1
0
Fork 0

Merge pull request #4371 from wwylele/kernel-global-3

Kernel: eliminate global state for threads and timers
This commit is contained in:
Weiyi Wang 2018-10-30 00:36:10 -04:00 committed by GitHub
commit 445538c2cf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 250 additions and 235 deletions

View File

@ -51,7 +51,7 @@ std::size_t WaitTreeItem::Row() const {
} }
std::vector<std::unique_ptr<WaitTreeThread>> WaitTreeItem::MakeThreadItemList() { std::vector<std::unique_ptr<WaitTreeThread>> WaitTreeItem::MakeThreadItemList() {
const auto& threads = Kernel::GetThreadList(); const auto& threads = Core::System::GetInstance().Kernel().GetThreadManager().GetThreadList();
std::vector<std::unique_ptr<WaitTreeThread>> item_list; std::vector<std::unique_ptr<WaitTreeThread>> item_list;
item_list.reserve(threads.size()); item_list.reserve(threads.size());
for (std::size_t i = 0; i < threads.size(); ++i) { for (std::size_t i = 0; i < threads.size(); ++i) {

View File

@ -134,7 +134,8 @@ public:
if (GDBStub::IsConnected()) { if (GDBStub::IsConnected()) {
parent.jit->HaltExecution(); parent.jit->HaltExecution();
parent.SetPC(pc); parent.SetPC(pc);
Kernel::Thread* thread = Kernel::GetCurrentThread(); Kernel::Thread* thread =
Core::System::GetInstance().Kernel().GetThreadManager().GetCurrentThread();
parent.SaveContext(thread->context); parent.SaveContext(thread->context);
GDBStub::Break(); GDBStub::Break();
GDBStub::SendTrap(thread, 5); GDBStub::SendTrap(thread, 5);

View File

@ -604,7 +604,8 @@ void ARMul_State::ServeBreak() {
if (last_bkpt_hit) { if (last_bkpt_hit) {
Reg[15] = last_bkpt.address; Reg[15] = last_bkpt.address;
} }
Kernel::Thread* thread = Kernel::GetCurrentThread(); Kernel::Thread* thread =
Core::System::GetInstance().Kernel().GetThreadManager().GetCurrentThread();
Core::CPU().SaveContext(thread->context); Core::CPU().SaveContext(thread->context);
if (last_bkpt_hit || GDBStub::GetCpuStepFlag()) { if (last_bkpt_hit || GDBStub::GetCpuStepFlag()) {
last_bkpt_hit = false; last_bkpt_hit = false;

View File

@ -59,7 +59,7 @@ System::ResultStatus System::RunLoop(bool tight_loop) {
// If we don't have a currently active thread then don't execute instructions, // If we don't have a currently active thread then don't execute instructions,
// instead advance to the next event and try to yield to the next thread // instead advance to the next event and try to yield to the next thread
if (Kernel::GetCurrentThread() == nullptr) { if (kernel->GetThreadManager().GetCurrentThread() == nullptr) {
LOG_TRACE(Core_ARM11, "Idling"); LOG_TRACE(Core_ARM11, "Idling");
CoreTiming::Idle(); CoreTiming::Idle();
CoreTiming::Advance(); CoreTiming::Advance();
@ -164,7 +164,7 @@ void System::Reschedule() {
} }
reschedule_pending = false; reschedule_pending = false;
Kernel::Reschedule(); kernel->GetThreadManager().Reschedule();
} }
System::ResultStatus System::Init(EmuWindow& emu_window, u32 system_mode) { System::ResultStatus System::Init(EmuWindow& emu_window, u32 system_mode) {

View File

@ -160,7 +160,7 @@ BreakpointMap breakpoints_write;
} // Anonymous namespace } // Anonymous namespace
static Kernel::Thread* FindThreadById(int id) { static Kernel::Thread* FindThreadById(int id) {
const auto& threads = Kernel::GetThreadList(); const auto& threads = Core::System::GetInstance().Kernel().GetThreadManager().GetThreadList();
for (auto& thread : threads) { for (auto& thread : threads) {
if (thread->GetThreadId() == static_cast<u32>(id)) { if (thread->GetThreadId() == static_cast<u32>(id)) {
return thread.get(); return thread.get();
@ -535,7 +535,8 @@ static void HandleQuery() {
SendReply(target_xml); SendReply(target_xml);
} else if (strncmp(query, "fThreadInfo", strlen("fThreadInfo")) == 0) { } else if (strncmp(query, "fThreadInfo", strlen("fThreadInfo")) == 0) {
std::string val = "m"; std::string val = "m";
const auto& threads = Kernel::GetThreadList(); const auto& threads =
Core::System::GetInstance().Kernel().GetThreadManager().GetThreadList();
for (const auto& thread : threads) { for (const auto& thread : threads) {
val += fmt::format("{:x},", thread->GetThreadId()); val += fmt::format("{:x},", thread->GetThreadId());
} }
@ -547,7 +548,8 @@ static void HandleQuery() {
std::string buffer; std::string buffer;
buffer += "l<?xml version=\"1.0\"?>"; buffer += "l<?xml version=\"1.0\"?>";
buffer += "<threads>"; buffer += "<threads>";
const auto& threads = Kernel::GetThreadList(); const auto& threads =
Core::System::GetInstance().Kernel().GetThreadManager().GetThreadList();
for (const auto& thread : threads) { for (const auto& thread : threads) {
buffer += fmt::format(R"*(<thread id="{:x}" name="Thread {:x}"></thread>)*", buffer += fmt::format(R"*(<thread id="{:x}" name="Thread {:x}"></thread>)*",
thread->GetThreadId(), thread->GetThreadId()); thread->GetThreadId(), thread->GetThreadId());

View File

@ -9,27 +9,6 @@
#include "core/hle/kernel/thread.h" #include "core/hle/kernel/thread.h"
#include "core/memory.h" #include "core/memory.h"
namespace Kernel {
/// Offset into command buffer of header
static const int kCommandHeaderOffset = 0x80;
/**
* Returns a pointer to the command buffer in the current thread's TLS
* TODO(Subv): This is not entirely correct, the command buffer should be copied from
* the thread's TLS to an intermediate buffer in kernel memory, and then copied again to
* the service handler process' memory.
* @param offset Optional offset into command buffer
* @param offset Optional offset into command buffer (in bytes)
* @return Pointer to command buffer
*/
inline u32* GetCommandBuffer(const int offset = 0) {
return (u32*)Memory::GetPointer(GetCurrentThread()->GetTLSAddress() + kCommandHeaderOffset +
offset);
}
} // namespace Kernel
namespace IPC { namespace IPC {
/// Size of the command buffer area, in 32-bit words. /// Size of the command buffer area, in 32-bit words.

View File

@ -72,7 +72,7 @@ bool HandleTable::IsValid(Handle handle) const {
SharedPtr<Object> HandleTable::GetGeneric(Handle handle) const { SharedPtr<Object> HandleTable::GetGeneric(Handle handle) const {
if (handle == CurrentThread) { if (handle == CurrentThread) {
return GetCurrentThread(); return kernel.GetThreadManager().GetCurrentThread();
} else if (handle == CurrentProcess) { } else if (handle == CurrentProcess) {
return kernel.GetCurrentProcess(); return kernel.GetCurrentProcess();
} }

View File

@ -124,8 +124,7 @@ private:
/** /**
* Class containing information about an in-flight IPC request being handled by an HLE service * Class containing information about an in-flight IPC request being handled by an HLE service
* implementation. Services should avoid using old global APIs (e.g. Kernel::GetCommandBuffer()) and * implementation.
* when possible use the APIs in this class to service the request.
* *
* HLE handle protocol * HLE handle protocol
* =================== * ===================

View File

@ -21,15 +21,12 @@ KernelSystem::KernelSystem(u32 system_mode) {
Kernel::MemoryInit(system_mode); Kernel::MemoryInit(system_mode);
resource_limits = std::make_unique<ResourceLimitList>(*this); resource_limits = std::make_unique<ResourceLimitList>(*this);
Kernel::ThreadingInit(); thread_manager = std::make_unique<ThreadManager>();
Kernel::TimersInit(); timer_manager = std::make_unique<TimerManager>();
} }
/// Shutdown the kernel /// Shutdown the kernel
KernelSystem::~KernelSystem() { KernelSystem::~KernelSystem() {
Kernel::ThreadingShutdown();
Kernel::TimersShutdown();
Kernel::MemoryShutdown(); Kernel::MemoryShutdown();
} }
@ -53,4 +50,20 @@ void KernelSystem::SetCurrentProcess(SharedPtr<Process> process) {
current_process = std::move(process); current_process = std::move(process);
} }
ThreadManager& KernelSystem::GetThreadManager() {
return *thread_manager;
}
const ThreadManager& KernelSystem::GetThreadManager() const {
return *thread_manager;
}
TimerManager& KernelSystem::GetTimerManager() {
return *timer_manager;
}
const TimerManager& KernelSystem::GetTimerManager() const {
return *timer_manager;
}
} // namespace Kernel } // namespace Kernel

View File

@ -28,6 +28,8 @@ class ClientSession;
class ServerSession; class ServerSession;
class ResourceLimitList; class ResourceLimitList;
class SharedMemory; class SharedMemory;
class ThreadManager;
class TimerManager;
enum class ResetType { enum class ResetType {
OneShot, OneShot,
@ -187,6 +189,12 @@ public:
SharedPtr<Process> GetCurrentProcess() const; SharedPtr<Process> GetCurrentProcess() const;
void SetCurrentProcess(SharedPtr<Process> process); void SetCurrentProcess(SharedPtr<Process> process);
ThreadManager& GetThreadManager();
const ThreadManager& GetThreadManager() const;
TimerManager& GetTimerManager();
const TimerManager& GetTimerManager() const;
private: private:
std::unique_ptr<ResourceLimitList> resource_limits; std::unique_ptr<ResourceLimitList> resource_limits;
std::atomic<u32> next_object_id{0}; std::atomic<u32> next_object_id{0};
@ -199,6 +207,9 @@ private:
std::vector<SharedPtr<Process>> process_list; std::vector<SharedPtr<Process>> process_list;
SharedPtr<Process> current_process; SharedPtr<Process> current_process;
std::unique_ptr<ThreadManager> thread_manager;
std::unique_ptr<TimerManager> timer_manager;
}; };
} // namespace Kernel } // namespace Kernel

View File

@ -36,7 +36,7 @@ SharedPtr<Mutex> KernelSystem::CreateMutex(bool initial_locked, std::string name
// Acquire mutex with current thread if initialized as locked // Acquire mutex with current thread if initialized as locked
if (initial_locked) if (initial_locked)
mutex->Acquire(GetCurrentThread()); mutex->Acquire(thread_manager->GetCurrentThread());
return mutex; return mutex;
} }

View File

@ -145,7 +145,8 @@ static ResultCode ControlMemory(u32* out_addr, u32 operation, u32 addr0, u32 add
} }
static void ExitProcess() { static void ExitProcess() {
SharedPtr<Process> current_process = Core::System::GetInstance().Kernel().GetCurrentProcess(); KernelSystem& kernel = Core::System::GetInstance().Kernel();
SharedPtr<Process> current_process = kernel.GetCurrentProcess();
LOG_INFO(Kernel_SVC, "Process {} exiting", current_process->process_id); LOG_INFO(Kernel_SVC, "Process {} exiting", current_process->process_id);
ASSERT_MSG(current_process->status == ProcessStatus::Running, "Process has already exited"); ASSERT_MSG(current_process->status == ProcessStatus::Running, "Process has already exited");
@ -153,12 +154,12 @@ static void ExitProcess() {
current_process->status = ProcessStatus::Exited; current_process->status = ProcessStatus::Exited;
// Stop all the process threads that are currently waiting for objects. // Stop all the process threads that are currently waiting for objects.
auto& thread_list = GetThreadList(); auto& thread_list = kernel.GetThreadManager().GetThreadList();
for (auto& thread : thread_list) { for (auto& thread : thread_list) {
if (thread->owner_process != current_process) if (thread->owner_process != current_process)
continue; continue;
if (thread == GetCurrentThread()) if (thread == kernel.GetThreadManager().GetCurrentThread())
continue; continue;
// TODO(Subv): When are the other running/ready threads terminated? // TODO(Subv): When are the other running/ready threads terminated?
@ -170,7 +171,7 @@ static void ExitProcess() {
} }
// Kill the current thread // Kill the current thread
GetCurrentThread()->Stop(); kernel.GetThreadManager().GetCurrentThread()->Stop();
Core::System::GetInstance().PrepareReschedule(); Core::System::GetInstance().PrepareReschedule();
} }
@ -254,9 +255,9 @@ static ResultCode ConnectToPort(Handle* out_handle, VAddr port_name_address) {
/// Makes a blocking IPC call to an OS service. /// Makes a blocking IPC call to an OS service.
static ResultCode SendSyncRequest(Handle handle) { static ResultCode SendSyncRequest(Handle handle) {
KernelSystem& kernel = Core::System::GetInstance().Kernel();
SharedPtr<ClientSession> session = SharedPtr<ClientSession> session =
Core::System::GetInstance().Kernel().GetCurrentProcess()->handle_table.Get<ClientSession>( kernel.GetCurrentProcess()->handle_table.Get<ClientSession>(handle);
handle);
if (session == nullptr) { if (session == nullptr) {
return ERR_INVALID_HANDLE; return ERR_INVALID_HANDLE;
} }
@ -265,7 +266,7 @@ static ResultCode SendSyncRequest(Handle handle) {
Core::System::GetInstance().PrepareReschedule(); Core::System::GetInstance().PrepareReschedule();
return session->SendSyncRequest(GetCurrentThread()); return session->SendSyncRequest(kernel.GetThreadManager().GetCurrentThread());
} }
/// Close a handle /// Close a handle
@ -276,10 +277,9 @@ static ResultCode CloseHandle(Handle handle) {
/// Wait for a handle to synchronize, timeout after the specified nanoseconds /// Wait for a handle to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronization1(Handle handle, s64 nano_seconds) { static ResultCode WaitSynchronization1(Handle handle, s64 nano_seconds) {
auto object = KernelSystem& kernel = Core::System::GetInstance().Kernel();
Core::System::GetInstance().Kernel().GetCurrentProcess()->handle_table.Get<WaitObject>( auto object = kernel.GetCurrentProcess()->handle_table.Get<WaitObject>(handle);
handle); Thread* thread = kernel.GetThreadManager().GetCurrentThread();
Thread* thread = GetCurrentThread();
if (object == nullptr) if (object == nullptr)
return ERR_INVALID_HANDLE; return ERR_INVALID_HANDLE;
@ -331,7 +331,8 @@ static ResultCode WaitSynchronization1(Handle handle, s64 nano_seconds) {
/// Wait for the given handles to synchronize, timeout after the specified nanoseconds /// Wait for the given handles to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronizationN(s32* out, VAddr handles_address, s32 handle_count, static ResultCode WaitSynchronizationN(s32* out, VAddr handles_address, s32 handle_count,
bool wait_all, s64 nano_seconds) { bool wait_all, s64 nano_seconds) {
Thread* thread = GetCurrentThread(); KernelSystem& kernel = Core::System::GetInstance().Kernel();
Thread* thread = kernel.GetThreadManager().GetCurrentThread();
if (!Memory::IsValidVirtualAddress(handles_address)) if (!Memory::IsValidVirtualAddress(handles_address))
return ERR_INVALID_POINTER; return ERR_INVALID_POINTER;
@ -349,9 +350,7 @@ static ResultCode WaitSynchronizationN(s32* out, VAddr handles_address, s32 hand
for (int i = 0; i < handle_count; ++i) { for (int i = 0; i < handle_count; ++i) {
Handle handle = Memory::Read32(handles_address + i * sizeof(Handle)); Handle handle = Memory::Read32(handles_address + i * sizeof(Handle));
auto object = auto object = kernel.GetCurrentProcess()->handle_table.Get<WaitObject>(handle);
Core::System::GetInstance().Kernel().GetCurrentProcess()->handle_table.Get<WaitObject>(
handle);
if (object == nullptr) if (object == nullptr)
return ERR_INVALID_HANDLE; return ERR_INVALID_HANDLE;
objects[i] = object; objects[i] = object;
@ -515,7 +514,8 @@ static ResultCode ReplyAndReceive(s32* index, VAddr handles_address, s32 handle_
using ObjectPtr = SharedPtr<WaitObject>; using ObjectPtr = SharedPtr<WaitObject>;
std::vector<ObjectPtr> objects(handle_count); std::vector<ObjectPtr> objects(handle_count);
SharedPtr<Process> current_process = Core::System::GetInstance().Kernel().GetCurrentProcess(); KernelSystem& kernel = Core::System::GetInstance().Kernel();
SharedPtr<Process> current_process = kernel.GetCurrentProcess();
for (int i = 0; i < handle_count; ++i) { for (int i = 0; i < handle_count; ++i) {
Handle handle = Memory::Read32(handles_address + i * sizeof(Handle)); Handle handle = Memory::Read32(handles_address + i * sizeof(Handle));
@ -527,8 +527,9 @@ static ResultCode ReplyAndReceive(s32* index, VAddr handles_address, s32 handle_
// We are also sending a command reply. // We are also sending a command reply.
// Do not send a reply if the command id in the command buffer is 0xFFFF. // Do not send a reply if the command id in the command buffer is 0xFFFF.
u32* cmd_buff = GetCommandBuffer(); Thread* thread = kernel.GetThreadManager().GetCurrentThread();
IPC::Header header{cmd_buff[0]}; u32 cmd_buff_header = Memory::Read32(thread->GetCommandBufferAddress());
IPC::Header header{cmd_buff_header};
if (reply_target != 0 && header.command_id != 0xFFFF) { if (reply_target != 0 && header.command_id != 0xFFFF) {
auto session = current_process->handle_table.Get<ServerSession>(reply_target); auto session = current_process->handle_table.Get<ServerSession>(reply_target);
if (session == nullptr) if (session == nullptr)
@ -546,11 +547,11 @@ static ResultCode ReplyAndReceive(s32* index, VAddr handles_address, s32 handle_
return ERR_SESSION_CLOSED_BY_REMOTE; return ERR_SESSION_CLOSED_BY_REMOTE;
} }
VAddr source_address = GetCurrentThread()->GetCommandBufferAddress(); VAddr source_address = thread->GetCommandBufferAddress();
VAddr target_address = request_thread->GetCommandBufferAddress(); VAddr target_address = request_thread->GetCommandBufferAddress();
ResultCode translation_result = TranslateCommandBuffer( ResultCode translation_result =
Kernel::GetCurrentThread(), request_thread, source_address, target_address, true); TranslateCommandBuffer(thread, request_thread, source_address, target_address, true);
// Note: The real kernel seems to always panic if the Server->Client buffer translation // Note: The real kernel seems to always panic if the Server->Client buffer translation
// fails for whatever reason. // fails for whatever reason.
@ -570,8 +571,6 @@ static ResultCode ReplyAndReceive(s32* index, VAddr handles_address, s32 handle_
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
auto thread = GetCurrentThread();
// Find the first object that is acquirable in the provided list of objects // Find the first object that is acquirable in the provided list of objects
auto itr = std::find_if(objects.begin(), objects.end(), [thread](const ObjectPtr& object) { auto itr = std::find_if(objects.begin(), objects.end(), [thread](const ObjectPtr& object) {
return !object->ShouldWait(thread); return !object->ShouldWait(thread);
@ -587,7 +586,7 @@ static ResultCode ReplyAndReceive(s32* index, VAddr handles_address, s32 handle_
return RESULT_SUCCESS; return RESULT_SUCCESS;
auto server_session = static_cast<ServerSession*>(object); auto server_session = static_cast<ServerSession*>(object);
return ReceiveIPCRequest(server_session, GetCurrentThread()); return ReceiveIPCRequest(server_session, thread);
} }
// No objects were ready to be acquired, prepare to suspend the thread. // No objects were ready to be acquired, prepare to suspend the thread.
@ -644,14 +643,16 @@ static ResultCode ArbitrateAddress(Handle handle, u32 address, u32 type, u32 val
LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}, address=0x{:08X}, type=0x{:08X}, value=0x{:08X}", LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}, address=0x{:08X}, type=0x{:08X}, value=0x{:08X}",
handle, address, type, value); handle, address, type, value);
KernelSystem& kernel = Core::System::GetInstance().Kernel();
SharedPtr<AddressArbiter> arbiter = SharedPtr<AddressArbiter> arbiter =
Core::System::GetInstance().Kernel().GetCurrentProcess()->handle_table.Get<AddressArbiter>( kernel.GetCurrentProcess()->handle_table.Get<AddressArbiter>(handle);
handle);
if (arbiter == nullptr) if (arbiter == nullptr)
return ERR_INVALID_HANDLE; return ERR_INVALID_HANDLE;
auto res = arbiter->ArbitrateAddress(GetCurrentThread(), static_cast<ArbitrationType>(type), auto res =
address, value, nanoseconds); arbiter->ArbitrateAddress(kernel.GetThreadManager().GetCurrentThread(),
static_cast<ArbitrationType>(type), address, value, nanoseconds);
// TODO(Subv): Identify in which specific cases this call should cause a reschedule. // TODO(Subv): Identify in which specific cases this call should cause a reschedule.
Core::System::GetInstance().PrepareReschedule(); Core::System::GetInstance().PrepareReschedule();
@ -808,7 +809,7 @@ static ResultCode CreateThread(Handle* out_handle, u32 priority, u32 entry_point
static void ExitThread() { static void ExitThread() {
LOG_TRACE(Kernel_SVC, "called, pc=0x{:08X}", Core::CPU().GetPC()); LOG_TRACE(Kernel_SVC, "called, pc=0x{:08X}", Core::CPU().GetPC());
ExitCurrentThread(); Core::System::GetInstance().Kernel().GetThreadManager().ExitCurrentThread();
Core::System::GetInstance().PrepareReschedule(); Core::System::GetInstance().PrepareReschedule();
} }
@ -870,12 +871,13 @@ static ResultCode CreateMutex(Handle* out_handle, u32 initial_locked) {
static ResultCode ReleaseMutex(Handle handle) { static ResultCode ReleaseMutex(Handle handle) {
LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}", handle); LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}", handle);
SharedPtr<Mutex> mutex = KernelSystem& kernel = Core::System::GetInstance().Kernel();
Core::System::GetInstance().Kernel().GetCurrentProcess()->handle_table.Get<Mutex>(handle);
SharedPtr<Mutex> mutex = kernel.GetCurrentProcess()->handle_table.Get<Mutex>(handle);
if (mutex == nullptr) if (mutex == nullptr)
return ERR_INVALID_HANDLE; return ERR_INVALID_HANDLE;
return mutex->Release(GetCurrentThread()); return mutex->Release(kernel.GetThreadManager().GetCurrentThread());
} }
/// Get the ID of the specified process /// Get the ID of the specified process
@ -1090,16 +1092,19 @@ static ResultCode CancelTimer(Handle handle) {
static void SleepThread(s64 nanoseconds) { static void SleepThread(s64 nanoseconds) {
LOG_TRACE(Kernel_SVC, "called nanoseconds={}", nanoseconds); LOG_TRACE(Kernel_SVC, "called nanoseconds={}", nanoseconds);
KernelSystem& kernel = Core::System::GetInstance().Kernel();
ThreadManager& thread_manager = kernel.GetThreadManager();
// Don't attempt to yield execution if there are no available threads to run, // Don't attempt to yield execution if there are no available threads to run,
// this way we avoid a useless reschedule to the idle thread. // this way we avoid a useless reschedule to the idle thread.
if (nanoseconds == 0 && !HaveReadyThreads()) if (nanoseconds == 0 && !thread_manager.HaveReadyThreads())
return; return;
// Sleep current thread and check for next thread to schedule // Sleep current thread and check for next thread to schedule
WaitCurrentThread_Sleep(); thread_manager.WaitCurrentThread_Sleep();
// Create an event to wake the thread up after the specified nanosecond delay has passed // Create an event to wake the thread up after the specified nanosecond delay has passed
GetCurrentThread()->WakeAfterDelay(nanoseconds); thread_manager.GetCurrentThread()->WakeAfterDelay(nanoseconds);
Core::System::GetInstance().PrepareReschedule(); Core::System::GetInstance().PrepareReschedule();
} }

View File

@ -10,11 +10,9 @@
#include "common/common_types.h" #include "common/common_types.h"
#include "common/logging/log.h" #include "common/logging/log.h"
#include "common/math_util.h" #include "common/math_util.h"
#include "common/thread_queue_list.h"
#include "core/arm/arm_interface.h" #include "core/arm/arm_interface.h"
#include "core/arm/skyeye_common/armstate.h" #include "core/arm/skyeye_common/armstate.h"
#include "core/core.h" #include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/errors.h" #include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h" #include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
@ -27,9 +25,6 @@
namespace Kernel { namespace Kernel {
/// Event type for the thread wake up event
static CoreTiming::EventType* ThreadWakeupEventType = nullptr;
bool Thread::ShouldWait(Thread* thread) const { bool Thread::ShouldWait(Thread* thread) const {
return status != ThreadStatus::Dead; return status != ThreadStatus::Dead;
} }
@ -38,43 +33,28 @@ void Thread::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "object unavailable!"); ASSERT_MSG(!ShouldWait(thread), "object unavailable!");
} }
static std::unordered_map<u64, Thread*> wakeup_callback_table; u32 ThreadManager::NewThreadId() {
// Lists all thread ids that aren't deleted/etc.
static std::vector<SharedPtr<Thread>> thread_list;
// Lists only ready thread ids.
static Common::ThreadQueueList<Thread*, ThreadPrioLowest + 1> ready_queue;
static SharedPtr<Thread> current_thread;
// The first available thread id at startup
static u32 next_thread_id;
/**
* Creates a new thread ID
* @return The new thread ID
*/
inline static u32 const NewThreadId() {
return next_thread_id++; return next_thread_id++;
} }
Thread::Thread(KernelSystem& kernel) : WaitObject(kernel), context(Core::CPU().NewContext()) {} Thread::Thread(KernelSystem& kernel)
: WaitObject(kernel), context(Core::CPU().NewContext()),
thread_manager(kernel.GetThreadManager()) {}
Thread::~Thread() {} Thread::~Thread() {}
Thread* GetCurrentThread() { Thread* ThreadManager::GetCurrentThread() const {
return current_thread.get(); return current_thread.get();
} }
void Thread::Stop() { void Thread::Stop() {
// Cancel any outstanding wakeup events for this thread // Cancel any outstanding wakeup events for this thread
CoreTiming::UnscheduleEvent(ThreadWakeupEventType, thread_id); CoreTiming::UnscheduleEvent(thread_manager.ThreadWakeupEventType, thread_id);
wakeup_callback_table.erase(thread_id); thread_manager.wakeup_callback_table.erase(thread_id);
// Clean up thread from ready queue // Clean up thread from ready queue
// This is only needed when the thread is termintated forcefully (SVC TerminateProcess) // This is only needed when the thread is termintated forcefully (SVC TerminateProcess)
if (status == ThreadStatus::Ready) { if (status == ThreadStatus::Ready) {
ready_queue.remove(current_priority, this); thread_manager.ready_queue.remove(current_priority, this);
} }
status = ThreadStatus::Dead; status = ThreadStatus::Dead;
@ -97,11 +77,7 @@ void Thread::Stop() {
owner_process->tls_slots[tls_page].reset(tls_slot); owner_process->tls_slots[tls_page].reset(tls_slot);
} }
/** void ThreadManager::SwitchContext(Thread* new_thread) {
* Switches the CPU's active thread context to that of the specified thread
* @param new_thread The thread to switch to
*/
static void SwitchContext(Thread* new_thread) {
Thread* previous_thread = GetCurrentThread(); Thread* previous_thread = GetCurrentThread();
// Save context for previous thread // Save context for previous thread
@ -146,11 +122,7 @@ static void SwitchContext(Thread* new_thread) {
} }
} }
/** Thread* ThreadManager::PopNextReadyThread() {
* Pops and returns the next thread from the thread queue
* @return A pointer to the next ready thread
*/
static Thread* PopNextReadyThread() {
Thread* next; Thread* next;
Thread* thread = GetCurrentThread(); Thread* thread = GetCurrentThread();
@ -169,24 +141,19 @@ static Thread* PopNextReadyThread() {
return next; return next;
} }
void WaitCurrentThread_Sleep() { void ThreadManager::WaitCurrentThread_Sleep() {
Thread* thread = GetCurrentThread(); Thread* thread = GetCurrentThread();
thread->status = ThreadStatus::WaitSleep; thread->status = ThreadStatus::WaitSleep;
} }
void ExitCurrentThread() { void ThreadManager::ExitCurrentThread() {
Thread* thread = GetCurrentThread(); Thread* thread = GetCurrentThread();
thread->Stop(); thread->Stop();
thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread), thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread),
thread_list.end()); thread_list.end());
} }
/** void ThreadManager::ThreadWakeupCallback(u64 thread_id, s64 cycles_late) {
* Callback that will wake up the thread it was scheduled for
* @param thread_id The ID of the thread that's been awoken
* @param cycles_late The number of CPU cycles that have passed since the desired wakeup time
*/
static void ThreadWakeupCallback(u64 thread_id, s64 cycles_late) {
SharedPtr<Thread> thread = wakeup_callback_table.at(thread_id); SharedPtr<Thread> thread = wakeup_callback_table.at(thread_id);
if (thread == nullptr) { if (thread == nullptr) {
LOG_CRITICAL(Kernel, "Callback fired for invalid thread {:08X}", thread_id); LOG_CRITICAL(Kernel, "Callback fired for invalid thread {:08X}", thread_id);
@ -215,7 +182,8 @@ void Thread::WakeAfterDelay(s64 nanoseconds) {
if (nanoseconds == -1) if (nanoseconds == -1)
return; return;
CoreTiming::ScheduleEvent(nsToCycles(nanoseconds), ThreadWakeupEventType, thread_id); CoreTiming::ScheduleEvent(nsToCycles(nanoseconds), thread_manager.ThreadWakeupEventType,
thread_id);
} }
void Thread::ResumeFromWait() { void Thread::ResumeFromWait() {
@ -251,15 +219,12 @@ void Thread::ResumeFromWait() {
wakeup_callback = nullptr; wakeup_callback = nullptr;
ready_queue.push_back(current_priority, this); thread_manager.ready_queue.push_back(current_priority, this);
status = ThreadStatus::Ready; status = ThreadStatus::Ready;
Core::System::GetInstance().PrepareReschedule(); Core::System::GetInstance().PrepareReschedule();
} }
/** void ThreadManager::DebugThreadQueue() {
* Prints the thread queue for debugging purposes
*/
static void DebugThreadQueue() {
Thread* thread = GetCurrentThread(); Thread* thread = GetCurrentThread();
if (!thread) { if (!thread) {
LOG_DEBUG(Kernel, "Current: NO CURRENT THREAD"); LOG_DEBUG(Kernel, "Current: NO CURRENT THREAD");
@ -343,10 +308,10 @@ ResultVal<SharedPtr<Thread>> KernelSystem::CreateThread(std::string name, VAddr
SharedPtr<Thread> thread(new Thread(*this)); SharedPtr<Thread> thread(new Thread(*this));
thread_list.push_back(thread); thread_manager->thread_list.push_back(thread);
ready_queue.prepare(priority); thread_manager->ready_queue.prepare(priority);
thread->thread_id = NewThreadId(); thread->thread_id = thread_manager->NewThreadId();
thread->status = ThreadStatus::Dormant; thread->status = ThreadStatus::Dormant;
thread->entry_point = entry_point; thread->entry_point = entry_point;
thread->stack_top = stack_top; thread->stack_top = stack_top;
@ -356,7 +321,7 @@ ResultVal<SharedPtr<Thread>> KernelSystem::CreateThread(std::string name, VAddr
thread->wait_objects.clear(); thread->wait_objects.clear();
thread->wait_address = 0; thread->wait_address = 0;
thread->name = std::move(name); thread->name = std::move(name);
wakeup_callback_table[thread->thread_id] = thread.get(); thread_manager->wakeup_callback_table[thread->thread_id] = thread.get();
thread->owner_process = &owner_process; thread->owner_process = &owner_process;
// Find the next available TLS index, and mark it as used // Find the next available TLS index, and mark it as used
@ -405,7 +370,7 @@ ResultVal<SharedPtr<Thread>> KernelSystem::CreateThread(std::string name, VAddr
// to initialize the context // to initialize the context
ResetThreadContext(thread->context, stack_top, entry_point, arg); ResetThreadContext(thread->context, stack_top, entry_point, arg);
ready_queue.push_back(thread->current_priority, thread.get()); thread_manager->ready_queue.push_back(thread->current_priority, thread.get());
thread->status = ThreadStatus::Ready; thread->status = ThreadStatus::Ready;
return MakeResult<SharedPtr<Thread>>(std::move(thread)); return MakeResult<SharedPtr<Thread>>(std::move(thread));
@ -416,9 +381,9 @@ void Thread::SetPriority(u32 priority) {
"Invalid priority value."); "Invalid priority value.");
// If thread was ready, adjust queues // If thread was ready, adjust queues
if (status == ThreadStatus::Ready) if (status == ThreadStatus::Ready)
ready_queue.move(this, current_priority, priority); thread_manager.ready_queue.move(this, current_priority, priority);
else else
ready_queue.prepare(priority); thread_manager.ready_queue.prepare(priority);
nominal_priority = current_priority = priority; nominal_priority = current_priority = priority;
} }
@ -435,9 +400,9 @@ void Thread::UpdatePriority() {
void Thread::BoostPriority(u32 priority) { void Thread::BoostPriority(u32 priority) {
// If thread was ready, adjust queues // If thread was ready, adjust queues
if (status == ThreadStatus::Ready) if (status == ThreadStatus::Ready)
ready_queue.move(this, current_priority, priority); thread_manager.ready_queue.move(this, current_priority, priority);
else else
ready_queue.prepare(priority); thread_manager.ready_queue.prepare(priority);
current_priority = priority; current_priority = priority;
} }
@ -457,11 +422,11 @@ SharedPtr<Thread> SetupMainThread(KernelSystem& kernel, u32 entry_point, u32 pri
return thread; return thread;
} }
bool HaveReadyThreads() { bool ThreadManager::HaveReadyThreads() {
return ready_queue.get_first() != nullptr; return ready_queue.get_first() != nullptr;
} }
void Reschedule() { void ThreadManager::Reschedule() {
Thread* cur = GetCurrentThread(); Thread* cur = GetCurrentThread();
Thread* next = PopNextReadyThread(); Thread* next = PopNextReadyThread();
@ -496,26 +461,20 @@ VAddr Thread::GetCommandBufferAddress() const {
return GetTLSAddress() + CommandHeaderOffset; return GetTLSAddress() + CommandHeaderOffset;
} }
//////////////////////////////////////////////////////////////////////////////////////////////////// ThreadManager::ThreadManager() {
ThreadWakeupEventType =
void ThreadingInit() { CoreTiming::RegisterEvent("ThreadWakeupCallback", [this](u64 thread_id, s64 cycle_late) {
ThreadWakeupEventType = CoreTiming::RegisterEvent("ThreadWakeupCallback", ThreadWakeupCallback); ThreadWakeupCallback(thread_id, cycle_late);
});
current_thread = nullptr;
next_thread_id = 1;
} }
void ThreadingShutdown() { ThreadManager::~ThreadManager() {
current_thread = nullptr;
for (auto& t : thread_list) { for (auto& t : thread_list) {
t->Stop(); t->Stop();
} }
thread_list.clear();
ready_queue.clear();
} }
const std::vector<SharedPtr<Thread>>& GetThreadList() { const std::vector<SharedPtr<Thread>>& ThreadManager::GetThreadList() {
return thread_list; return thread_list;
} }

View File

@ -10,7 +10,9 @@
#include <boost/container/flat_map.hpp> #include <boost/container/flat_map.hpp>
#include <boost/container/flat_set.hpp> #include <boost/container/flat_set.hpp>
#include "common/common_types.h" #include "common/common_types.h"
#include "common/thread_queue_list.h"
#include "core/arm/arm_interface.h" #include "core/arm/arm_interface.h"
#include "core/core_timing.h"
#include "core/hle/kernel/object.h" #include "core/hle/kernel/object.h"
#include "core/hle/kernel/wait_object.h" #include "core/hle/kernel/wait_object.h"
#include "core/hle/result.h" #include "core/hle/result.h"
@ -53,6 +55,87 @@ enum class ThreadWakeupReason {
Timeout // The thread was woken up due to a wait timeout. Timeout // The thread was woken up due to a wait timeout.
}; };
class ThreadManager {
public:
ThreadManager();
~ThreadManager();
/**
* Creates a new thread ID
* @return The new thread ID
*/
u32 NewThreadId();
/**
* Gets the current thread
*/
Thread* GetCurrentThread() const;
/**
* Reschedules to the next available thread (call after current thread is suspended)
*/
void Reschedule();
/**
* Prints the thread queue for debugging purposes
*/
void DebugThreadQueue();
/**
* Returns whether there are any threads that are ready to run.
*/
bool HaveReadyThreads();
/**
* Waits the current thread on a sleep
*/
void WaitCurrentThread_Sleep();
/**
* Stops the current thread and removes it from the thread_list
*/
void ExitCurrentThread();
/**
* Get a const reference to the thread list for debug use
*/
const std::vector<SharedPtr<Thread>>& GetThreadList();
private:
/**
* Switches the CPU's active thread context to that of the specified thread
* @param new_thread The thread to switch to
*/
void SwitchContext(Thread* new_thread);
/**
* Pops and returns the next thread from the thread queue
* @return A pointer to the next ready thread
*/
Thread* PopNextReadyThread();
/**
* Callback that will wake up the thread it was scheduled for
* @param thread_id The ID of the thread that's been awoken
* @param cycles_late The number of CPU cycles that have passed since the desired wakeup time
*/
void ThreadWakeupCallback(u64 thread_id, s64 cycles_late);
u32 next_thread_id = 1;
SharedPtr<Thread> current_thread;
Common::ThreadQueueList<Thread*, ThreadPrioLowest + 1> ready_queue;
std::unordered_map<u64, Thread*> wakeup_callback_table;
/// Event type for the thread wake up event
CoreTiming::EventType* ThreadWakeupEventType = nullptr;
// Lists all threadsthat aren't deleted.
std::vector<SharedPtr<Thread>> thread_list;
friend class Thread;
friend class KernelSystem;
};
class Thread final : public WaitObject { class Thread final : public WaitObject {
public: public:
std::string GetName() const override { std::string GetName() const override {
@ -210,6 +293,8 @@ private:
explicit Thread(KernelSystem&); explicit Thread(KernelSystem&);
~Thread() override; ~Thread() override;
ThreadManager& thread_manager;
friend class KernelSystem; friend class KernelSystem;
}; };
@ -224,56 +309,4 @@ private:
SharedPtr<Thread> SetupMainThread(KernelSystem& kernel, u32 entry_point, u32 priority, SharedPtr<Thread> SetupMainThread(KernelSystem& kernel, u32 entry_point, u32 priority,
SharedPtr<Process> owner_process); SharedPtr<Process> owner_process);
/**
* Returns whether there are any threads that are ready to run.
*/
bool HaveReadyThreads();
/**
* Reschedules to the next available thread (call after current thread is suspended)
*/
void Reschedule();
/**
* Arbitrate the highest priority thread that is waiting
* @param address The address for which waiting threads should be arbitrated
*/
Thread* ArbitrateHighestPriorityThread(u32 address);
/**
* Arbitrate all threads currently waiting.
* @param address The address for which waiting threads should be arbitrated
*/
void ArbitrateAllThreads(u32 address);
/**
* Gets the current thread
*/
Thread* GetCurrentThread();
/**
* Waits the current thread on a sleep
*/
void WaitCurrentThread_Sleep();
/**
* Stops the current thread and removes it from the thread_list
*/
void ExitCurrentThread();
/**
* Initialize threading
*/
void ThreadingInit();
/**
* Shutdown threading
*/
void ThreadingShutdown();
/**
* Get a const reference to the thread list for debug use
*/
const std::vector<SharedPtr<Thread>>& GetThreadList();
} // namespace Kernel } // namespace Kernel

View File

@ -6,7 +6,6 @@
#include <unordered_map> #include <unordered_map>
#include "common/assert.h" #include "common/assert.h"
#include "common/logging/log.h" #include "common/logging/log.h"
#include "core/core_timing.h"
#include "core/hle/kernel/handle_table.h" #include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/object.h" #include "core/hle/kernel/object.h"
#include "core/hle/kernel/thread.h" #include "core/hle/kernel/thread.h"
@ -14,16 +13,10 @@
namespace Kernel { namespace Kernel {
/// The event type of the generic timer callback event Timer::Timer(KernelSystem& kernel) : WaitObject(kernel), timer_manager(kernel.GetTimerManager()) {}
static CoreTiming::EventType* timer_callback_event_type = nullptr;
static u64 next_timer_callback_id;
static std::unordered_map<u64, Timer*> timer_callback_table;
Timer::Timer(KernelSystem& kernel) : WaitObject(kernel) {}
Timer::~Timer() { Timer::~Timer() {
Cancel(); Cancel();
timer_callback_table.erase(callback_id); timer_manager.timer_callback_table.erase(callback_id);
} }
SharedPtr<Timer> KernelSystem::CreateTimer(ResetType reset_type, std::string name) { SharedPtr<Timer> KernelSystem::CreateTimer(ResetType reset_type, std::string name) {
@ -34,8 +27,8 @@ SharedPtr<Timer> KernelSystem::CreateTimer(ResetType reset_type, std::string nam
timer->name = std::move(name); timer->name = std::move(name);
timer->initial_delay = 0; timer->initial_delay = 0;
timer->interval_delay = 0; timer->interval_delay = 0;
timer->callback_id = ++next_timer_callback_id; timer->callback_id = ++timer_manager->next_timer_callback_id;
timer_callback_table[timer->callback_id] = timer.get(); timer_manager->timer_callback_table[timer->callback_id] = timer.get();
return timer; return timer;
} }
@ -62,12 +55,13 @@ void Timer::Set(s64 initial, s64 interval) {
// Immediately invoke the callback // Immediately invoke the callback
Signal(0); Signal(0);
} else { } else {
CoreTiming::ScheduleEvent(nsToCycles(initial), timer_callback_event_type, callback_id); CoreTiming::ScheduleEvent(nsToCycles(initial), timer_manager.timer_callback_event_type,
callback_id);
} }
} }
void Timer::Cancel() { void Timer::Cancel() {
CoreTiming::UnscheduleEvent(timer_callback_event_type, callback_id); CoreTiming::UnscheduleEvent(timer_manager.timer_callback_event_type, callback_id);
} }
void Timer::Clear() { void Timer::Clear() {
@ -92,12 +86,12 @@ void Timer::Signal(s64 cycles_late) {
if (interval_delay != 0) { if (interval_delay != 0) {
// Reschedule the timer with the interval delay // Reschedule the timer with the interval delay
CoreTiming::ScheduleEvent(nsToCycles(interval_delay) - cycles_late, CoreTiming::ScheduleEvent(nsToCycles(interval_delay) - cycles_late,
timer_callback_event_type, callback_id); timer_manager.timer_callback_event_type, callback_id);
} }
} }
/// The timer callback event, called when a timer is fired /// The timer callback event, called when a timer is fired
static void TimerCallback(u64 callback_id, s64 cycles_late) { void TimerManager::TimerCallback(u64 callback_id, s64 cycles_late) {
SharedPtr<Timer> timer = timer_callback_table.at(callback_id); SharedPtr<Timer> timer = timer_callback_table.at(callback_id);
if (timer == nullptr) { if (timer == nullptr) {
@ -108,12 +102,11 @@ static void TimerCallback(u64 callback_id, s64 cycles_late) {
timer->Signal(cycles_late); timer->Signal(cycles_late);
} }
void TimersInit() { TimerManager::TimerManager() {
next_timer_callback_id = 0; timer_callback_event_type =
timer_callback_table.clear(); CoreTiming::RegisterEvent("TimerCallback", [this](u64 thread_id, s64 cycle_late) {
timer_callback_event_type = CoreTiming::RegisterEvent("TimerCallback", TimerCallback); TimerCallback(thread_id, cycle_late);
});
} }
void TimersShutdown() {}
} // namespace Kernel } // namespace Kernel

View File

@ -5,11 +5,30 @@
#pragma once #pragma once
#include "common/common_types.h" #include "common/common_types.h"
#include "core/core_timing.h"
#include "core/hle/kernel/object.h" #include "core/hle/kernel/object.h"
#include "core/hle/kernel/wait_object.h" #include "core/hle/kernel/wait_object.h"
namespace Kernel { namespace Kernel {
class TimerManager {
public:
TimerManager();
private:
/// The timer callback event, called when a timer is fired
void TimerCallback(u64 callback_id, s64 cycles_late);
/// The event type of the generic timer callback event
CoreTiming::EventType* timer_callback_event_type = nullptr;
u64 next_timer_callback_id = 0;
std::unordered_map<u64, Timer*> timer_callback_table;
friend class Timer;
friend class KernelSystem;
};
class Timer final : public WaitObject { class Timer final : public WaitObject {
public: public:
std::string GetTypeName() const override { std::string GetTypeName() const override {
@ -74,12 +93,9 @@ private:
/// ID used as userdata to reference this object when inserting into the CoreTiming queue. /// ID used as userdata to reference this object when inserting into the CoreTiming queue.
u64 callback_id; u64 callback_id;
TimerManager& timer_manager;
friend class KernelSystem; friend class KernelSystem;
}; };
/// Initializes the required variables for timers
void TimersInit();
/// Tears down the timer variables
void TimersShutdown();
} // namespace Kernel } // namespace Kernel

View File

@ -71,7 +71,8 @@ void File::Read(Kernel::HLERequestContext& ctx) {
rb.PushMappedBuffer(buffer); rb.PushMappedBuffer(buffer);
std::chrono::nanoseconds read_timeout_ns{backend->GetReadDelayNs(length)}; std::chrono::nanoseconds read_timeout_ns{backend->GetReadDelayNs(length)};
ctx.SleepClientThread(Kernel::GetCurrentThread(), "file::read", read_timeout_ns, ctx.SleepClientThread(system.Kernel().GetThreadManager().GetCurrentThread(), "file::read",
read_timeout_ns,
[](Kernel::SharedPtr<Kernel::Thread> thread, [](Kernel::SharedPtr<Kernel::Thread> thread,
Kernel::HLERequestContext& ctx, Kernel::ThreadWakeupReason reason) { Kernel::HLERequestContext& ctx, Kernel::ThreadWakeupReason reason) {
// Nothing to do here // Nothing to do here

View File

@ -1231,7 +1231,8 @@ void NWM_UDS::ConnectToNetwork(Kernel::HLERequestContext& ctx) {
static constexpr std::chrono::nanoseconds UDSConnectionTimeout{300000000}; static constexpr std::chrono::nanoseconds UDSConnectionTimeout{300000000};
connection_event = ctx.SleepClientThread( connection_event = ctx.SleepClientThread(
Kernel::GetCurrentThread(), "uds::ConnectToNetwork", UDSConnectionTimeout, system.Kernel().GetThreadManager().GetCurrentThread(), "uds::ConnectToNetwork",
UDSConnectionTimeout,
[](Kernel::SharedPtr<Kernel::Thread> thread, Kernel::HLERequestContext& ctx, [](Kernel::SharedPtr<Kernel::Thread> thread, Kernel::HLERequestContext& ctx,
Kernel::ThreadWakeupReason reason) { Kernel::ThreadWakeupReason reason) {
// TODO(B3N30): Add error handling for host full and timeout // TODO(B3N30): Add error handling for host full and timeout

View File

@ -179,7 +179,10 @@ void ServiceFrameworkBase::ReportUnimplementedFunction(u32* cmd_buf, const Funct
} }
void ServiceFrameworkBase::HandleSyncRequest(SharedPtr<ServerSession> server_session) { void ServiceFrameworkBase::HandleSyncRequest(SharedPtr<ServerSession> server_session) {
u32* cmd_buf = Kernel::GetCommandBuffer(); Kernel::KernelSystem& kernel = Core::System::GetInstance().Kernel();
auto thread = kernel.GetThreadManager().GetCurrentThread();
// TODO(wwylele): avoid GetPointer
u32* cmd_buf = reinterpret_cast<u32*>(Memory::GetPointer(thread->GetCommandBufferAddress()));
u32 header_code = cmd_buf[0]; u32 header_code = cmd_buf[0];
auto itr = handlers.find(header_code); auto itr = handlers.find(header_code);
@ -188,8 +191,7 @@ void ServiceFrameworkBase::HandleSyncRequest(SharedPtr<ServerSession> server_ses
return ReportUnimplementedFunction(cmd_buf, info); return ReportUnimplementedFunction(cmd_buf, info);
} }
Kernel::SharedPtr<Kernel::Process> current_process = Kernel::SharedPtr<Kernel::Process> current_process = kernel.GetCurrentProcess();
Core::System::GetInstance().Kernel().GetCurrentProcess();
// TODO(yuriks): The kernel should be the one handling this as part of translation after // TODO(yuriks): The kernel should be the one handling this as part of translation after
// everything else is migrated // everything else is migrated
@ -199,7 +201,6 @@ void ServiceFrameworkBase::HandleSyncRequest(SharedPtr<ServerSession> server_ses
LOG_TRACE(Service, "{}", MakeFunctionString(info->name, GetServiceName().c_str(), cmd_buf)); LOG_TRACE(Service, "{}", MakeFunctionString(info->name, GetServiceName().c_str(), cmd_buf));
handler_invoker(this, info->handler_callback, context); handler_invoker(this, info->handler_callback, context);
auto thread = Kernel::GetCurrentThread();
ASSERT(thread->status == Kernel::ThreadStatus::Running || ASSERT(thread->status == Kernel::ThreadStatus::Running ||
thread->status == Kernel::ThreadStatus::WaitHleEvent); thread->status == Kernel::ThreadStatus::WaitHleEvent);
// Only write the response immediately if the thread is still running. If the HLE handler put // Only write the response immediately if the thread is still running. If the HLE handler put

View File

@ -128,8 +128,8 @@ void SRV::GetServiceHandle(Kernel::HLERequestContext& ctx) {
if (wait_until_available && client_port.Code() == ERR_SERVICE_NOT_REGISTERED) { if (wait_until_available && client_port.Code() == ERR_SERVICE_NOT_REGISTERED) {
LOG_INFO(Service_SRV, "called service={} delayed", name); LOG_INFO(Service_SRV, "called service={} delayed", name);
Kernel::SharedPtr<Kernel::Event> get_service_handle_event = Kernel::SharedPtr<Kernel::Event> get_service_handle_event =
ctx.SleepClientThread(Kernel::GetCurrentThread(), "GetServiceHandle", ctx.SleepClientThread(system.Kernel().GetThreadManager().GetCurrentThread(),
std::chrono::nanoseconds(-1), get_handle); "GetServiceHandle", std::chrono::nanoseconds(-1), get_handle);
get_service_handle_delayed_map[name] = std::move(get_service_handle_event); get_service_handle_delayed_map[name] = std::move(get_service_handle_event);
return; return;
} else { } else {