1
0
Fork 0

audio_core: dsp_hle: add Media Foundation decoder...

* appveyor: switch to Media Foundation API
* Travis CI MinGW build needs an update with the container image
This commit is contained in:
B3N30 2018-12-19 17:12:57 +01:00
parent 1581dea6de
commit 80b4dd21d2
13 changed files with 839 additions and 22 deletions

View File

@ -24,13 +24,8 @@ option(ENABLE_FFMPEG "Enable FFmpeg decoder/encoder" OFF)
option(USE_DISCORD_PRESENCE "Enables Discord Rich Presence" OFF)
<<<<<<< HEAD
=======
option(ENABLE_SCRIPTING "Enables scripting support" OFF)
CMAKE_DEPENDENT_OPTION(ENABLE_MF "Use Media Foundation decoder" ON "WIN32;NOT ENABLE_FFMPEG" OFF)
CMAKE_DEPENDENT_OPTION(CITRA_USE_BUNDLED_FFMPEG "Download bundled FFmpeg binaries" ON "MSVC" OFF)
>>>>>>> CoreAudio::HLE: Add FFmpeg aac decoder
if(NOT EXISTS ${PROJECT_SOURCE_DIR}/.git/hooks/pre-commit)
message(STATUS "Copying pre-commit hook")
file(COPY hooks/pre-commit

View File

@ -43,9 +43,9 @@ before_build:
$COMPAT = if ($env:ENABLE_COMPATIBILITY_REPORTING -eq $null) {0} else {$env:ENABLE_COMPATIBILITY_REPORTING}
if ($env:BUILD_TYPE -eq 'msvc') {
# redirect stderr and change the exit code to prevent powershell from cancelling the build if cmake prints a warning
cmd /C 'cmake -G "Visual Studio 15 2017 Win64" -DCITRA_USE_BUNDLED_QT=1 -DCITRA_USE_BUNDLED_SDL2=1 -DCITRA_ENABLE_COMPATIBILITY_REPORTING=${COMPAT} -DENABLE_COMPATIBILITY_LIST_DOWNLOAD=ON -DUSE_DISCORD_PRESENCE=ON -DENABLE_FFMPEG=ON .. 2>&1 && exit 0'
cmd /C 'cmake -G "Visual Studio 15 2017 Win64" -DCITRA_USE_BUNDLED_QT=1 -DCITRA_USE_BUNDLED_SDL2=1 -DCITRA_ENABLE_COMPATIBILITY_REPORTING=${COMPAT} -DENABLE_COMPATIBILITY_LIST_DOWNLOAD=ON -DUSE_DISCORD_PRESENCE=ON -DENABLE_MF=ON .. 2>&1 && exit 0'
} else {
C:\msys64\usr\bin\bash.exe -lc "cmake -G 'MSYS Makefiles' -DCMAKE_BUILD_TYPE=Release -DENABLE_QT_TRANSLATION=ON -DCITRA_ENABLE_COMPATIBILITY_REPORTING=${COMPAT} -DENABLE_COMPATIBILITY_LIST_DOWNLOAD=ON -DUSE_DISCORD_PRESENCE=ON -DENABLE_FFMPEG=ON .. 2>&1"
C:\msys64\usr\bin\bash.exe -lc "cmake -G 'MSYS Makefiles' -DCMAKE_BUILD_TYPE=Release -DENABLE_QT_TRANSLATION=ON -DCITRA_ENABLE_COMPATIBILITY_REPORTING=${COMPAT} -DENABLE_COMPATIBILITY_LIST_DOWNLOAD=ON -DUSE_DISCORD_PRESENCE=ON -DENABLE_MF=ON .. 2>&1"
}
- cd ..

View File

@ -29,7 +29,7 @@ add_library(audio_core STATIC
$<$<BOOL:${SDL2_FOUND}>:sdl2_sink.cpp sdl2_sink.h>
$<$<BOOL:${ENABLE_CUBEB}>:cubeb_sink.cpp cubeb_sink.h>
$<$<BOOL:${FFMPEG_FOUND}>:hle/aac_decoder.cpp hle/aac_decoder.h hle/ffmpeg_dl.cpp hle/ffmpeg_dl.h>
$<$<BOOL:${ENABLE_MF}>:hle/wmf_decoder.cpp hle/wmf_decoder.h hle/wmf_decoder_utils.cpp hle/wmf_decoder_utils.h hle/adts_reader.c>
)
create_target_directory_groups(audio_core)
@ -37,13 +37,9 @@ create_target_directory_groups(audio_core)
target_link_libraries(audio_core PUBLIC common core)
target_link_libraries(audio_core PRIVATE SoundTouch teakra)
if(FFMPEG_FOUND)
if(UNIX)
target_link_libraries(audio_core PRIVATE FFmpeg::avcodec)
else()
target_include_directories(audio_core PRIVATE ${FFMPEG_DIR}/include)
endif()
target_compile_definitions(audio_core PRIVATE HAVE_FFMPEG)
if(ENABLE_MF)
target_link_libraries(audio_core PRIVATE mf.lib mfplat.lib mfuuid.lib)
target_compile_definitions(audio_core PUBLIC HAVE_MF)
endif()
if(SDL2_FOUND)

31
src/audio_core/hle/adts.h Normal file
View File

@ -0,0 +1,31 @@
#pragma once
#ifndef ADTS_ADT
#define ADTS_ADT
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
struct ADTSData {
bool MPEG2;
uint8_t profile;
uint8_t channels;
uint8_t channel_idx;
uint8_t framecount;
uint8_t samplerate_idx;
uint32_t length;
uint32_t samplerate;
};
typedef struct ADTSData ADTSData;
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
uint32_t parse_adts(char* buffer, struct ADTSData* out);
// last two bytes of MF AAC decoder user data
uint16_t mf_get_aac_tag(struct ADTSData input);
#ifdef __cplusplus
}
#endif // __cplusplus
#endif // ADTS_ADT

View File

@ -0,0 +1,49 @@
#include "adts.h"
const uint32_t freq_table[16] = {96000, 88200, 64000, 48000, 44100, 32000, 24000, 22050,
16000, 12000, 11025, 8000, 7350, 0, 0, 0};
const short channel_table[8] = {0, 1, 2, 3, 4, 5, 6, 8};
uint32_t parse_adts(char* buffer, struct ADTSData* out) {
uint32_t tmp = 0;
// sync word 0xfff
tmp = (buffer[0] << 8) | (buffer[1] & 0xf0);
if ((tmp & 0xffff) != 0xfff0)
return 0;
out->MPEG2 = (buffer[1] >> 3) & 0x1;
// bit 17 to 18
out->profile = (buffer[2] >> 6) + 1;
// bit 19 to 22
tmp = (buffer[2] >> 2) & 0xf;
out->samplerate_idx = tmp;
out->samplerate = (tmp > 15) ? 0 : freq_table[tmp];
// bit 24 to 26
tmp = ((buffer[2] & 0x1) << 2) | ((buffer[3] >> 6) & 0x3);
out->channel_idx = tmp;
out->channels = (tmp > 7) ? 0 : channel_table[tmp];
// bit 55 to 56
out->framecount = (buffer[6] & 0x3) + 1;
// bit 31 to 43
tmp = (buffer[3] & 0x3) << 11;
tmp |= (buffer[4] << 3) & 0x7f8;
tmp |= (buffer[5] >> 5) & 0x7;
out->length = tmp;
return tmp;
}
// last two bytes of MF AAC decoder user data
uint16_t mf_get_aac_tag(struct ADTSData input) {
uint16_t tag = 0;
tag |= input.profile << 11;
tag |= input.samplerate_idx << 7;
tag |= input.channel_idx << 3;
return tag;
}

View File

@ -3,8 +3,8 @@
// Refer to the license.txt file included.
#include "audio_core/audio_types.h"
#ifdef HAVE_FFMPEG
#include "audio_core/hle/aac_decoder.h"
#ifdef HAVE_MF
#include "audio_core/hle/wmf_decoder.h"
#endif
#include "audio_core/hle/common.h"
#include "audio_core/hle/decoder.h"
@ -85,12 +85,12 @@ DspHle::Impl::Impl(DspHle& parent_, Memory::MemorySystem& memory) : parent(paren
source.SetMemory(memory);
}
#ifdef HAVE_FFMPEG
decoder = std::make_unique<HLE::AACDecoder>(memory);
#ifdef HAVE_MF
decoder = std::make_unique<HLE::WMFDecoder>(memory);
#else
LOG_WARNING(Audio_DSP, "FFmpeg missing, this could lead to missing audio");
decoder = std::make_unique<HLE::NullDecoder>();
#endif // HAVE_FFMPEG
#endif // HAVE_MF
Core::Timing& timing = Core::System::GetInstance().CoreTiming();
tick_event =

View File

@ -0,0 +1,254 @@
// Copyright 2018 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "audio_core/hle/wmf_decoder.h"
#include "audio_core/hle/wmf_decoder_utils.h"
namespace AudioCore::HLE {
class WMFDecoder::Impl {
public:
explicit Impl(Memory::MemorySystem& memory);
~Impl();
std::optional<BinaryResponse> ProcessRequest(const BinaryRequest& request);
private:
std::optional<BinaryResponse> Initalize(const BinaryRequest& request);
void Clear();
std::optional<BinaryResponse> Decode(const BinaryRequest& request);
int DecodingLoop(ADTSData adts_header, std::array<std::vector<u8>, 2>& out_streams);
bool initalized = false;
bool selected = false;
Memory::MemorySystem& memory;
IMFTransform* transform = NULL;
DWORD in_stream_id = 0;
DWORD out_stream_id = 0;
};
WMFDecoder::Impl::Impl(Memory::MemorySystem& memory) : memory(memory) {
mf_coinit();
}
WMFDecoder::Impl::~Impl() = default;
std::optional<BinaryResponse> WMFDecoder::Impl::ProcessRequest(const BinaryRequest& request) {
if (request.codec != DecoderCodec::AAC) {
LOG_ERROR(Audio_DSP, "Got unknown codec {}", static_cast<u16>(request.codec));
return {};
}
switch (request.cmd) {
case DecoderCommand::Init: {
LOG_INFO(Audio_DSP, "AACDecoder initializing");
return Initalize(request);
}
case DecoderCommand::Decode: {
return Decode(request);
}
case DecoderCommand::Unknown: {
BinaryResponse response;
std::memcpy(&response, &request, sizeof(response));
response.unknown1 = 0x0;
return response;
}
default:
LOG_ERROR(Audio_DSP, "Got unknown binary request: {}", static_cast<u16>(request.cmd));
return {};
}
}
std::optional<BinaryResponse> WMFDecoder::Impl::Initalize(const BinaryRequest& request) {
if (initalized) {
Clear();
}
BinaryResponse response;
std::memcpy(&response, &request, sizeof(response));
response.unknown1 = 0x0;
if (mf_decoder_init(&transform) != 0) {
LOG_CRITICAL(Audio_DSP, "Can't init decoder");
return response;
}
HRESULT hr = transform->GetStreamIDs(1, &in_stream_id, 1, &out_stream_id);
if (hr == E_NOTIMPL) {
// if not implemented, it means this MFT does not assign stream ID for you
in_stream_id = 0;
out_stream_id = 0;
} else if (FAILED(hr)) {
ReportError("Decoder failed to initialize the stream ID", hr);
SafeRelease(&transform);
return response;
}
initalized = true;
return response;
}
void WMFDecoder::Impl::Clear() {
if (initalized) {
mf_flush(&transform);
mf_deinit(&transform);
}
initalized = false;
selected = false;
}
int WMFDecoder::Impl::DecodingLoop(ADTSData adts_header,
std::array<std::vector<u8>, 2>& out_streams) {
int output_status = 0;
char* output_buffer = NULL;
DWORD output_len = 0;
IMFSample* output = NULL;
while (true) {
output_status = receive_sample(transform, out_stream_id, &output);
// 0 -> okay; 3 -> okay but more data available (buffer too small)
if (output_status == 0 || output_status == 3) {
copy_sample_to_buffer(output, (void**)&output_buffer, &output_len);
// the following was taken from ffmpeg version of the decoder
f32 val_f32;
for (size_t i = 0; i < output_len;) {
for (std::size_t channel = 0; channel < adts_header.channels; channel++) {
std::memcpy(&val_f32, output_buffer + i, sizeof(val_f32));
s16 val = static_cast<s16>(0x7FFF * val_f32);
out_streams[channel].push_back(val & 0xFF);
out_streams[channel].push_back(val >> 8);
i += sizeof(val_f32);
}
}
if (output_buffer)
free(output_buffer);
}
// in case of "ok" only, just return quickly
if (output_status == 0)
return 0;
// for status = 2, reset MF
if (output_status == 2) {
Clear();
return -1;
}
// for status = 3, try again with new buffer
if (output_status == 3)
continue;
return output_status; // return on other status
}
return -1;
}
std::optional<BinaryResponse> WMFDecoder::Impl::Decode(const BinaryRequest& request) {
BinaryResponse response;
response.codec = request.codec;
response.cmd = request.cmd;
response.size = request.size;
response.num_channels = 2;
response.num_samples = 1024;
if (!initalized) {
LOG_DEBUG(Audio_DSP, "Decoder not initalized");
// This is a hack to continue games that are not compiled with the aac codec
return response;
}
if (request.src_addr < Memory::FCRAM_PADDR ||
request.src_addr + request.size > Memory::FCRAM_PADDR + Memory::FCRAM_SIZE) {
LOG_ERROR(Audio_DSP, "Got out of bounds src_addr {:08x}", request.src_addr);
return {};
}
u8* data = memory.GetFCRAMPointer(request.src_addr - Memory::FCRAM_PADDR);
std::array<std::vector<u8>, 2> out_streams;
IMFSample* sample = NULL;
ADTSData adts_header;
char* aac_tag = (char*)calloc(1, 14);
int input_status = 0;
if (detect_mediatype((char*)data, request.size, &adts_header, &aac_tag) != 0) {
LOG_ERROR(Audio_DSP, "Unable to deduce decoding parameters from ADTS stream");
return response;
}
if (!selected) {
LOG_DEBUG(Audio_DSP, "New ADTS stream: channels = {}, sample rate = {}",
adts_header.channels, adts_header.samplerate);
select_input_mediatype(transform, in_stream_id, adts_header, (UINT8*)aac_tag, 14);
select_output_mediatype(transform, out_stream_id);
send_sample(transform, in_stream_id, NULL);
// cache the result from detect_mediatype and call select_*_mediatype only once
// This could increase performance very slightly
transform->ProcessMessage(MFT_MESSAGE_NOTIFY_BEGIN_STREAMING, 0);
selected = true;
}
sample = create_sample((void*)data, request.size, 1, 0);
sample->SetUINT32(MFSampleExtension_CleanPoint, 1);
while (true) {
input_status = send_sample(transform, in_stream_id, sample);
if (DecodingLoop(adts_header, out_streams) < 0) {
// if the decode issues is caused by MFT not accepting new samples, try again
// NOTICE: you are required to check the output even if you already knew/guessed
// MFT didn't accept the input sample
if (input_status == 1) {
// try again
continue;
}
return response;
}
break; // jump out of the loop if at least we don't have obvious issues
}
if (out_streams[0].size() != 0) {
if (request.dst_addr_ch0 < Memory::FCRAM_PADDR ||
request.dst_addr_ch0 + out_streams[0].size() >
Memory::FCRAM_PADDR + Memory::FCRAM_SIZE) {
LOG_ERROR(Audio_DSP, "Got out of bounds dst_addr_ch0 {:08x}", request.dst_addr_ch0);
return {};
}
std::memcpy(memory.GetFCRAMPointer(request.dst_addr_ch0 - Memory::FCRAM_PADDR),
out_streams[0].data(), out_streams[0].size());
}
if (out_streams[1].size() != 0) {
if (request.dst_addr_ch1 < Memory::FCRAM_PADDR ||
request.dst_addr_ch1 + out_streams[1].size() >
Memory::FCRAM_PADDR + Memory::FCRAM_SIZE) {
LOG_ERROR(Audio_DSP, "Got out of bounds dst_addr_ch1 {:08x}", request.dst_addr_ch1);
return {};
}
std::memcpy(memory.GetFCRAMPointer(request.dst_addr_ch1 - Memory::FCRAM_PADDR),
out_streams[1].data(), out_streams[1].size());
}
response.num_channels = adts_header.channels;
return response;
}
WMFDecoder::WMFDecoder(Memory::MemorySystem& memory) : impl(std::make_unique<Impl>(memory)) {}
WMFDecoder::~WMFDecoder() = default;
std::optional<BinaryResponse> WMFDecoder::ProcessRequest(const BinaryRequest& request) {
return impl->ProcessRequest(request);
}
} // namespace AudioCore::HLE

View File

@ -0,0 +1,22 @@
// Copyright 2018 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "audio_core/hle/decoder.h"
namespace AudioCore::HLE {
class WMFDecoder final : public DecoderBase {
public:
explicit WMFDecoder(Memory::MemorySystem& memory);
~WMFDecoder() override;
std::optional<BinaryResponse> ProcessRequest(const BinaryRequest& request) override;
private:
class Impl;
std::unique_ptr<Impl> impl;
};
} // namespace AudioCore::HLE

View File

@ -0,0 +1,366 @@
#include "common/logging/log.h"
#include "wmf_decoder_utils.h"
// utility functions
void ReportError(std::string msg, HRESULT hr) {
if (SUCCEEDED(hr)) {
return;
}
LPSTR err;
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, hr,
// hardcode to use en_US because if any user had problems with this
// we can help them w/o translating anything
MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), (LPSTR)&err, 0, NULL);
if (err != NULL) {
LOG_CRITICAL(Audio_DSP, "{}: {}", msg, err);
}
LOG_CRITICAL(Audio_DSP, "{}: {:08x}", msg, hr);
}
int mf_coinit() {
HRESULT hr = S_OK;
// lite startup is faster and all what we need is included
hr = MFStartup(MF_VERSION, MFSTARTUP_LITE);
if (hr != S_OK) {
// Do you know you can't initialize MF in test mode or safe mode?
ReportError("Failed to initialize Media Foundation", hr);
return -1;
}
LOG_INFO(Audio_DSP, "Media Foundation activated");
return 0;
}
int mf_decoder_init(IMFTransform** transform, GUID audio_format) {
HRESULT hr = S_OK;
MFT_REGISTER_TYPE_INFO reg = {0};
GUID category = MFT_CATEGORY_AUDIO_DECODER;
IMFActivate** activate;
UINT32 num_activate;
reg.guidMajorType = MFMediaType_Audio;
reg.guidSubtype = audio_format;
hr = MFTEnumEx(category,
MFT_ENUM_FLAG_SYNCMFT | MFT_ENUM_FLAG_LOCALMFT | MFT_ENUM_FLAG_SORTANDFILTER,
&reg, NULL, &activate, &num_activate);
if (FAILED(hr) || num_activate < 1) {
ReportError("Failed to enumerate decoders", hr);
CoTaskMemFree(activate);
return -1;
}
LOG_INFO(Audio_DSP, "Windows(R) Media Foundation found {} suitable decoder(s)", num_activate);
for (unsigned int n = 0; n < num_activate; n++) {
hr = activate[n]->ActivateObject(IID_IMFTransform, (void**)transform);
if (FAILED(hr))
*transform = NULL;
activate[n]->Release();
}
if (*transform == NULL) {
ReportError("Failed to initialize MFT", hr);
CoTaskMemFree(activate);
return -1;
}
CoTaskMemFree(activate);
return 0;
}
void mf_deinit(IMFTransform** transform) {
MFShutdownObject(*transform);
SafeRelease(transform);
CoUninitialize();
}
IMFSample* create_sample(void* data, DWORD len, DWORD alignment, LONGLONG duration) {
HRESULT hr = S_OK;
IMFMediaBuffer* buf = NULL;
IMFSample* sample = NULL;
hr = MFCreateSample(&sample);
if (FAILED(hr)) {
ReportError("Unable to allocate a sample", hr);
return NULL;
}
// Yes, the argument for alignment is the actual alignment - 1
hr = MFCreateAlignedMemoryBuffer(len, alignment - 1, &buf);
if (FAILED(hr)) {
ReportError("Unable to allocate a memory buffer for sample", hr);
return NULL;
}
if (data) {
BYTE* buffer;
// lock the MediaBuffer
// this is actually not a thread-safe lock
hr = buf->Lock(&buffer, NULL, NULL);
if (FAILED(hr)) {
SafeRelease(&sample);
SafeRelease(&buf);
return NULL;
}
memcpy(buffer, data, len);
buf->SetCurrentLength(len);
buf->Unlock();
}
sample->AddBuffer(buf);
hr = sample->SetSampleDuration(duration);
SafeRelease(&buf);
return sample;
}
int select_input_mediatype(IMFTransform* transform, int in_stream_id, ADTSData adts,
UINT8* user_data, UINT32 user_data_len, GUID audio_format) {
HRESULT hr = S_OK;
IMFMediaType* t;
// actually you can get rid of the whole block of searching and filtering mess
// if you know the exact parameters of your media stream
hr = MFCreateMediaType(&t);
if (FAILED(hr)) {
ReportError("Unable to create an empty MediaType", hr);
return -1;
}
// basic definition
t->SetGUID(MF_MT_MAJOR_TYPE, MFMediaType_Audio);
t->SetGUID(MF_MT_SUBTYPE, audio_format);
// see https://docs.microsoft.com/en-us/windows/desktop/medfound/aac-decoder#example-media-types
// and https://docs.microsoft.com/zh-cn/windows/desktop/api/mmreg/ns-mmreg-heaacwaveinfo_tag
// for the meaning of the byte array below
// for integrate into a larger project, it is recommended to wrap the parameters into a struct
// and pass that struct into the function
// const UINT8 aac_data[] = { 0x01, 0x00, 0xfe, 00, 00, 00, 00, 00, 00, 00, 00, 00, 0x11, 0x90
// }; 0: raw aac 1: adts 2: adif 3: latm/laos
t->SetUINT32(MF_MT_AAC_PAYLOAD_TYPE, 1);
t->SetUINT32(MF_MT_AUDIO_NUM_CHANNELS, adts.channels);
t->SetUINT32(MF_MT_AUDIO_SAMPLES_PER_SECOND, adts.samplerate);
// 0xfe = 254 = "unspecified"
t->SetUINT32(MF_MT_AAC_AUDIO_PROFILE_LEVEL_INDICATION, 254);
t->SetUINT32(MF_MT_AUDIO_BLOCK_ALIGNMENT, 1);
t->SetBlob(MF_MT_USER_DATA, user_data, user_data_len);
hr = transform->SetInputType(in_stream_id, t, 0);
if (FAILED(hr)) {
ReportError("failed to select input types for MFT", hr);
return -1;
}
return 0;
}
int select_output_mediatype(IMFTransform* transform, int out_stream_id, GUID audio_format) {
HRESULT hr = S_OK;
UINT32 tmp;
IMFMediaType* t;
// If you know what you need and what you are doing, you can specify the condition instead of
// searching but it's better to use search since MFT may or may not support your output
// parameters
for (DWORD i = 0;; i++) {
hr = transform->GetOutputAvailableType(out_stream_id, i, &t);
if (hr == MF_E_NO_MORE_TYPES || hr == E_NOTIMPL) {
return 0;
}
if (FAILED(hr)) {
ReportError("failed to get output types for MFT", hr);
return -1;
}
hr = t->GetUINT32(MF_MT_AUDIO_BITS_PER_SAMPLE, &tmp);
if (FAILED(hr))
continue;
// select PCM-16 format
if (tmp == 32) {
hr = t->SetUINT32(MF_MT_AUDIO_BLOCK_ALIGNMENT, 1);
if (FAILED(hr)) {
ReportError("failed to set MF_MT_AUDIO_BLOCK_ALIGNMENT for MFT on output stream",
hr);
return -1;
}
hr = transform->SetOutputType(out_stream_id, t, 0);
if (FAILED(hr)) {
ReportError("failed to select output types for MFT", hr);
return -1;
}
return 0;
} else {
continue;
}
return -1;
}
ReportError("MFT: Unable to find preferred output format", E_NOTIMPL);
return -1;
}
int detect_mediatype(char* buffer, size_t len, ADTSData* output, char** aac_tag) {
if (len < 7) {
return -1;
}
ADTSData tmp;
UINT8 aac_tmp[] = {0x01, 0x00, 0xfe, 00, 00, 00, 00, 00, 00, 00, 00, 00, 0x00, 0x00};
uint16_t tag = 0;
uint32_t result = parse_adts(buffer, &tmp);
if (result == 0) {
return -1;
}
tag = mf_get_aac_tag(tmp);
aac_tmp[12] |= (tag & 0xff00) >> 8;
aac_tmp[13] |= (tag & 0x00ff);
memcpy(*aac_tag, aac_tmp, 14);
memcpy(output, &tmp, sizeof(ADTSData));
return 0;
}
int mf_flush(IMFTransform** transform) {
HRESULT hr = (*transform)->ProcessMessage(MFT_MESSAGE_COMMAND_FLUSH, 0);
if (FAILED(hr)) {
ReportError("MFT: Flush command failed", hr);
}
hr = (*transform)->ProcessMessage(MFT_MESSAGE_NOTIFY_END_OF_STREAM, 0);
if (FAILED(hr)) {
ReportError("Failed to end streaming for MFT", hr);
}
return 0;
}
int send_sample(IMFTransform* transform, DWORD in_stream_id, IMFSample* in_sample) {
HRESULT hr = S_OK;
if (in_sample) {
hr = transform->ProcessInput(in_stream_id, in_sample, 0);
if (hr == MF_E_NOTACCEPTING) {
return 1; // try again
} else if (FAILED(hr)) {
ReportError("MFT: Failed to process input", hr);
return -1;
} // FAILED(hr)
} else {
hr = transform->ProcessMessage(MFT_MESSAGE_COMMAND_DRAIN, 0);
// ffmpeg: Some MFTs (AC3) will send a frame after each drain command (???), so
// ffmpeg: this is required to make draining actually terminate.
if (FAILED(hr)) {
ReportError("MFT: Failed to drain when processing input", hr);
}
}
return 0;
}
// return: 0: okay; 1: needs more sample; 2: needs reconfiguring; 3: more data available
int receive_sample(IMFTransform* transform, DWORD out_stream_id, IMFSample** out_sample) {
HRESULT hr;
MFT_OUTPUT_DATA_BUFFER out_buffers;
IMFSample* sample = NULL;
MFT_OUTPUT_STREAM_INFO out_info;
DWORD status = 0;
bool mft_create_sample = false;
if (!out_sample) {
ReportError("NULL pointer passed to receive_sample()", MF_E_SAMPLE_NOT_WRITABLE);
return -1;
}
hr = transform->GetOutputStreamInfo(out_stream_id, &out_info);
if (FAILED(hr)) {
ReportError("MFT: Failed to get stream info", hr);
return -1;
}
mft_create_sample = (out_info.dwFlags & MFT_OUTPUT_STREAM_PROVIDES_SAMPLES) ||
(out_info.dwFlags & MFT_OUTPUT_STREAM_CAN_PROVIDE_SAMPLES);
while (true) {
sample = NULL;
*out_sample = NULL;
status = 0;
if (!mft_create_sample) {
sample = create_sample(NULL, out_info.cbSize, out_info.cbAlignment);
if (!sample) {
ReportError("MFT: Unable to allocate memory for samples", hr);
return -1;
}
}
out_buffers.dwStreamID = out_stream_id;
out_buffers.pSample = sample;
hr = transform->ProcessOutput(0, 1, &out_buffers, &status);
if (!FAILED(hr)) {
*out_sample = out_buffers.pSample;
break;
}
if (hr == MF_E_TRANSFORM_NEED_MORE_INPUT) {
// TODO: better handling try again and EOF cases using drain value
return 1;
}
if (hr == MF_E_TRANSFORM_STREAM_CHANGE) {
ReportError("MFT: stream format changed, re-configuration required", hr);
return 2;
}
break;
}
if (out_buffers.dwStatus & MFT_OUTPUT_DATA_BUFFER_INCOMPLETE) {
return 3;
}
// TODO: better handling try again and EOF cases using drain value
if (*out_sample == NULL) {
ReportError("MFT: decoding failure", hr);
return -1;
}
return 0;
}
int copy_sample_to_buffer(IMFSample* sample, void** output, DWORD* len) {
IMFMediaBuffer* buffer;
HRESULT hr = S_OK;
BYTE* data;
hr = sample->GetTotalLength(len);
if (FAILED(hr)) {
ReportError("Failed to get the length of sample buffer", hr);
return -1;
}
sample->ConvertToContiguousBuffer(&buffer);
if (FAILED(hr)) {
ReportError("Failed to get sample buffer", hr);
return -1;
}
hr = buffer->Lock(&data, NULL, NULL);
if (FAILED(hr)) {
ReportError("Failed to lock the buffer", hr);
SafeRelease(&buffer);
return -1;
}
*output = malloc(*len);
memcpy(*output, data, *len);
// if buffer unlock fails, then... whatever, we have already got data
buffer->Unlock();
SafeRelease(&buffer);
return 0;
}

View File

@ -0,0 +1,48 @@
#pragma once
#ifndef MF_DECODER
#define MF_DECODER
#define WINVER _WIN32_WINNT_WIN7
#include <assert.h>
#include <comdef.h>
#include <mfapi.h>
#include <mferror.h>
#include <mfidl.h>
#include <mftransform.h>
#include <stdio.h>
#include <iostream>
#include <string>
#include "adts.h"
// utility functions
template <class T>
void SafeRelease(T** ppT) {
if (*ppT) {
(*ppT)->Release();
*ppT = NULL;
}
}
void ReportError(std::string msg, HRESULT hr);
// exported functions
int mf_coinit();
int mf_decoder_init(IMFTransform** transform, GUID audio_format = MFAudioFormat_AAC);
void mf_deinit(IMFTransform** transform);
IMFSample* create_sample(void* data, DWORD len, DWORD alignment = 1, LONGLONG duration = 0);
int select_input_mediatype(IMFTransform* transform, int in_stream_id, ADTSData adts,
UINT8* user_data, UINT32 user_data_len,
GUID audio_format = MFAudioFormat_AAC);
int detect_mediatype(char* buffer, size_t len, ADTSData* output, char** aac_tag);
int select_output_mediatype(IMFTransform* transform, int out_stream_id,
GUID audio_format = MFAudioFormat_PCM);
int mf_flush(IMFTransform** transform);
int send_sample(IMFTransform* transform, DWORD in_stream_id, IMFSample* in_sample);
int receive_sample(IMFTransform* transform, DWORD out_stream_id, IMFSample** out_sample);
int copy_sample_to_buffer(IMFSample* sample, void** output, DWORD* len);
#endif // MF_DECODER

View File

@ -9,6 +9,7 @@ add_executable(tests
core/hle/kernel/hle_ipc.cpp
core/memory/memory.cpp
core/memory/vm_manager.cpp
audio_core/decoder_tests.cpp
tests.cpp
)
@ -21,7 +22,7 @@ endif()
create_target_directory_groups(tests)
target_link_libraries(tests PRIVATE common core video_core)
target_link_libraries(tests PRIVATE common core video_core audio_core)
target_link_libraries(tests PRIVATE ${PLATFORM_LIBRARIES} catch-single-include nihstro-headers Threads::Threads)
add_test(NAME tests COMMAND tests)

View File

@ -0,0 +1,5 @@
const int fixure_buffer_size = 41;
const unsigned char fixure_buffer[41] = {
0xff, 0xf1, 0x4c, 0x80, 0x05, 0x3f, 0xfc, 0x21, 0x1a, 0x4e, 0xb0, 0x00, 0x00, 0x00,
0x05, 0xfc, 0x4e, 0x1f, 0x08, 0x88, 0x00, 0x00, 0x00, 0xc4, 0x1a, 0x03, 0xfc, 0x9c,
0x3e, 0x1d, 0x08, 0x84, 0x03, 0xd8, 0x3f, 0xe4, 0xe1, 0x20, 0x00, 0x0b, 0x38};

View File

@ -0,0 +1,50 @@
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#ifdef HAVE_MF
#include <catch2/catch.hpp>
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/shared_page.h"
#include "core/memory.h"
#include "audio_core/hle/decoder.h"
#include "audio_core/hle/wmf_decoder.h"
#include "audio_fixures.h"
TEST_CASE("DSP HLE Audio Decoder", "[audio_core]") {
// HACK: see comments of member timing
Core::System::GetInstance().timing = std::make_unique<Core::Timing>();
Core::System::GetInstance().memory = std::make_unique<Memory::MemorySystem>();
Kernel::KernelSystem kernel(*Core::System::GetInstance().memory, 0);
SECTION("decoder should produce correct samples") {
auto process = kernel.CreateProcess(kernel.CreateCodeSet("", 0));
auto decoder =
std::make_unique<AudioCore::HLE::WMFDecoder>(*Core::System::GetInstance().memory);
AudioCore::HLE::BinaryRequest request;
request.codec = AudioCore::HLE::DecoderCodec::AAC;
request.cmd = AudioCore::HLE::DecoderCommand::Init;
// initialize decoder
std::optional<AudioCore::HLE::BinaryResponse> response = decoder->ProcessRequest(request);
request.cmd = AudioCore::HLE::DecoderCommand::Decode;
u8* fcram = Core::System::GetInstance().memory->GetFCRAMPointer(0);
memcpy(fcram, fixure_buffer, fixure_buffer_size);
request.src_addr = Memory::FCRAM_PADDR;
request.dst_addr_ch0 = Memory::FCRAM_PADDR + 1024;
request.dst_addr_ch1 = Memory::FCRAM_PADDR + 1048576; // 1 MB
request.size = fixure_buffer_size;
response = decoder->ProcessRequest(request);
response = decoder->ProcessRequest(request);
// remove this line
request.src_addr = Memory::FCRAM_PADDR;
}
}
#endif