273,7 +275,7 @@ void Module::Interface::DisableAccelerometer(Kernel::HLERequestContext& ctx) {
// Unschedules the accelerometer update event if the accelerometer was just disabled
if (hid->enable_accelerometer_count == 0) {
CoreTiming::UnscheduleEvent(hid->accelerometer_update_event, 0);
hid->system.CoreTiming().UnscheduleEvent(hid->accelerometer_update_event, 0);
}
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
@ -289,7 +291,7 @@ void Module::Interface::EnableGyroscopeLow(Kernel::HLERequestContext& ctx) {
// Schedules the gyroscope update event if the gyroscope was just enabled
if (hid->enable_gyroscope_count == 1) {
CoreTiming::ScheduleEvent(gyroscope_update_ticks, hid->gyroscope_update_event);
hid->system.CoreTiming().ScheduleEvent(gyroscope_update_ticks, hid->gyroscope_update_event);
}
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
@ -305,7 +307,7 @@ void Module::Interface::DisableGyroscopeLow(Kernel::HLERequestContext& ctx) {
// Unschedules the gyroscope update event if the gyroscope was just disabled
if (hid->enable_gyroscope_count == 0) {
CoreTiming::UnscheduleEvent(hid->gyroscope_update_event, 0);
hid->system.CoreTiming().UnscheduleEvent(hid->gyroscope_update_event, 0);
}
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
@ -371,19 +373,21 @@ Module::Module(Core::System& system) : system(system) {
event_debug_pad = system.Kernel().CreateEvent(ResetType::OneShot, "HID:EventDebugPad");
// Register update callbacks
Core::Timing& timing = system.CoreTiming();
pad_update_event =
CoreTiming::RegisterEvent("HID::UpdatePadCallback", [this](u64 userdata, s64 cycles_late) {
timing.RegisterEvent("HID::UpdatePadCallback", [this](u64 userdata, s64 cycles_late) {
UpdatePadCallback(userdata, cycles_late);
});
accelerometer_update_event = CoreTiming::RegisterEvent(
accelerometer_update_event = timing.RegisterEvent(
"HID::UpdateAccelerometerCallback", [this](u64 userdata, s64 cycles_late) {
UpdateAccelerometerCallback(userdata, cycles_late);
});
gyroscope_update_event = CoreTiming::RegisterEvent(
"HID::UpdateGyroscopeCallback",
[this](u64 userdata, s64 cycles_late) { UpdateGyroscopeCallback(userdata, cycles_late); });
gyroscope_update_event =
timing.RegisterEvent("HID::UpdateGyroscopeCallback", [this](u64 userdata, s64 cycles_late) {
UpdateGyroscopeCallback(userdata, cycles_late);
});
CoreTiming::ScheduleEvent(pad_update_ticks, pad_update_event);
timing.ScheduleEvent(pad_update_ticks, pad_update_event);
}
void Module::ReloadInputDevices() {

View File

@ -27,8 +27,8 @@ class Event;
class SharedMemory;
} // namespace Kernel
namespace CoreTiming {
struct EventType;
namespace Core {
struct TimingEventType;
};
namespace Service::HID {
@ -325,9 +325,9 @@ private:
int enable_accelerometer_count = 0; // positive means enabled
int enable_gyroscope_count = 0; // positive means enabled
CoreTiming::EventType* pad_update_event;
CoreTiming::EventType* accelerometer_update_event;
CoreTiming::EventType* gyroscope_update_event;
Core::TimingEventType* pad_update_event;
Core::TimingEventType* accelerometer_update_event;
Core::TimingEventType* gyroscope_update_event;
std::atomic<bool> is_device_reload_pending{true};
std::array<std::unique_ptr<Input::ButtonDevice>, Settings::NativeButton::NUM_BUTTONS_HID>

View File

@ -4,6 +4,7 @@
#include "common/alignment.h"
#include "common/string_util.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/service/ir/extra_hid.h"
#include "core/movie.h"
@ -144,11 +145,11 @@ ExtraHID::ExtraHID(SendFunc send_func) : IRDevice(send_func) {
0x65,
}};
hid_polling_callback_id =
CoreTiming::RegisterEvent("ExtraHID::SendHIDStatus", [this](u64, s64 cycles_late) {
hid_polling_callback_id = Core::System::GetInstance().CoreTiming().RegisterEvent(
"ExtraHID::SendHIDStatus", [this](u64, s64 cycles_late) {
SendHIDStatus();
CoreTiming::ScheduleEvent(msToCycles(hid_period) - cycles_late,
hid_polling_callback_id);
Core::System::GetInstance().CoreTiming().ScheduleEvent(
msToCycles(hid_period) - cycles_late, hid_polling_callback_id);
});
}
@ -159,7 +160,7 @@ ExtraHID::~ExtraHID() {
void ExtraHID::OnConnect() {}
void ExtraHID::OnDisconnect() {
CoreTiming::UnscheduleEvent(hid_polling_callback_id, 0);
Core::System::GetInstance().CoreTiming().UnscheduleEvent(hid_polling_callback_id, 0);
}
void ExtraHID::HandleConfigureHIDPollingRequest(const std::vector<u8>& request) {
@ -170,9 +171,10 @@ void ExtraHID::HandleConfigureHIDPollingRequest(const std::vector<u8>& request)
}
// Change HID input polling interval
CoreTiming::UnscheduleEvent(hid_polling_callback_id, 0);
Core::System::GetInstance().CoreTiming().UnscheduleEvent(hid_polling_callback_id, 0);
hid_period = request[1];
CoreTiming::ScheduleEvent(msToCycles(hid_period), hid_polling_callback_id);
Core::System::GetInstance().CoreTiming().ScheduleEvent(msToCycles(hid_period),
hid_polling_callback_id);
}
void ExtraHID::HandleReadCalibrationDataRequest(const std::vector<u8>& request_buf) {

View File

@ -11,9 +11,9 @@
#include "core/frontend/input.h"
#include "core/hle/service/ir/ir_user.h"
namespace CoreTiming {
struct EventType;
} // namespace CoreTiming
namespace Core {
struct TimingEventType;
} // namespace Core
namespace Service::IR {
@ -57,7 +57,7 @@ private:
void LoadInputDevices();
u8 hid_period;
CoreTiming::EventType* hid_polling_callback_id;
Core::TimingEventType* hid_polling_callback_id;
std::array<u8, 0x40> calibration_data;
std::unique_ptr<Input::ButtonDevice> zl;
std::unique_ptr<Input::ButtonDevice> zr;

View File

@ -100,13 +100,13 @@ void IR_RST::UpdateCallback(u64 userdata, s64 cycles_late) {
// If we just updated index 0, provide a new timestamp
if (mem->index == 0) {
mem->index_reset_ticks_previous = mem->index_reset_ticks;
mem->index_reset_ticks = CoreTiming::GetTicks();
mem->index_reset_ticks = system.CoreTiming().GetTicks();
}
update_event->Signal();
// Reschedule recurrent event
CoreTiming::ScheduleEvent(msToCycles(update_period) - cycles_late, update_callback_id);
system.CoreTiming().ScheduleEvent(msToCycles(update_period) - cycles_late, update_callback_id);
}
void IR_RST::GetHandles(Kernel::HLERequestContext& ctx) {
@ -126,7 +126,7 @@ void IR_RST::Initialize(Kernel::HLERequestContext& ctx) {
next_pad_index = 0;
is_device_reload_pending.store(true);
CoreTiming::ScheduleEvent(msToCycles(update_period), update_callback_id);
system.CoreTiming().ScheduleEvent(msToCycles(update_period), update_callback_id);
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
rb.Push(RESULT_SUCCESS);
@ -137,7 +137,7 @@ void IR_RST::Initialize(Kernel::HLERequestContext& ctx) {
void IR_RST::Shutdown(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x03, 0, 0);
CoreTiming::UnscheduleEvent(update_callback_id, 0);
system.CoreTiming().UnscheduleEvent(update_callback_id, 0);
UnloadInputDevices();
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
@ -145,7 +145,7 @@ void IR_RST::Shutdown(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_IR, "called");
}
IR_RST::IR_RST(Core::System& system) : ServiceFramework("ir:rst", 1) {
IR_RST::IR_RST(Core::System& system) : ServiceFramework("ir:rst", 1), system(system) {
using namespace Kernel;
// Note: these two kernel objects are even available before Initialize service function is
// called.
@ -154,10 +154,9 @@ IR_RST::IR_RST(Core::System& system) : ServiceFramework("ir:rst", 1) {
MemoryRegion::BASE, "IRRST:SharedMemory");
update_event = system.Kernel().CreateEvent(ResetType::OneShot, "IRRST:UpdateEvent");
update_callback_id =
CoreTiming::RegisterEvent("IRRST:UpdateCallBack", [this](u64 userdata, s64 cycles_late) {
UpdateCallback(userdata, cycles_late);
});
update_callback_id = system.CoreTiming().RegisterEvent(
"IRRST:UpdateCallBack",
[this](u64 userdata, s64 cycles_late) { UpdateCallback(userdata, cycles_late); });
static const FunctionInfo functions[] = {
{0x00010000, &IR_RST::GetHandles, "GetHandles"},

View File

@ -18,8 +18,8 @@ class Event;
class SharedMemory;
} // namespace Kernel
namespace CoreTiming {
struct EventType;
namespace Core {
struct TimingEventType;
};
namespace Service::IR {
@ -77,10 +77,11 @@ private:
void UnloadInputDevices();
void UpdateCallback(u64 userdata, s64 cycles_late);
Core::System& system;
Kernel::SharedPtr<Kernel::Event> update_event;
Kernel::SharedPtr<Kernel::SharedMemory> shared_memory;
u32 next_pad_index{0};
CoreTiming::EventType* update_callback_id;
Core::TimingEventType* update_callback_id;
std::unique_ptr<Input::ButtonDevice> zl_button;
std::unique_ptr<Input::ButtonDevice> zr_button;
std::unique_ptr<Input::AnalogDevice> c_stick;

View File

@ -14,10 +14,6 @@ class Event;
class SharedMemory;
} // namespace Kernel
namespace CoreTiming {
struct EventType;
};
namespace Service::IR {
class BufferManager;

View File

@ -88,7 +88,7 @@ struct Node {
static std::map<MacAddress, Node> node_map;
// Event that will generate and send the 802.11 beacon frames.
static CoreTiming::EventType* beacon_broadcast_event;
static Core::TimingEventType* beacon_broadcast_event;
// Callback identifier for the OnWifiPacketReceived event.
static Network::RoomMember::CallbackHandle<Network::WifiPacket> wifi_packet_received;
@ -955,7 +955,7 @@ void NWM_UDS::BeginHostingNetwork(Kernel::HLERequestContext& ctx) {
connection_status_event->Signal();
// Start broadcasting the network, send a beacon frame every 102.4ms.
CoreTiming::ScheduleEvent(msToCycles(DefaultBeaconInterval * MillisecondsPerTU),
system.CoreTiming().ScheduleEvent(msToCycles(DefaultBeaconInterval * MillisecondsPerTU),
beacon_broadcast_event, 0);
LOG_DEBUG(Service_NWM, "An UDS network has been created.");
@ -976,7 +976,7 @@ void NWM_UDS::DestroyNetwork(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x08, 0, 0);
// Unschedule the beacon broadcast event.
CoreTiming::UnscheduleEvent(beacon_broadcast_event, 0);
system.CoreTiming().UnscheduleEvent(beacon_broadcast_event, 0);
// Only a host can destroy
std::lock_guard<std::mutex> lock(connection_status_mutex);
@ -1336,7 +1336,7 @@ void NWM_UDS::DecryptBeaconData(Kernel::HLERequestContext& ctx) {
}
// Sends a 802.11 beacon frame with information about the current network.
static void BeaconBroadcastCallback(u64 userdata, s64 cycles_late) {
void NWM_UDS::BeaconBroadcastCallback(u64 userdata, s64 cycles_late) {
// Don't do anything if we're not actually hosting a network
if (connection_status.status != static_cast<u32>(NetworkStatus::ConnectedAsHost))
return;
@ -1353,7 +1353,8 @@ static void BeaconBroadcastCallback(u64 userdata, s64 cycles_late) {
SendPacket(packet);
// Start broadcasting the network, send a beacon frame every 102.4ms.
CoreTiming::ScheduleEvent(msToCycles(DefaultBeaconInterval * MillisecondsPerTU) - cycles_late,
system.CoreTiming().ScheduleEvent(msToCycles(DefaultBeaconInterval * MillisecondsPerTU) -
cycles_late,
beacon_broadcast_event, 0);
}
@ -1394,8 +1395,9 @@ NWM_UDS::NWM_UDS(Core::System& system) : ServiceFramework("nwm::UDS"), system(sy
RegisterHandlers(functions);
beacon_broadcast_event =
CoreTiming::RegisterEvent("UDS::BeaconBroadcastCallback", BeaconBroadcastCallback);
beacon_broadcast_event = system.CoreTiming().RegisterEvent(
"UDS::BeaconBroadcastCallback",
[this](u64 userdata, s64 cycles_late) { BeaconBroadcastCallback(userdata, cycles_late); });
CryptoPP::AutoSeededRandomPool rng;
auto mac = SharedPage::DefaultMac;
@ -1428,7 +1430,7 @@ NWM_UDS::~NWM_UDS() {
if (auto room_member = Network::GetRoomMember().lock())
room_member->Unbind(wifi_packet_received);
CoreTiming::UnscheduleEvent(beacon_broadcast_event, 0);
system.CoreTiming().UnscheduleEvent(beacon_broadcast_event, 0);
}
} // namespace Service::NWM

View File

@ -352,6 +352,8 @@ private:
* 2, 3: output buffer return descriptor & ptr
*/
void DecryptBeaconData(Kernel::HLERequestContext& ctx);
void BeaconBroadcastCallback(u64 userdata, s64 cycles_late);
};
} // namespace Service::NWM

View File

@ -31,7 +31,7 @@ Regs g_regs;
/// 268MHz CPU clocks / 60Hz frames per second
const u64 frame_ticks = static_cast<u64>(BASE_CLOCK_RATE_ARM11 / SCREEN_REFRESH_RATE);
/// Event id for CoreTiming
static CoreTiming::EventType* vblank_event;
static Core::TimingEventType* vblank_event;
template <typename T>
inline void Read(T& var, const u32 raw_addr) {
@ -522,7 +522,7 @@ static void VBlankCallback(u64 userdata, s64 cycles_late) {
Service::GSP::SignalInterrupt(Service::GSP::InterruptId::PDC1);
// Reschedule recurrent event
CoreTiming::ScheduleEvent(frame_ticks - cycles_late, vblank_event);
Core::System::GetInstance().CoreTiming().ScheduleEvent(frame_ticks - cycles_late, vblank_event);
}
/// Initialize hardware
@ -555,8 +555,9 @@ void Init() {
framebuffer_sub.color_format.Assign(Regs::PixelFormat::RGB8);
framebuffer_sub.active_fb = 0;
vblank_event = CoreTiming::RegisterEvent("GPU::VBlankCallback", VBlankCallback);
CoreTiming::ScheduleEvent(frame_ticks, vblank_event);
Core::Timing& timing = Core::System::GetInstance().CoreTiming();
vblank_event = timing.RegisterEvent("GPU::VBlankCallback", VBlankCallback);
timing.ScheduleEvent(frame_ticks, vblank_event);
LOG_DEBUG(HW_GPU, "initialized OK");
}

View File

@ -16,10 +16,10 @@ static Memory::PageTable* page_table = nullptr;
TestEnvironment::TestEnvironment(bool mutable_memory_)
: mutable_memory(mutable_memory_), test_memory(std::make_shared<TestMemory>(this)) {
CoreTiming::Init();
// HACK: some memory functions are currently referring kernel from the global instance,
// so we need to create the kernel object there.
// Change this when all global states are eliminated.
Core::System::GetInstance().timing = std::make_unique<Core::Timing>();
Core::System::GetInstance().kernel = std::make_unique<Kernel::KernelSystem>(0);
kernel = Core::System::GetInstance().kernel.get();
@ -38,8 +38,6 @@ TestEnvironment::TestEnvironment(bool mutable_memory_)
TestEnvironment::~TestEnvironment() {
Memory::UnmapRegion(*page_table, 0x80000000, 0x80000000);
Memory::UnmapRegion(*page_table, 0x00000000, 0x80000000);
CoreTiming::Shutdown();
}
void TestEnvironment::SetMemory64(VAddr vaddr, u64 value) {

View File

@ -28,100 +28,90 @@ void CallbackTemplate(u64 userdata, s64 cycles_late) {
REQUIRE(lateness == cycles_late);
}
class ScopeInit final {
public:
ScopeInit() {
CoreTiming::Init();
}
~ScopeInit() {
CoreTiming::Shutdown();
}
};
static void AdvanceAndCheck(u32 idx, int downcount, int expected_lateness = 0,
static void AdvanceAndCheck(Core::Timing& timing, u32 idx, int downcount, int expected_lateness = 0,
int cpu_downcount = 0) {
callbacks_ran_flags = 0;
expected_callback = CB_IDS[idx];
lateness = expected_lateness;
CoreTiming::AddTicks(CoreTiming::GetDowncount() -
timing.AddTicks(timing.GetDowncount() -
cpu_downcount); // Pretend we executed X cycles of instructions.
CoreTiming::Advance();
timing.Advance();
REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags);
REQUIRE(downcount == CoreTiming::GetDowncount());
REQUIRE(downcount == timing.GetDowncount());
}
TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
ScopeInit guard;
Core::Timing timing;
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>);
CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>);
Core::TimingEventType* cb_a = timing.RegisterEvent("callbackA", CallbackTemplate<0>);
Core::TimingEventType* cb_b = timing.RegisterEvent("callbackB", CallbackTemplate<1>);
Core::TimingEventType* cb_c = timing.RegisterEvent("callbackC", CallbackTemplate<2>);
Core::TimingEventType* cb_d = timing.RegisterEvent("callbackD", CallbackTemplate<3>);
Core::TimingEventType* cb_e = timing.RegisterEvent("callbackE", CallbackTemplate<4>);
// Enter slice 0
CoreTiming::Advance();
timing.Advance();
// D -> B -> C -> A -> E
CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]);
REQUIRE(1000 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEvent(500, cb_b, CB_IDS[1]);
REQUIRE(500 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEvent(800, cb_c, CB_IDS[2]);
REQUIRE(500 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEvent(100, cb_d, CB_IDS[3]);
REQUIRE(100 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEvent(1200, cb_e, CB_IDS[4]);
REQUIRE(100 == CoreTiming::GetDowncount());
timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
REQUIRE(1000 == timing.GetDowncount());
timing.ScheduleEvent(500, cb_b, CB_IDS[1]);
REQUIRE(500 == timing.GetDowncount());
timing.ScheduleEvent(800, cb_c, CB_IDS[2]);
REQUIRE(500 == timing.GetDowncount());
timing.ScheduleEvent(100, cb_d, CB_IDS[3]);
REQUIRE(100 == timing.GetDowncount());
timing.ScheduleEvent(1200, cb_e, CB_IDS[4]);
REQUIRE(100 == timing.GetDowncount());
AdvanceAndCheck(3, 400);
AdvanceAndCheck(1, 300);
AdvanceAndCheck(2, 200);
AdvanceAndCheck(0, 200);
AdvanceAndCheck(4, MAX_SLICE_LENGTH);
AdvanceAndCheck(timing, 3, 400);
AdvanceAndCheck(timing, 1, 300);
AdvanceAndCheck(timing, 2, 200);
AdvanceAndCheck(timing, 0, 200);
AdvanceAndCheck(timing, 4, MAX_SLICE_LENGTH);
}
TEST_CASE("CoreTiming[Threadsave]", "[core]") {
ScopeInit guard;
Core::Timing timing;
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>);
CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>);
Core::TimingEventType* cb_a = timing.RegisterEvent("callbackA", CallbackTemplate<0>);
Core::TimingEventType* cb_b = timing.RegisterEvent("callbackB", CallbackTemplate<1>);
Core::TimingEventType* cb_c = timing.RegisterEvent("callbackC", CallbackTemplate<2>);
Core::TimingEventType* cb_d = timing.RegisterEvent("callbackD", CallbackTemplate<3>);
Core::TimingEventType* cb_e = timing.RegisterEvent("callbackE", CallbackTemplate<4>);
// Enter slice 0
CoreTiming::Advance();
timing.Advance();
// D -> B -> C -> A -> E
CoreTiming::ScheduleEventThreadsafe(1000, cb_a, CB_IDS[0]);
timing.ScheduleEventThreadsafe(1000, cb_a, CB_IDS[0]);
// Manually force since ScheduleEventThreadsafe doesn't call it
CoreTiming::ForceExceptionCheck(1000);
REQUIRE(1000 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEventThreadsafe(500, cb_b, CB_IDS[1]);
timing.ForceExceptionCheck(1000);
REQUIRE(1000 == timing.GetDowncount());
timing.ScheduleEventThreadsafe(500, cb_b, CB_IDS[1]);
// Manually force since ScheduleEventThreadsafe doesn't call it
CoreTiming::ForceExceptionCheck(500);
REQUIRE(500 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEventThreadsafe(800, cb_c, CB_IDS[2]);
timing.ForceExceptionCheck(500);
REQUIRE(500 == timing.GetDowncount());
timing.ScheduleEventThreadsafe(800, cb_c, CB_IDS[2]);
// Manually force since ScheduleEventThreadsafe doesn't call it
CoreTiming::ForceExceptionCheck(800);
REQUIRE(500 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEventThreadsafe(100, cb_d, CB_IDS[3]);
timing.ForceExceptionCheck(800);
REQUIRE(500 == timing.GetDowncount());
timing.ScheduleEventThreadsafe(100, cb_d, CB_IDS[3]);
// Manually force since ScheduleEventThreadsafe doesn't call it
CoreTiming::ForceExceptionCheck(100);
REQUIRE(100 == CoreTiming::GetDowncount());
CoreTiming::ScheduleEventThreadsafe(1200, cb_e, CB_IDS[4]);
timing.ForceExceptionCheck(100);
REQUIRE(100 == timing.GetDowncount());
timing.ScheduleEventThreadsafe(1200, cb_e, CB_IDS[4]);
// Manually force since ScheduleEventThreadsafe doesn't call it
CoreTiming::ForceExceptionCheck(1200);
REQUIRE(100 == CoreTiming::GetDowncount());
timing.ForceExceptionCheck(1200);
REQUIRE(100 == timing.GetDowncount());
AdvanceAndCheck(3, 400);
AdvanceAndCheck(1, 300);
AdvanceAndCheck(2, 200);
AdvanceAndCheck(0, 200);
AdvanceAndCheck(4, MAX_SLICE_LENGTH);
AdvanceAndCheck(timing, 3, 400);
AdvanceAndCheck(timing, 1, 300);
AdvanceAndCheck(timing, 2, 200);
AdvanceAndCheck(timing, 0, 200);
AdvanceAndCheck(timing, 4, MAX_SLICE_LENGTH);
}
namespace SharedSlotTest {
@ -141,97 +131,98 @@ void FifoCallback(u64 userdata, s64 cycles_late) {
TEST_CASE("CoreTiming[SharedSlot]", "[core]") {
using namespace SharedSlotTest;
ScopeInit guard;
Core::Timing timing;
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", FifoCallback<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", FifoCallback<1>);
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", FifoCallback<2>);
CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", FifoCallback<3>);
CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", FifoCallback<4>);
Core::TimingEventType* cb_a = timing.RegisterEvent("callbackA", FifoCallback<0>);
Core::TimingEventType* cb_b = timing.RegisterEvent("callbackB", FifoCallback<1>);
Core::TimingEventType* cb_c = timing.RegisterEvent("callbackC", FifoCallback<2>);
Core::TimingEventType* cb_d = timing.RegisterEvent("callbackD", FifoCallback<3>);
Core::TimingEventType* cb_e = timing.RegisterEvent("callbackE", FifoCallback<4>);
CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]);
CoreTiming::ScheduleEvent(1000, cb_c, CB_IDS[2]);
CoreTiming::ScheduleEvent(1000, cb_d, CB_IDS[3]);
CoreTiming::ScheduleEvent(1000, cb_e, CB_IDS[4]);
timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
timing.ScheduleEvent(1000, cb_b, CB_IDS[1]);
timing.ScheduleEvent(1000, cb_c, CB_IDS[2]);
timing.ScheduleEvent(1000, cb_d, CB_IDS[3]);
timing.ScheduleEvent(1000, cb_e, CB_IDS[4]);
// Enter slice 0
CoreTiming::Advance();
REQUIRE(1000 == CoreTiming::GetDowncount());
timing.Advance();
REQUIRE(1000 == timing.GetDowncount());
callbacks_ran_flags = 0;
counter = 0;
lateness = 0;
CoreTiming::AddTicks(CoreTiming::GetDowncount());
CoreTiming::Advance();
REQUIRE(MAX_SLICE_LENGTH == CoreTiming::GetDowncount());
timing.AddTicks(timing.GetDowncount());
timing.Advance();
REQUIRE(MAX_SLICE_LENGTH == timing.GetDowncount());
REQUIRE(0x1FULL == callbacks_ran_flags.to_ullong());
}
TEST_CASE("CoreTiming[PredictableLateness]", "[core]") {
ScopeInit guard;
Core::Timing timing;
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
Core::TimingEventType* cb_a = timing.RegisterEvent("callbackA", CallbackTemplate<0>);
Core::TimingEventType* cb_b = timing.RegisterEvent("callbackB", CallbackTemplate<1>);
// Enter slice 0
CoreTiming::Advance();
timing.Advance();
CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
timing.ScheduleEvent(200, cb_b, CB_IDS[1]);
AdvanceAndCheck(0, 90, 10, -10); // (100 - 10)
AdvanceAndCheck(1, MAX_SLICE_LENGTH, 50, -50);
AdvanceAndCheck(timing, 0, 90, 10, -10); // (100 - 10)
AdvanceAndCheck(timing, 1, MAX_SLICE_LENGTH, 50, -50);
}
namespace ChainSchedulingTest {
static int reschedules = 0;
static void RescheduleCallback(u64 userdata, s64 cycles_late) {
static void RescheduleCallback(Core::Timing& timing, u64 userdata, s64 cycles_late) {
--reschedules;
REQUIRE(reschedules >= 0);
REQUIRE(lateness == cycles_late);
if (reschedules > 0)
CoreTiming::ScheduleEvent(1000, reinterpret_cast<CoreTiming::EventType*>(userdata),
userdata);
timing.ScheduleEvent(1000, reinterpret_cast<Core::TimingEventType*>(userdata), userdata);
}
} // namespace ChainSchedulingTest
TEST_CASE("CoreTiming[ChainScheduling]", "[core]") {
using namespace ChainSchedulingTest;
ScopeInit guard;
Core::Timing timing;
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
CoreTiming::EventType* cb_rs =
CoreTiming::RegisterEvent("callbackReschedule", RescheduleCallback);
Core::TimingEventType* cb_a = timing.RegisterEvent("callbackA", CallbackTemplate<0>);
Core::TimingEventType* cb_b = timing.RegisterEvent("callbackB", CallbackTemplate<1>);
Core::TimingEventType* cb_c = timing.RegisterEvent("callbackC", CallbackTemplate<2>);
Core::TimingEventType* cb_rs =
timing.RegisterEvent("callbackReschedule", [&timing](u64 userdata, s64 cycles_late) {
RescheduleCallback(timing, userdata, cycles_late);
});
// Enter slice 0
CoreTiming::Advance();
timing.Advance();
CoreTiming::ScheduleEvent(800, cb_a, CB_IDS[0]);
CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]);
CoreTiming::ScheduleEvent(2200, cb_c, CB_IDS[2]);
CoreTiming::ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs));
REQUIRE(800 == CoreTiming::GetDowncount());
timing.ScheduleEvent(800, cb_a, CB_IDS[0]);
timing.ScheduleEvent(1000, cb_b, CB_IDS[1]);
timing.ScheduleEvent(2200, cb_c, CB_IDS[2]);
timing.ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs));
REQUIRE(800 == timing.GetDowncount());
reschedules = 3;
AdvanceAndCheck(0, 200); // cb_a
AdvanceAndCheck(1, 1000); // cb_b, cb_rs
AdvanceAndCheck(timing, 0, 200); // cb_a
AdvanceAndCheck(timing, 1, 1000); // cb_b, cb_rs
REQUIRE(2 == reschedules);
CoreTiming::AddTicks(CoreTiming::GetDowncount());
CoreTiming::Advance(); // cb_rs
timing.AddTicks(timing.GetDowncount());
timing.Advance(); // cb_rs
REQUIRE(1 == reschedules);
REQUIRE(200 == CoreTiming::GetDowncount());
REQUIRE(200 == timing.GetDowncount());
AdvanceAndCheck(2, 800); // cb_c
AdvanceAndCheck(timing, 2, 800); // cb_c
CoreTiming::AddTicks(CoreTiming::GetDowncount());
CoreTiming::Advance(); // cb_rs
timing.AddTicks(timing.GetDowncount());
timing.Advance(); // cb_rs
REQUIRE(0 == reschedules);
REQUIRE(MAX_SLICE_LENGTH == CoreTiming::GetDowncount());
REQUIRE(MAX_SLICE_LENGTH == timing.GetDowncount());
}

View File

@ -3,6 +3,7 @@
// Refer to the license.txt file included.
#include <catch2/catch.hpp>
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/ipc.h"
#include "core/hle/kernel/client_port.h"
@ -20,7 +21,8 @@ static SharedPtr<Object> MakeObject(Kernel::KernelSystem& kernel) {
}
TEST_CASE("HLERequestContext::PopulateFromIncomingCommandBuffer", "[core][kernel]") {
CoreTiming::Init();
// HACK: see comments of member timing
Core::System::GetInstance().timing = std::make_unique<Core::Timing>();
Kernel::KernelSystem kernel(0);
auto session = std::get<SharedPtr<ServerSession>>(kernel.CreateSessionPair());
HLERequestContext context(std::move(session));
@ -227,12 +229,11 @@ TEST_CASE("HLERequestContext::PopulateFromIncomingCommandBuffer", "[core][kernel
REQUIRE(process->vm_manager.UnmapRange(target_address_mapped, buffer_mapped->size()) ==
RESULT_SUCCESS);
}
CoreTiming::Shutdown();
}
TEST_CASE("HLERequestContext::WriteToOutgoingCommandBuffer", "[core][kernel]") {
CoreTiming::Init();
// HACK: see comments of member timing
Core::System::GetInstance().timing = std::make_unique<Core::Timing>();
Kernel::KernelSystem kernel(0);
auto session = std::get<SharedPtr<ServerSession>>(kernel.CreateSessionPair());
HLERequestContext context(std::move(session));
@ -369,8 +370,6 @@ TEST_CASE("HLERequestContext::WriteToOutgoingCommandBuffer", "[core][kernel]") {
REQUIRE(process->vm_manager.UnmapRange(target_address, output_buffer->size()) ==
RESULT_SUCCESS);
}
CoreTiming::Shutdown();
}
} // namespace Kernel

View File

@ -3,6 +3,7 @@
// Refer to the license.txt file included.
#include <catch2/catch.hpp>
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h"
@ -10,7 +11,8 @@
#include "core/memory.h"
TEST_CASE("Memory::IsValidVirtualAddress", "[core][memory]") {
CoreTiming::Init();
// HACK: see comments of member timing
Core::System::GetInstance().timing = std::make_unique<Core::Timing>();
Kernel::KernelSystem kernel(0);
SECTION("these regions should not be mapped on an empty process") {
auto process = kernel.CreateProcess(kernel.CreateCodeSet("", 0));
@ -51,6 +53,4 @@ TEST_CASE("Memory::IsValidVirtualAddress", "[core][memory]") {
process->vm_manager.UnmapRange(Memory::CONFIG_MEMORY_VADDR, Memory::CONFIG_MEMORY_SIZE);
CHECK(Memory::IsValidVirtualAddress(*process, Memory::CONFIG_MEMORY_VADDR) == false);
}
CoreTiming::Shutdown();
}

View File

@ -146,7 +146,8 @@ void RendererOpenGL::SwapBuffers() {
render_window.PollEvents();
render_window.SwapBuffers();
Core::System::GetInstance().frame_limiter.DoFrameLimiting(CoreTiming::GetGlobalTimeUs());
Core::System::GetInstance().frame_limiter.DoFrameLimiting(
Core::System::GetInstance().CoreTiming().GetGlobalTimeUs());
Core::System::GetInstance().perf_stats.BeginSystemFrame();
prev_state.Apply();