1
0
Fork 0

Merge pull request #548 from lioncash/nits

Cleanup related to vfp_helper.
This commit is contained in:
bunnei 2015-02-09 11:20:46 -05:00
commit 7cc24562b4
4 changed files with 317 additions and 358 deletions

View File

@ -773,8 +773,8 @@ void vfp_raise_exceptions(ARMul_State* state, u32 exceptions, u32 inst, u32 fpsc
* Comparison instructions always return at least one of * Comparison instructions always return at least one of
* these flags set. * these flags set.
*/ */
if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) if (exceptions & (FPSCR_NFLAG|FPSCR_ZFLAG|FPSCR_CFLAG|FPSCR_VFLAG))
fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V); fpscr &= ~(FPSCR_NFLAG|FPSCR_ZFLAG|FPSCR_CFLAG|FPSCR_VFLAG);
fpscr |= exceptions; fpscr |= exceptions;

View File

@ -45,444 +45,403 @@
#define do_div(n, base) {n/=base;} #define do_div(n, base) {n/=base;}
/* From vfpinstr.h */ enum : u32 {
FOP_MASK = 0x00b00040,
FOP_FMAC = 0x00000000,
FOP_FNMAC = 0x00000040,
FOP_FMSC = 0x00100000,
FOP_FNMSC = 0x00100040,
FOP_FMUL = 0x00200000,
FOP_FNMUL = 0x00200040,
FOP_FADD = 0x00300000,
FOP_FSUB = 0x00300040,
FOP_FDIV = 0x00800000,
FOP_EXT = 0x00b00040
};
#define INST_CPRTDO(inst) (((inst) & 0x0f000000) == 0x0e000000) #define FOP_TO_IDX(inst) ((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4)
#define INST_CPRT(inst) ((inst) & (1 << 4))
#define INST_CPRT_L(inst) ((inst) & (1 << 20))
#define INST_CPRT_Rd(inst) (((inst) & (15 << 12)) >> 12)
#define INST_CPRT_OP(inst) (((inst) >> 21) & 7)
#define INST_CPNUM(inst) ((inst) & 0xf00)
#define CPNUM(cp) ((cp) << 8)
#define FOP_MASK (0x00b00040) enum : u32 {
#define FOP_FMAC (0x00000000) FEXT_MASK = 0x000f0080,
#define FOP_FNMAC (0x00000040) FEXT_FCPY = 0x00000000,
#define FOP_FMSC (0x00100000) FEXT_FABS = 0x00000080,
#define FOP_FNMSC (0x00100040) FEXT_FNEG = 0x00010000,
#define FOP_FMUL (0x00200000) FEXT_FSQRT = 0x00010080,
#define FOP_FNMUL (0x00200040) FEXT_FCMP = 0x00040000,
#define FOP_FADD (0x00300000) FEXT_FCMPE = 0x00040080,
#define FOP_FSUB (0x00300040) FEXT_FCMPZ = 0x00050000,
#define FOP_FDIV (0x00800000) FEXT_FCMPEZ = 0x00050080,
#define FOP_EXT (0x00b00040) FEXT_FCVT = 0x00070080,
FEXT_FUITO = 0x00080000,
FEXT_FSITO = 0x00080080,
FEXT_FTOUI = 0x000c0000,
FEXT_FTOUIZ = 0x000c0080,
FEXT_FTOSI = 0x000d0000,
FEXT_FTOSIZ = 0x000d0080
};
#define FOP_TO_IDX(inst) ((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4) #define FEXT_TO_IDX(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
#define FEXT_MASK (0x000f0080) #define vfp_get_sd(inst) ((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22)
#define FEXT_FCPY (0x00000000) #define vfp_get_dd(inst) ((inst & 0x0000f000) >> 12 | (inst & (1 << 22)) >> 18)
#define FEXT_FABS (0x00000080) #define vfp_get_sm(inst) ((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5)
#define FEXT_FNEG (0x00010000) #define vfp_get_dm(inst) ((inst & 0x0000000f) | (inst & (1 << 5)) >> 1)
#define FEXT_FSQRT (0x00010080) #define vfp_get_sn(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
#define FEXT_FCMP (0x00040000) #define vfp_get_dn(inst) ((inst & 0x000f0000) >> 16 | (inst & (1 << 7)) >> 3)
#define FEXT_FCMPE (0x00040080)
#define FEXT_FCMPZ (0x00050000)
#define FEXT_FCMPEZ (0x00050080)
#define FEXT_FCVT (0x00070080)
#define FEXT_FUITO (0x00080000)
#define FEXT_FSITO (0x00080080)
#define FEXT_FTOUI (0x000c0000)
#define FEXT_FTOUIZ (0x000c0080)
#define FEXT_FTOSI (0x000d0000)
#define FEXT_FTOSIZ (0x000d0080)
#define FEXT_TO_IDX(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) #define vfp_single(inst) (((inst) & 0x0000f00) == 0xa00)
#define vfp_get_sd(inst) ((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22)
#define vfp_get_dd(inst) ((inst & 0x0000f000) >> 12 | (inst & (1 << 22)) >> 18)
#define vfp_get_sm(inst) ((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5)
#define vfp_get_dm(inst) ((inst & 0x0000000f) | (inst & (1 << 5)) >> 1)
#define vfp_get_sn(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
#define vfp_get_dn(inst) ((inst & 0x000f0000) >> 16 | (inst & (1 << 7)) >> 3)
#define vfp_single(inst) (((inst) & 0x0000f00) == 0xa00)
#define FPSCR_N (1 << 31)
#define FPSCR_Z (1 << 30)
#define FPSCR_C (1 << 29)
#define FPSCR_V (1 << 28)
static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
{ {
if (shift) { if (shift) {
if (shift < 32) if (shift < 32)
val = val >> shift | ((val << (32 - shift)) != 0); val = val >> shift | ((val << (32 - shift)) != 0);
else else
val = val != 0; val = val != 0;
} }
return val; return val;
} }
static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
{ {
if (shift) { if (shift) {
if (shift < 64) if (shift < 64)
val = val >> shift | ((val << (64 - shift)) != 0); val = val >> shift | ((val << (64 - shift)) != 0);
else else
val = val != 0; val = val != 0;
} }
return val; return val;
} }
static inline u32 vfp_hi64to32jamming(u64 val) static inline u32 vfp_hi64to32jamming(u64 val)
{ {
u32 v; u32 v;
u32 highval = val >> 32; u32 highval = val >> 32;
u32 lowval = val & 0xffffffff; u32 lowval = val & 0xffffffff;
if (lowval >= 1) if (lowval >= 1)
v = highval | 1; v = highval | 1;
else else
v = highval; v = highval;
return v; return v;
} }
static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) static inline void add128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml)
{ {
*resl = nl + ml; *resl = nl + ml;
*resh = nh + mh; *resh = nh + mh;
if (*resl < nl) if (*resl < nl)
*resh += 1; *resh += 1;
} }
static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) static inline void sub128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml)
{ {
*resl = nl - ml; *resl = nl - ml;
*resh = nh - mh; *resh = nh - mh;
if (*resl > nl) if (*resl > nl)
*resh -= 1; *resh -= 1;
} }
static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m) static inline void mul64to128(u64* resh, u64* resl, u64 n, u64 m)
{ {
u32 nh, nl, mh, ml; u32 nh, nl, mh, ml;
u64 rh, rma, rmb, rl; u64 rh, rma, rmb, rl;
nl = n; nl = n;
ml = m; ml = m;
rl = (u64)nl * ml; rl = (u64)nl * ml;
nh = n >> 32; nh = n >> 32;
rma = (u64)nh * ml; rma = (u64)nh * ml;
mh = m >> 32; mh = m >> 32;
rmb = (u64)nl * mh; rmb = (u64)nl * mh;
rma += rmb; rma += rmb;
rh = (u64)nh * mh; rh = (u64)nh * mh;
rh += ((u64)(rma < rmb) << 32) + (rma >> 32); rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
rma <<= 32; rma <<= 32;
rl += rma; rl += rma;
rh += (rl < rma); rh += (rl < rma);
*resl = rl; *resl = rl;
*resh = rh; *resh = rh;
} }
static inline void shift64left(u64 *resh, u64 *resl, u64 n) static inline void shift64left(u64* resh, u64* resl, u64 n)
{ {
*resh = n >> 63; *resh = n >> 63;
*resl = n << 1; *resl = n << 1;
} }
static inline u64 vfp_hi64multiply64(u64 n, u64 m) static inline u64 vfp_hi64multiply64(u64 n, u64 m)
{ {
u64 rh, rl; u64 rh, rl;
mul64to128(&rh, &rl, n, m); mul64to128(&rh, &rl, n, m);
return rh | (rl != 0); return rh | (rl != 0);
} }
static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
{ {
u64 mh, ml, remh, reml, termh, terml, z; u64 mh, ml, remh, reml, termh, terml, z;
if (nh >= m) if (nh >= m)
return ~0ULL; return ~0ULL;
mh = m >> 32; mh = m >> 32;
if (mh << 32 <= nh) { if (mh << 32 <= nh) {
z = 0xffffffff00000000ULL; z = 0xffffffff00000000ULL;
} else { } else {
z = nh; z = nh;
do_div(z, mh); do_div(z, mh);
z <<= 32; z <<= 32;
} }
mul64to128(&termh, &terml, m, z); mul64to128(&termh, &terml, m, z);
sub128(&remh, &reml, nh, nl, termh, terml); sub128(&remh, &reml, nh, nl, termh, terml);
ml = m << 32; ml = m << 32;
while ((s64)remh < 0) { while ((s64)remh < 0) {
z -= 0x100000000ULL; z -= 0x100000000ULL;
add128(&remh, &reml, remh, reml, mh, ml); add128(&remh, &reml, remh, reml, mh, ml);
} }
remh = (remh << 32) | (reml >> 32); remh = (remh << 32) | (reml >> 32);
if (mh << 32 <= remh) { if (mh << 32 <= remh) {
z |= 0xffffffff; z |= 0xffffffff;
} else { } else {
do_div(remh, mh); do_div(remh, mh);
z |= remh; z |= remh;
} }
return z; return z;
} }
/* // Operations on unpacked elements
* Operations on unpacked elements #define vfp_sign_negate(sign) (sign ^ 0x8000)
*/
#define vfp_sign_negate(sign) (sign ^ 0x8000)
/* // Single-precision
* Single-precision
*/
struct vfp_single { struct vfp_single {
s16 exponent; s16 exponent;
u16 sign; u16 sign;
u32 significand; u32 significand;
}; };
/* // VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
* VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa // VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
* VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent // VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
* VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand // which are not propagated to the float upon packing.
* which are not propagated to the float upon packing. #define VFP_SINGLE_MANTISSA_BITS (23)
*/ #define VFP_SINGLE_EXPONENT_BITS (8)
#define VFP_SINGLE_MANTISSA_BITS (23) #define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2)
#define VFP_SINGLE_EXPONENT_BITS (8) #define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
#define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2)
#define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
/* // The bit in an unpacked float which indicates that it is a quiet NaN
* The bit in an unpacked float which indicates that it is a quiet NaN
*/
#define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS)) #define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
/* // Operations on packed single-precision numbers
* Operations on packed single-precision numbers #define vfp_single_packed_sign(v) ((v) & 0x80000000)
*/ #define vfp_single_packed_negate(v) ((v) ^ 0x80000000)
#define vfp_single_packed_sign(v) ((v) & 0x80000000) #define vfp_single_packed_abs(v) ((v) & ~0x80000000)
#define vfp_single_packed_negate(v) ((v) ^ 0x80000000) #define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
#define vfp_single_packed_abs(v) ((v) & ~0x80000000) #define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
#define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
#define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
/* // Unpack a single-precision float. Note that this returns the magnitude
* Unpack a single-precision float. Note that this returns the magnitude // of the single-precision float mantissa with the 1. if necessary,
* of the single-precision float mantissa with the 1. if necessary, // aligned to bit 30.
* aligned to bit 30. static inline void vfp_single_unpack(vfp_single* s, s32 val)
*/
static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
{ {
u32 significand; u32 significand;
s->sign = vfp_single_packed_sign(val) >> 16, s->sign = vfp_single_packed_sign(val) >> 16,
s->exponent = vfp_single_packed_exponent(val); s->exponent = vfp_single_packed_exponent(val);
significand = (u32) val; significand = (u32) val;
significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2; significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
if (s->exponent && s->exponent != 255) if (s->exponent && s->exponent != 255)
significand |= 0x40000000; significand |= 0x40000000;
s->significand = significand; s->significand = significand;
} }
/* // Re-pack a single-precision float. This assumes that the float is
* Re-pack a single-precision float. This assumes that the float is // already normalised such that the MSB is bit 30, _not_ bit 31.
* already normalised such that the MSB is bit 30, _not_ bit 31. static inline s32 vfp_single_pack(vfp_single* s)
*/
static inline s32 vfp_single_pack(struct vfp_single *s)
{ {
u32 val; u32 val = (s->sign << 16) +
val = (s->sign << 16) + (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
(s->exponent << VFP_SINGLE_MANTISSA_BITS) + (s->significand >> VFP_SINGLE_LOW_BITS);
(s->significand >> VFP_SINGLE_LOW_BITS); return (s32)val;
return (s32)val;
} }
#define VFP_NUMBER (1<<0) enum : u32 {
#define VFP_ZERO (1<<1) VFP_NUMBER = (1 << 0),
#define VFP_DENORMAL (1<<2) VFP_ZERO = (1 << 1),
#define VFP_INFINITY (1<<3) VFP_DENORMAL = (1 << 2),
#define VFP_NAN (1<<4) VFP_INFINITY = (1 << 3),
#define VFP_NAN_SIGNAL (1<<5) VFP_NAN = (1 << 4),
VFP_NAN_SIGNAL = (1 << 5),
#define VFP_QNAN (VFP_NAN) VFP_QNAN = (VFP_NAN),
#define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL) VFP_SNAN = (VFP_NAN|VFP_NAN_SIGNAL)
static inline int vfp_single_type(struct vfp_single *s)
{
int type = VFP_NUMBER;
if (s->exponent == 255) {
if (s->significand == 0)
type = VFP_INFINITY;
else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
type = VFP_QNAN;
else
type = VFP_SNAN;
} else if (s->exponent == 0) {
if (s->significand == 0)
type |= VFP_ZERO;
else
type |= VFP_DENORMAL;
}
return type;
}
u32 vfp_single_normaliseround(ARMul_State* state, int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
/*
* Double-precision
*/
struct vfp_double {
s16 exponent;
u16 sign;
u64 significand;
}; };
/* static inline int vfp_single_type(vfp_single* s)
* VFP_REG_ZERO is a special register number for vfp_get_double {
* which returns (double)0.0. This is useful for the compare with int type = VFP_NUMBER;
* zero instructions. if (s->exponent == 255) {
*/ if (s->significand == 0)
type = VFP_INFINITY;
else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
type = VFP_QNAN;
else
type = VFP_SNAN;
} else if (s->exponent == 0) {
if (s->significand == 0)
type |= VFP_ZERO;
else
type |= VFP_DENORMAL;
}
return type;
}
u32 vfp_single_normaliseround(ARMul_State* state, int sd, vfp_single* vs, u32 fpscr, u32 exceptions, const char* func);
// Double-precision
struct vfp_double {
s16 exponent;
u16 sign;
u64 significand;
};
// VFP_REG_ZERO is a special register number for vfp_get_double
// which returns (double)0.0. This is useful for the compare with
// zero instructions.
#ifdef CONFIG_VFPv3 #ifdef CONFIG_VFPv3
#define VFP_REG_ZERO 32 #define VFP_REG_ZERO 32
#else #else
#define VFP_REG_ZERO 16 #define VFP_REG_ZERO 16
#endif #endif
#define VFP_DOUBLE_MANTISSA_BITS (52) #define VFP_DOUBLE_MANTISSA_BITS (52)
#define VFP_DOUBLE_EXPONENT_BITS (11) #define VFP_DOUBLE_EXPONENT_BITS (11)
#define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2) #define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
#define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1) #define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1)
/* // The bit in an unpacked double which indicates that it is a quiet NaN
* The bit in an unpacked double which indicates that it is a quiet NaN #define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
*/
#define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
/* // Operations on packed single-precision numbers
* Operations on packed single-precision numbers #define vfp_double_packed_sign(v) ((v) & (1ULL << 63))
*/ #define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63))
#define vfp_double_packed_sign(v) ((v) & (1ULL << 63)) #define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63))
#define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63)) #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
#define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63)) #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
/* // Unpack a double-precision float. Note that this returns the magnitude
* Unpack a double-precision float. Note that this returns the magnitude // of the double-precision float mantissa with the 1. if necessary,
* of the double-precision float mantissa with the 1. if necessary, // aligned to bit 62.
* aligned to bit 62. static inline void vfp_double_unpack(vfp_double* s, s64 val)
*/
static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
{ {
u64 significand; u64 significand;
s->sign = vfp_double_packed_sign(val) >> 48; s->sign = vfp_double_packed_sign(val) >> 48;
s->exponent = vfp_double_packed_exponent(val); s->exponent = vfp_double_packed_exponent(val);
significand = (u64) val; significand = (u64) val;
significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2; significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
if (s->exponent && s->exponent != 2047) if (s->exponent && s->exponent != 2047)
significand |= (1ULL << 62); significand |= (1ULL << 62);
s->significand = significand; s->significand = significand;
} }
/* // Re-pack a double-precision float. This assumes that the float is
* Re-pack a double-precision float. This assumes that the float is // already normalised such that the MSB is bit 30, _not_ bit 31.
* already normalised such that the MSB is bit 30, _not_ bit 31. static inline s64 vfp_double_pack(vfp_double* s)
*/
static inline s64 vfp_double_pack(struct vfp_double *s)
{ {
u64 val; u64 val = ((u64)s->sign << 48) +
val = ((u64)s->sign << 48) + ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + (s->significand >> VFP_DOUBLE_LOW_BITS);
(s->significand >> VFP_DOUBLE_LOW_BITS); return (s64)val;
return (s64)val;
} }
static inline int vfp_double_type(struct vfp_double *s) static inline int vfp_double_type(vfp_double* s)
{ {
int type = VFP_NUMBER; int type = VFP_NUMBER;
if (s->exponent == 2047) { if (s->exponent == 2047) {
if (s->significand == 0) if (s->significand == 0)
type = VFP_INFINITY; type = VFP_INFINITY;
else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN) else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
type = VFP_QNAN; type = VFP_QNAN;
else else
type = VFP_SNAN; type = VFP_SNAN;
} else if (s->exponent == 0) { } else if (s->exponent == 0) {
if (s->significand == 0) if (s->significand == 0)
type |= VFP_ZERO; type |= VFP_ZERO;
else else
type |= VFP_DENORMAL; type |= VFP_DENORMAL;
} }
return type; return type;
} }
u32 vfp_double_normaliseround(ARMul_State* state, int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); u32 vfp_double_normaliseround(ARMul_State* state, int dd, vfp_double* vd, u32 fpscr, u32 exceptions, const char* func);
u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand); u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
/* // A special flag to tell the normalisation code not to normalise.
* A special flag to tell the normalisation code not to normalise. #define VFP_NAN_FLAG 0x100
*/
#define VFP_NAN_FLAG 0x100
/* // A bit pattern used to indicate the initial (unset) value of the
* A bit pattern used to indicate the initial (unset) value of the // exception mask, in case nothing handles an instruction. This
* exception mask, in case nothing handles an instruction. This // doesn't include the NAN flag, which get masked out before
* doesn't include the NAN flag, which get masked out before // we check for an error.
* we check for an error. #define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG)
*/
#define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG)
/* // A flag to tell vfp instruction type.
* A flag to tell vfp instruction type. // OP_SCALAR - This operation always operates in scalar mode
* OP_SCALAR - this operation always operates in scalar mode // OP_SD - The instruction exceptionally writes to a single precision result.
* OP_SD - the instruction exceptionally writes to a single precision result. // OP_DD - The instruction exceptionally writes to a double precision result.
* OP_DD - the instruction exceptionally writes to a double precision result. // OP_SM - The instruction exceptionally reads from a single precision operand.
* OP_SM - the instruction exceptionally reads from a single precision operand. enum : u32 {
*/ OP_SCALAR = (1 << 0),
#define OP_SCALAR (1 << 0) OP_SD = (1 << 1),
#define OP_SD (1 << 1) OP_DD = (1 << 1),
#define OP_DD (1 << 1) OP_SM = (1 << 2)
#define OP_SM (1 << 2) };
struct op { struct op {
u32 (* const fn)(ARMul_State* state, int dd, int dn, int dm, u32 fpscr); u32 (* const fn)(ARMul_State* state, int dd, int dn, int dm, u32 fpscr);
u32 flags; u32 flags;
}; };
static inline u32 fls(ARMword x) static inline u32 fls(ARMword x)
{ {
int r = 32; int r = 32;
if (!x) if (!x)
return 0; return 0;
if (!(x & 0xffff0000u)) { if (!(x & 0xffff0000u)) {
x <<= 16; x <<= 16;
r -= 16; r -= 16;
} }
if (!(x & 0xff000000u)) { if (!(x & 0xff000000u)) {
x <<= 8; x <<= 8;
r -= 8; r -= 8;
} }
if (!(x & 0xf0000000u)) { if (!(x & 0xf0000000u)) {
x <<= 4; x <<= 4;
r -= 4; r -= 4;
} }
if (!(x & 0xc0000000u)) { if (!(x & 0xc0000000u)) {
x <<= 2; x <<= 2;
r -= 2; r -= 2;
} }
if (!(x & 0x80000000u)) { if (!(x & 0x80000000u)) {
x <<= 1; x <<= 1;
r -= 1; r -= 1;
} }
return r; return r;
} }
u32 vfp_double_normaliseroundintern(ARMul_State* state, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); u32 vfp_double_normaliseroundintern(ARMul_State* state, vfp_double* vd, u32 fpscr, u32 exceptions, const char* func);
u32 vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn, struct vfp_double *vdm, u32 fpscr); u32 vfp_double_multiply(vfp_double* vdd, vfp_double* vdn, vfp_double* vdm, u32 fpscr);
u32 vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn, struct vfp_double *vdm, u32 fpscr); u32 vfp_double_add(vfp_double* vdd, vfp_double* vdn, vfp_double *vdm, u32 fpscr);
u32 vfp_double_fcvtsinterncutting(ARMul_State* state, int sd, struct vfp_double* dm, u32 fpscr); u32 vfp_double_fcvtsinterncutting(ARMul_State* state, int sd, vfp_double* dm, u32 fpscr);

View File

@ -511,7 +511,7 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u
LOG_TRACE(Core_ARM11, "In %s, state=0x%x, fpscr=0x%x\n", __FUNCTION__, state, fpscr); LOG_TRACE(Core_ARM11, "In %s, state=0x%x, fpscr=0x%x\n", __FUNCTION__, state, fpscr);
m = vfp_get_double(state, dm); m = vfp_get_double(state, dm);
if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) { if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) {
ret |= FPSCR_C | FPSCR_V; ret |= FPSCR_CFLAG | FPSCR_VFLAG;
if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
/* /*
* Signalling NaN, or signalling on quiet NaN * Signalling NaN, or signalling on quiet NaN
@ -521,7 +521,7 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u
d = vfp_get_double(state, dd); d = vfp_get_double(state, dd);
if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) { if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) {
ret |= FPSCR_C | FPSCR_V; ret |= FPSCR_CFLAG | FPSCR_VFLAG;
if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
/* /*
* Signalling NaN, or signalling on quiet NaN * Signalling NaN, or signalling on quiet NaN
@ -535,7 +535,7 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u
/* /*
* equal * equal
*/ */
ret |= FPSCR_Z | FPSCR_C; ret |= FPSCR_ZFLAG | FPSCR_CFLAG;
//printf("In %s,1 ret=0x%x\n", __FUNCTION__, ret); //printf("In %s,1 ret=0x%x\n", __FUNCTION__, ret);
} else if (vfp_double_packed_sign(d ^ m)) { } else if (vfp_double_packed_sign(d ^ m)) {
/* /*
@ -545,22 +545,22 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u
/* /*
* d is negative, so d < m * d is negative, so d < m
*/ */
ret |= FPSCR_N; ret |= FPSCR_NFLAG;
else else
/* /*
* d is positive, so d > m * d is positive, so d > m
*/ */
ret |= FPSCR_C; ret |= FPSCR_CFLAG;
} else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) { } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) {
/* /*
* d < m * d < m
*/ */
ret |= FPSCR_N; ret |= FPSCR_NFLAG;
} else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) { } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) {
/* /*
* d > m * d > m
*/ */
ret |= FPSCR_C; ret |= FPSCR_CFLAG;
} }
} }
LOG_TRACE(Core_ARM11, "In %s, state=0x%x, ret=0x%x\n", __FUNCTION__, state, ret); LOG_TRACE(Core_ARM11, "In %s, state=0x%x, ret=0x%x\n", __FUNCTION__, state, ret);

View File

@ -419,7 +419,7 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3
d = vfp_get_float(state, sd); d = vfp_get_float(state, sd);
if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) { if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
ret |= FPSCR_C | FPSCR_V; ret |= FPSCR_CFLAG | FPSCR_VFLAG;
if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
/* /*
* Signalling NaN, or signalling on quiet NaN * Signalling NaN, or signalling on quiet NaN
@ -428,7 +428,7 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3
} }
if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) { if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
ret |= FPSCR_C | FPSCR_V; ret |= FPSCR_CFLAG | FPSCR_VFLAG;
if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
/* /*
* Signalling NaN, or signalling on quiet NaN * Signalling NaN, or signalling on quiet NaN
@ -441,7 +441,7 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3
/* /*
* equal * equal
*/ */
ret |= FPSCR_Z | FPSCR_C; ret |= FPSCR_ZFLAG | FPSCR_CFLAG;
} else if (vfp_single_packed_sign(d ^ m)) { } else if (vfp_single_packed_sign(d ^ m)) {
/* /*
* different signs * different signs
@ -450,22 +450,22 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3
/* /*
* d is negative, so d < m * d is negative, so d < m
*/ */
ret |= FPSCR_N; ret |= FPSCR_NFLAG;
else else
/* /*
* d is positive, so d > m * d is positive, so d > m
*/ */
ret |= FPSCR_C; ret |= FPSCR_CFLAG;
} else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) { } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
/* /*
* d < m * d < m
*/ */
ret |= FPSCR_N; ret |= FPSCR_NFLAG;
} else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) { } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
/* /*
* d > m * d > m
*/ */
ret |= FPSCR_C; ret |= FPSCR_CFLAG;
} }
} }
return ret; return ret;