|
|
|
@ -1,7 +1,10 @@
|
|
|
|
|
// Copyright 2014 Citra Emulator Project
|
|
|
|
|
// Copyright 2015 Citra Emulator Project
|
|
|
|
|
// Licensed under GPLv2 or any later version
|
|
|
|
|
// Refer to the license.txt file included.
|
|
|
|
|
|
|
|
|
|
#include <array>
|
|
|
|
|
|
|
|
|
|
#include "common/assert.h"
|
|
|
|
|
#include "common/common_types.h"
|
|
|
|
|
#include "common/logging/log.h"
|
|
|
|
|
#include "common/swap.h"
|
|
|
|
@ -14,126 +17,134 @@
|
|
|
|
|
|
|
|
|
|
namespace Memory {
|
|
|
|
|
|
|
|
|
|
const u32 PAGE_MASK = PAGE_SIZE - 1;
|
|
|
|
|
const int PAGE_BITS = 12;
|
|
|
|
|
|
|
|
|
|
enum class PageType {
|
|
|
|
|
/// Page is unmapped and should cause an access error.
|
|
|
|
|
Unmapped,
|
|
|
|
|
/// Page is mapped to regular memory. This is the only type you can get pointers to.
|
|
|
|
|
Memory,
|
|
|
|
|
/// Page is mapped to a I/O region. Writing and reading to this page is handled by functions.
|
|
|
|
|
Special,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* A (reasonably) fast way of allowing switchable and remmapable process address spaces. It loosely
|
|
|
|
|
* mimics the way a real CPU page table works, but instead is optimized for minimal decoding and
|
|
|
|
|
* fetching requirements when acessing. In the usual case of an access to regular memory, it only
|
|
|
|
|
* requires an indexed fetch and a check for NULL.
|
|
|
|
|
*/
|
|
|
|
|
struct PageTable {
|
|
|
|
|
static const size_t NUM_ENTRIES = 1 << (32 - PAGE_BITS);
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Array of memory pointers backing each page. An entry can only be non-null if the
|
|
|
|
|
* corresponding entry in the `attributes` array is of type `Memory`.
|
|
|
|
|
*/
|
|
|
|
|
std::array<u8*, NUM_ENTRIES> pointers;
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Array of fine grained page attributes. If it is set to any value other than `Memory`, then
|
|
|
|
|
* the corresponding entry in `pointer` MUST be set to null.
|
|
|
|
|
*/
|
|
|
|
|
std::array<PageType, NUM_ENTRIES> attributes;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/// Singular page table used for the singleton process
|
|
|
|
|
static PageTable main_page_table;
|
|
|
|
|
/// Currently active page table
|
|
|
|
|
static PageTable* current_page_table = &main_page_table;
|
|
|
|
|
|
|
|
|
|
static void MapPages(u32 base, u32 size, u8* memory, PageType type) {
|
|
|
|
|
LOG_DEBUG(HW_Memory, "Mapping %p onto %08X-%08X", memory, base * PAGE_SIZE, (base + size) * PAGE_SIZE);
|
|
|
|
|
|
|
|
|
|
u32 end = base + size;
|
|
|
|
|
|
|
|
|
|
while (base != end) {
|
|
|
|
|
ASSERT_MSG(base < PageTable::NUM_ENTRIES, "out of range mapping at %08X", base);
|
|
|
|
|
|
|
|
|
|
if (current_page_table->attributes[base] != PageType::Unmapped) {
|
|
|
|
|
LOG_ERROR(HW_Memory, "overlapping memory ranges at %08X", base * PAGE_SIZE);
|
|
|
|
|
}
|
|
|
|
|
current_page_table->attributes[base] = type;
|
|
|
|
|
current_page_table->pointers[base] = memory;
|
|
|
|
|
|
|
|
|
|
base += 1;
|
|
|
|
|
memory += PAGE_SIZE;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void InitMemoryMap() {
|
|
|
|
|
main_page_table.pointers.fill(nullptr);
|
|
|
|
|
main_page_table.attributes.fill(PageType::Unmapped);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MapMemoryRegion(VAddr base, u32 size, u8* target) {
|
|
|
|
|
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
|
|
|
|
|
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
|
|
|
|
|
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MapIoRegion(VAddr base, u32 size) {
|
|
|
|
|
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
|
|
|
|
|
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
|
|
|
|
|
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
inline void Read(T &var, const VAddr vaddr) {
|
|
|
|
|
// TODO: Figure out the fastest order of tests for both read and write (they are probably different).
|
|
|
|
|
// TODO: Make sure this represents the mirrors in a correct way.
|
|
|
|
|
// Could just do a base-relative read, too.... TODO
|
|
|
|
|
T Read(const VAddr vaddr) {
|
|
|
|
|
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
|
|
|
|
|
if (page_pointer) {
|
|
|
|
|
return *reinterpret_cast<const T*>(page_pointer + (vaddr & PAGE_MASK));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Kernel memory command buffer
|
|
|
|
|
if (vaddr >= TLS_AREA_VADDR && vaddr < TLS_AREA_VADDR_END) {
|
|
|
|
|
var = *((const T*)&g_tls_mem[vaddr - TLS_AREA_VADDR]);
|
|
|
|
|
|
|
|
|
|
// ExeFS:/.code is loaded here
|
|
|
|
|
} else if ((vaddr >= PROCESS_IMAGE_VADDR) && (vaddr < PROCESS_IMAGE_VADDR_END)) {
|
|
|
|
|
var = *((const T*)&g_exefs_code[vaddr - PROCESS_IMAGE_VADDR]);
|
|
|
|
|
|
|
|
|
|
// FCRAM - linear heap
|
|
|
|
|
} else if ((vaddr >= LINEAR_HEAP_VADDR) && (vaddr < LINEAR_HEAP_VADDR_END)) {
|
|
|
|
|
var = *((const T*)&g_heap_linear[vaddr - LINEAR_HEAP_VADDR]);
|
|
|
|
|
|
|
|
|
|
// FCRAM - application heap
|
|
|
|
|
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
|
|
|
|
|
var = *((const T*)&g_heap[vaddr - HEAP_VADDR]);
|
|
|
|
|
|
|
|
|
|
// Shared memory
|
|
|
|
|
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
|
|
|
|
|
var = *((const T*)&g_shared_mem[vaddr - SHARED_MEMORY_VADDR]);
|
|
|
|
|
|
|
|
|
|
// Config memory
|
|
|
|
|
} else if ((vaddr >= CONFIG_MEMORY_VADDR) && (vaddr < CONFIG_MEMORY_VADDR_END)) {
|
|
|
|
|
const u8* raw_memory = (const u8*)&ConfigMem::config_mem;
|
|
|
|
|
var = *((const T*)&raw_memory[vaddr - CONFIG_MEMORY_VADDR]);
|
|
|
|
|
|
|
|
|
|
// Shared page
|
|
|
|
|
} else if ((vaddr >= SHARED_PAGE_VADDR) && (vaddr < SHARED_PAGE_VADDR_END)) {
|
|
|
|
|
const u8* raw_memory = (const u8*)&SharedPage::shared_page;
|
|
|
|
|
var = *((const T*)&raw_memory[vaddr - SHARED_PAGE_VADDR]);
|
|
|
|
|
|
|
|
|
|
// DSP memory
|
|
|
|
|
} else if ((vaddr >= DSP_RAM_VADDR) && (vaddr < DSP_RAM_VADDR_END)) {
|
|
|
|
|
var = *((const T*)&g_dsp_mem[vaddr - DSP_RAM_VADDR]);
|
|
|
|
|
|
|
|
|
|
// VRAM
|
|
|
|
|
} else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) {
|
|
|
|
|
var = *((const T*)&g_vram[vaddr - VRAM_VADDR]);
|
|
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
LOG_ERROR(HW_Memory, "unknown Read%lu @ 0x%08X", sizeof(var) * 8, vaddr);
|
|
|
|
|
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
|
|
|
|
|
switch (type) {
|
|
|
|
|
case PageType::Unmapped:
|
|
|
|
|
LOG_ERROR(HW_Memory, "unmapped Read%lu @ 0x%08X", sizeof(T) * 8, vaddr);
|
|
|
|
|
return 0;
|
|
|
|
|
case PageType::Memory:
|
|
|
|
|
ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
|
|
|
|
|
case PageType::Special:
|
|
|
|
|
LOG_ERROR(HW_Memory, "I/O reads aren't implemented yet @ %08X", vaddr);
|
|
|
|
|
return 0;
|
|
|
|
|
default:
|
|
|
|
|
UNREACHABLE();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
inline void Write(const VAddr vaddr, const T data) {
|
|
|
|
|
void Write(const VAddr vaddr, const T data) {
|
|
|
|
|
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
|
|
|
|
|
if (page_pointer) {
|
|
|
|
|
*reinterpret_cast<T*>(page_pointer + (vaddr & PAGE_MASK)) = data;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Kernel memory command buffer
|
|
|
|
|
if (vaddr >= TLS_AREA_VADDR && vaddr < TLS_AREA_VADDR_END) {
|
|
|
|
|
*(T*)&g_tls_mem[vaddr - TLS_AREA_VADDR] = data;
|
|
|
|
|
|
|
|
|
|
// ExeFS:/.code is loaded here
|
|
|
|
|
} else if ((vaddr >= PROCESS_IMAGE_VADDR) && (vaddr < PROCESS_IMAGE_VADDR_END)) {
|
|
|
|
|
*(T*)&g_exefs_code[vaddr - PROCESS_IMAGE_VADDR] = data;
|
|
|
|
|
|
|
|
|
|
// FCRAM - linear heap
|
|
|
|
|
} else if ((vaddr >= LINEAR_HEAP_VADDR) && (vaddr < LINEAR_HEAP_VADDR_END)) {
|
|
|
|
|
*(T*)&g_heap_linear[vaddr - LINEAR_HEAP_VADDR] = data;
|
|
|
|
|
|
|
|
|
|
// FCRAM - application heap
|
|
|
|
|
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
|
|
|
|
|
*(T*)&g_heap[vaddr - HEAP_VADDR] = data;
|
|
|
|
|
|
|
|
|
|
// Shared memory
|
|
|
|
|
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
|
|
|
|
|
*(T*)&g_shared_mem[vaddr - SHARED_MEMORY_VADDR] = data;
|
|
|
|
|
|
|
|
|
|
// VRAM
|
|
|
|
|
} else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) {
|
|
|
|
|
*(T*)&g_vram[vaddr - VRAM_VADDR] = data;
|
|
|
|
|
|
|
|
|
|
// DSP memory
|
|
|
|
|
} else if ((vaddr >= DSP_RAM_VADDR) && (vaddr < DSP_RAM_VADDR_END)) {
|
|
|
|
|
*(T*)&g_dsp_mem[vaddr - DSP_RAM_VADDR] = data;
|
|
|
|
|
|
|
|
|
|
//} else if ((vaddr & 0xFFFF0000) == 0x1FF80000) {
|
|
|
|
|
// ASSERT_MSG(MEMMAP, false, "umimplemented write to Configuration Memory");
|
|
|
|
|
//} else if ((vaddr & 0xFFFFF000) == 0x1FF81000) {
|
|
|
|
|
// ASSERT_MSG(MEMMAP, false, "umimplemented write to shared page");
|
|
|
|
|
|
|
|
|
|
// Error out...
|
|
|
|
|
} else {
|
|
|
|
|
LOG_ERROR(HW_Memory, "unknown Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, vaddr);
|
|
|
|
|
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
|
|
|
|
|
switch (type) {
|
|
|
|
|
case PageType::Unmapped:
|
|
|
|
|
LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32) data, vaddr);
|
|
|
|
|
return;
|
|
|
|
|
case PageType::Memory:
|
|
|
|
|
ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
|
|
|
|
|
case PageType::Special:
|
|
|
|
|
LOG_ERROR(HW_Memory, "I/O writes aren't implemented yet @ %08X", vaddr);
|
|
|
|
|
return;
|
|
|
|
|
default:
|
|
|
|
|
UNREACHABLE();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u8* GetPointer(const VAddr vaddr) {
|
|
|
|
|
// Kernel memory command buffer
|
|
|
|
|
if (vaddr >= TLS_AREA_VADDR && vaddr < TLS_AREA_VADDR_END) {
|
|
|
|
|
return g_tls_mem + (vaddr - TLS_AREA_VADDR);
|
|
|
|
|
|
|
|
|
|
// ExeFS:/.code is loaded here
|
|
|
|
|
} else if ((vaddr >= PROCESS_IMAGE_VADDR) && (vaddr < PROCESS_IMAGE_VADDR_END)) {
|
|
|
|
|
return g_exefs_code + (vaddr - PROCESS_IMAGE_VADDR);
|
|
|
|
|
|
|
|
|
|
// FCRAM - linear heap
|
|
|
|
|
} else if ((vaddr >= LINEAR_HEAP_VADDR) && (vaddr < LINEAR_HEAP_VADDR_END)) {
|
|
|
|
|
return g_heap_linear + (vaddr - LINEAR_HEAP_VADDR);
|
|
|
|
|
|
|
|
|
|
// FCRAM - application heap
|
|
|
|
|
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
|
|
|
|
|
return g_heap + (vaddr - HEAP_VADDR);
|
|
|
|
|
|
|
|
|
|
// Shared memory
|
|
|
|
|
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
|
|
|
|
|
return g_shared_mem + (vaddr - SHARED_MEMORY_VADDR);
|
|
|
|
|
|
|
|
|
|
// VRAM
|
|
|
|
|
} else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) {
|
|
|
|
|
return g_vram + (vaddr - VRAM_VADDR);
|
|
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr);
|
|
|
|
|
return 0;
|
|
|
|
|
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
|
|
|
|
|
if (page_pointer) {
|
|
|
|
|
return page_pointer + (vaddr & PAGE_MASK);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr);
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u8* GetPhysicalPointer(PAddr address) {
|
|
|
|
@ -141,27 +152,19 @@ u8* GetPhysicalPointer(PAddr address) {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u8 Read8(const VAddr addr) {
|
|
|
|
|
u8 data = 0;
|
|
|
|
|
Read<u8>(data, addr);
|
|
|
|
|
return data;
|
|
|
|
|
return Read<u8>(addr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u16 Read16(const VAddr addr) {
|
|
|
|
|
u16_le data = 0;
|
|
|
|
|
Read<u16_le>(data, addr);
|
|
|
|
|
return data;
|
|
|
|
|
return Read<u16_le>(addr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u32 Read32(const VAddr addr) {
|
|
|
|
|
u32_le data = 0;
|
|
|
|
|
Read<u32_le>(data, addr);
|
|
|
|
|
return data;
|
|
|
|
|
return Read<u32_le>(addr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u64 Read64(const VAddr addr) {
|
|
|
|
|
u64_le data = 0;
|
|
|
|
|
Read<u64_le>(data, addr);
|
|
|
|
|
return data;
|
|
|
|
|
return Read<u64_le>(addr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void Write8(const VAddr addr, const u8 data) {
|
|
|
|
|