1
0
Fork 0

dyncom: Implemented LDREXD/STREXD/LDREXH/STREXH

This commit is contained in:
bunnei 2015-01-02 14:21:03 -05:00
parent 3b2da87080
commit dd8a57cb80
3 changed files with 276 additions and 221 deletions

View File

@ -136,7 +136,6 @@ const ISEITEM arm_instruction[] = {
{ "pkhbt", 2, 6, 20, 27, 0x00000068, 4, 6, 0x00000001 },
{ "smul", 3, 4, 20, 27, 0x00000016, 7, 7, 0x00000001, 4, 4, 0x00000000 },
{ "smlalxy", 3, 4, 20, 27, 0x00000014, 7, 7, 0x00000001, 4, 4, 0x00000000 },
// {"smlal" , 2 , 4 , 21, 27, 0x00000007, 4, 7, 0x00000009},
{ "smla", 3, 4, 20, 27, 0x00000010, 7, 7, 0x00000001, 4, 4, 0x00000000 },
{ "mcrr", 1, 6, 20, 27, 0x000000c4 },
{ "mrrc", 1, 6, 20, 27, 0x000000c5 },
@ -194,6 +193,10 @@ const ISEITEM arm_instruction[] = {
{ "ldc", 2, 0, 25, 27, 0x00000006, 20, 20, 0x00000001 },
{ "swi", 1, 0, 24, 27, 0x0000000f },
{ "bbl", 1, 0, 25, 27, 0x00000005 },
{ "ldrexd", 2, ARMV6K, 20, 27, 0x0000001B, 4, 7, 0x00000009 },
{ "strexd", 2, ARMV6K, 20, 27, 0x0000001A, 4, 7, 0x00000009 },
{ "ldrexh", 2, ARMV6K, 20, 27, 0x0000001F, 4, 7, 0x00000009 },
{ "strexh", 2, ARMV6K, 20, 27, 0x0000001E, 4, 7, 0x00000009 },
};
const ISEITEM arm_exclusion_code[] = {
@ -383,6 +386,11 @@ const ISEITEM arm_exclusion_code[] = {
{ "ldc", 0, 0, 0 },
{ "swi", 0, 0, 0 },
{ "bbl", 0, 0, 0 },
{ "ldrexd", 0, ARMV6K, 0 },
{ "strexd", 0, ARMV6K, 0 },
{ "ldrexh", 0, ARMV6K, 0 },
{ "strexh", 0, ARMV6K, 0 },
{ "bl_1_thumb", 0, INVALID, 0 }, // Should be table[-4]
{ "bl_2_thumb", 0, INVALID, 0 }, // Should be located at the end of the table[-3]
{ "blx_1_thumb", 0, INVALID, 0 }, // Should be located at table[-2]
@ -395,6 +403,7 @@ int decode_arm_instr(uint32_t instr, int32_t *idx) {
int ret = DECODE_FAILURE;
int i = 0;
int instr_slots = sizeof(arm_instruction) / sizeof(ISEITEM);
for (i = 0; i < instr_slots; i++) {
n = arm_instruction[i].attribute_value;
base = 0;

View File

@ -1,153 +1,117 @@
/* Copyright (C)
* 2012 - Michael.Kang blackfin.kang@gmail.com
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/
// Copyright 2012 Michael Kang, 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
/**
* @file arm_dyncom_dec.h
* @brief Some common utility for arm instruction decoder
* @author Michael.Kang blackfin.kang@gmail.com
* @version 7849
* @date 2012-03-15
*/
#pragma once
#ifndef __ARM_DYNCOM_DEC__
#define __ARM_DYNCOM_DEC__
#define BITS(a,b) ((instr >> (a)) & ((1 << (1+(b)-(a)))-1))
#define BIT(n) ((instr >> (n)) & 1)
#define BAD do { printf("meet BAD at %s, instr is %x\n", __FUNCTION__, instr ); } while(0);
#define ptr_N cpu->ptr_N
#define ptr_Z cpu->ptr_Z
#define ptr_C cpu->ptr_C
#define ptr_V cpu->ptr_V
#define ptr_I cpu->ptr_I
#define ptr_T cpu->ptr_T
#define ptr_CPSR cpu->ptr_gpr[16]
#define BITS(a,b) ((instr >> (a)) & ((1 << (1+(b)-(a)))-1))
#define BIT(n) ((instr >> (n)) & 1)
#define BAD do{printf("meet BAD at %s, instr is %x\n", __FUNCTION__, instr ); /*exit(0);*/}while(0);
#define ptr_N cpu->ptr_N
#define ptr_Z cpu->ptr_Z
#define ptr_C cpu->ptr_C
#define ptr_V cpu->ptr_V
#define ptr_I cpu->ptr_I
#define ptr_T cpu->ptr_T
#define ptr_CPSR cpu->ptr_gpr[16]
// For MUL instructions
#define RDHi ((instr >> 16) & 0xF)
#define RDLo ((instr >> 12) & 0xF)
#define MUL_RD ((instr >> 16) & 0xF)
#define MUL_RN ((instr >> 12) & 0xF)
#define RS ((instr >> 8) & 0xF)
#define RD ((instr >> 12) & 0xF)
#define RN ((instr >> 16) & 0xF)
#define RM (instr & 0xF)
/* for MUL instructions */
/*xxxx xxxx xxxx 1111 xxxx xxxx xxxx xxxx */
#define RDHi ((instr >> 16) & 0xF)
/*xxxx xxxx xxxx xxxx 1111 xxxx xxxx xxxx */
#define RDLo ((instr >> 12) & 0xF)
/*xxxx xxxx xxxx 1111 xxxx xxxx xxxx xxxx */
#define MUL_RD ((instr >> 16) & 0xF)
/*xxxx xxxx xxxx xxxx 1111 xxxx xxxx xxxx */
#define MUL_RN ((instr >> 12) & 0xF)
/*xxxx xxxx xxxx xxxx xxxx 1111 xxxx xxxx */
#define RS ((instr >> 8) & 0xF)
// CP15 registers
#define OPCODE_1 BITS(21, 23)
#define CRn BITS(16, 19)
#define CRm BITS(0, 3)
#define OPCODE_2 BITS(5, 7)
/*xxxx xxxx xxxx xxxx 1111 xxxx xxxx xxxx */
#define RD ((instr >> 12) & 0xF)
/*xxxx xxxx xxxx 1111 xxxx xxxx xxxx xxxx */
#define RN ((instr >> 16) & 0xF)
/*xxxx xxxx xxxx xxxx xxxx xxxx xxxx 1111 */
#define RM (instr & 0xF)
#define I BIT(25)
#define S BIT(20)
/* CP15 registers */
#define OPCODE_1 BITS(21, 23)
#define CRn BITS(16, 19)
#define CRm BITS(0, 3)
#define OPCODE_2 BITS(5, 7)
#define SHIFT BITS(5,6)
#define SHIFT_IMM BITS(7,11)
#define IMMH BITS(8,11)
#define IMML BITS(0,3)
/*xxxx xx1x xxxx xxxx xxxx xxxx xxxx xxxx */
#define I BIT(25)
/*xxxx xxxx xxx1 xxxx xxxx xxxx xxxx xxxx */
#define S BIT(20)
#define LSPBIT BIT(24)
#define LSUBIT BIT(23)
#define LSBBIT BIT(22)
#define LSWBIT BIT(21)
#define LSLBIT BIT(20)
#define LSSHBITS BITS(5,6)
#define OFFSET12 BITS(0,11)
#define SBIT BIT(20)
#define DESTReg (BITS (12, 15))
#define SHIFT BITS(5,6)
#define SHIFT_IMM BITS(7,11)
#define IMMH BITS(8,11)
#define IMML BITS(0,3)
#define LSPBIT BIT(24)
#define LSUBIT BIT(23)
#define LSBBIT BIT(22)
#define LSWBIT BIT(21)
#define LSLBIT BIT(20)
#define LSSHBITS BITS(5,6)
#define OFFSET12 BITS(0,11)
#define SBIT BIT(20)
#define DESTReg (BITS (12, 15))
/* they are in unused state, give a corrent value when using */
// They are in unused state, give a corrent value when using
#define IS_V5E 0
#define IS_V5 0
#define IS_V6 0
#define LHSReg 0
/* temp define the using the pc reg need implement a flow */
#define STORE_CHECK_RD_PC ADD(R(RD), CONST(INSTR_SIZE * 2))
// Temp define the using the pc reg need implement a flow
#define STORE_CHECK_RD_PC ADD(R(RD), CONST(INSTR_SIZE * 2))
#define OPERAND operand(cpu,instr,bb,NULL)
#define SCO_OPERAND(sco) operand(cpu,instr,bb,sco)
#define BOPERAND boperand(instr)
#define OPERAND operand(cpu,instr,bb,NULL)
#define SCO_OPERAND(sco) operand(cpu,instr,bb,sco)
#define BOPERAND boperand(instr)
#define CHECK_RN_PC (RN==15? ADD(AND(R(RN), CONST(~0x1)), CONST(INSTR_SIZE * 2)):R(RN))
#define CHECK_RN_PC_WA (RN==15? ADD(AND(R(RN), CONST(~0x3)), CONST(INSTR_SIZE * 2)):R(RN))
#define CHECK_RN_PC (RN == 15 ? ADD(AND(R(RN), CONST(~0x1)), CONST(INSTR_SIZE * 2)) : R(RN))
#define CHECK_RN_PC_WA (RN == 15 ? ADD(AND(R(RN), CONST(~0x3)), CONST(INSTR_SIZE * 2)) : R(RN))
#define GET_USER_MODE() (OR(ICMP_EQ(R(MODE_REG), CONST(USER32MODE)), ICMP_EQ(R(MODE_REG), CONST(SYSTEM32MODE))))
#define GET_USER_MODE() (OR(ICMP_EQ(R(MODE_REG), CONST(USER32MODE)), ICMP_EQ(R(MODE_REG), CONST(SYSTEM32MODE))))
int decode_arm_instr(uint32_t instr, int32_t *idx);
enum DECODE_STATUS {
DECODE_SUCCESS,
DECODE_FAILURE
DECODE_SUCCESS,
DECODE_FAILURE
};
struct instruction_set_encoding_item {
const char *name;
int attribute_value;
int version;
u32 content[21];
const char *name;
int attribute_value;
int version;
u32 content[21];
};
typedef struct instruction_set_encoding_item ISEITEM;
#define RECORD_WB(value, flag) {cpu->dyncom_engine->wb_value = value;cpu->dyncom_engine->wb_flag = flag;}
#define RECORD_WB(value, flag) { cpu->dyncom_engine->wb_value = value;cpu->dyncom_engine->wb_flag = flag; }
#define INIT_WB(wb_value, wb_flag) RECORD_WB(wb_value, wb_flag)
#define EXECUTE_WB(base_reg) {if(cpu->dyncom_engine->wb_flag) \
LET(base_reg, cpu->dyncom_engine->wb_value);}
inline int get_reg_count(uint32_t instr){
int i = BITS(0,15);
int count = 0;
while(i){
if(i & 1)
count ++;
i = i >> 1;
}
return count;
#define EXECUTE_WB(base_reg) { if(cpu->dyncom_engine->wb_flag) LET(base_reg, cpu->dyncom_engine->wb_value); }
inline int get_reg_count(uint32_t instr) {
int i = BITS(0, 15);
int count = 0;
while (i) {
if (i & 1)
count++;
i = i >> 1;
}
return count;
}
enum ARMVER {
INVALID = 0,
ARMALL,
ARMV4,
ARMV4T,
ARMV5T,
ARMV5TE,
ARMV5TEJ,
ARMV6,
ARM1176JZF_S,
ARMVFP2,
ARMVFP3
INVALID = 0,
ARMALL,
ARMV4,
ARMV4T,
ARMV5T,
ARMV5TE,
ARMV5TEJ,
ARMV6,
ARM1176JZF_S,
ARMVFP2,
ARMVFP3,
ARMV6K,
};
//extern const INSTRACT arm_instruction_action[];
extern const ISEITEM arm_instruction[];
#endif

View File

@ -622,9 +622,7 @@ void LdnStM(DecrementAfter)(arm_processor *cpu, unsigned int inst, unsigned int
}
unsigned int rn = CHECK_READ_REG15_WA(cpu, Rn);
unsigned int start_addr = rn - count * 4 + 4;
unsigned int end_addr = rn;
virt_addr = end_addr;
virt_addr = start_addr;
if (CondPassed(cpu, BITS(inst, 28, 31)) && BIT(inst, 21)) {
@ -1104,10 +1102,10 @@ typedef struct _blx_1_thumb {
}blx_1_thumb;
typedef struct _pkh_inst {
u32 Rm;
u32 Rn;
u32 Rd;
u8 imm;
unsigned int Rm;
unsigned int Rn;
unsigned int Rd;
unsigned char imm;
} pkh_inst;
typedef arm_inst * ARM_INST_PTR;
@ -1740,40 +1738,31 @@ ARM_INST_PTR INTERPRETER_TRANSLATE(ldrd)(unsigned int inst, int index)
return inst_base;
}
ARM_INST_PTR INTERPRETER_TRANSLATE(ldrex)(unsigned int inst, int index)
{
arm_inst *inst_base = (arm_inst *)AllocBuffer(sizeof(arm_inst) + sizeof(ldst_inst));
ldst_inst *inst_cream = (ldst_inst *)inst_base->component;
arm_inst *inst_base = (arm_inst *)AllocBuffer(sizeof(arm_inst) + sizeof(generic_arm_inst));
generic_arm_inst *inst_cream = (generic_arm_inst *)inst_base->component;
inst_base->cond = BITS(inst, 28, 31);
inst_base->idx = index;
inst_base->br = NON_BRANCH;
inst_base->idx = index;
inst_base->br = (BITS(inst, 12, 15) == 15) ? INDIRECT_BRANCH : NON_BRANCH; // Branch if dest is R15
inst_cream->inst = inst;
//inst_cream->get_addr = get_calc_addr_op(inst);
inst_cream->Rn = BITS(inst, 16, 19);
inst_cream->Rd = BITS(inst, 12, 15);
if (BITS(inst, 12, 15) == 15) {
inst_base->br = INDIRECT_BRANCH;
}
return inst_base;
}
ARM_INST_PTR INTERPRETER_TRANSLATE(ldrexb)(unsigned int inst, int index)
{
arm_inst *inst_base = (arm_inst *)AllocBuffer(sizeof(arm_inst) + sizeof(ldst_inst));
ldst_inst *inst_cream = (ldst_inst *)inst_base->component;
inst_base->cond = BITS(inst, 28, 31);
inst_base->idx = index;
inst_base->br = NON_BRANCH;
inst_cream->inst = inst;
inst_cream->get_addr = get_calc_addr_op(inst);
if (BITS(inst, 12, 15) == 15) {
inst_base->br = INDIRECT_BRANCH;
}
return inst_base;
return INTERPRETER_TRANSLATE(ldrex)(inst, index);
}
ARM_INST_PTR INTERPRETER_TRANSLATE(ldrexh)(unsigned int inst, int index)
{
return INTERPRETER_TRANSLATE(ldrex)(inst, index);
}
ARM_INST_PTR INTERPRETER_TRANSLATE(ldrexd)(unsigned int inst, int index)
{
return INTERPRETER_TRANSLATE(ldrex)(inst, index);
}
ARM_INST_PTR INTERPRETER_TRANSLATE(ldrh)(unsigned int inst, int index)
{
@ -2623,37 +2612,30 @@ ARM_INST_PTR INTERPRETER_TRANSLATE(strd)(unsigned int inst, int index){
}
ARM_INST_PTR INTERPRETER_TRANSLATE(strex)(unsigned int inst, int index)
{
arm_inst *inst_base = (arm_inst *)AllocBuffer(sizeof(arm_inst) + sizeof(ldst_inst));
ldst_inst *inst_cream = (ldst_inst *)inst_base->component;
arm_inst *inst_base = (arm_inst *)AllocBuffer(sizeof(arm_inst) + sizeof(generic_arm_inst));
generic_arm_inst *inst_cream = (generic_arm_inst *)inst_base->component;
inst_base->cond = BITS(inst, 28, 31);
inst_base->idx = index;
inst_base->br = NON_BRANCH;
inst_base->idx = index;
inst_base->br = NON_BRANCH;
inst_cream->inst = inst;
inst_cream->get_addr = get_calc_addr_op(inst);
inst_cream->Rn = BITS(inst, 16, 19);
inst_cream->Rd = BITS(inst, 12, 15);
inst_cream->Rm = BITS(inst, 0, 3);
if (BITS(inst, 12, 15) == 15) {
inst_base->br = INDIRECT_BRANCH;
}
return inst_base;
}
ARM_INST_PTR INTERPRETER_TRANSLATE(strexb)(unsigned int inst, int index)
{
arm_inst *inst_base = (arm_inst *)AllocBuffer(sizeof(arm_inst) + sizeof(ldst_inst));
ldst_inst *inst_cream = (ldst_inst *)inst_base->component;
inst_base->cond = BITS(inst, 28, 31);
inst_base->idx = index;
inst_base->br = NON_BRANCH;
inst_cream->inst = inst;
inst_cream->get_addr = get_calc_addr_op(inst);
if (BITS(inst, 12, 15) == 15) {
inst_base->br = INDIRECT_BRANCH;
}
return inst_base;
return INTERPRETER_TRANSLATE(strex)(inst, index);
}
ARM_INST_PTR INTERPRETER_TRANSLATE(strexh)(unsigned int inst, int index)
{
return INTERPRETER_TRANSLATE(strex)(inst, index);
}
ARM_INST_PTR INTERPRETER_TRANSLATE(strexd)(unsigned int inst, int index)
{
return INTERPRETER_TRANSLATE(strex)(inst, index);
}
ARM_INST_PTR INTERPRETER_TRANSLATE(strh)(unsigned int inst, int index)
{
@ -3355,6 +3337,11 @@ const transop_fp_t arm_instruction_trans[] = {
INTERPRETER_TRANSLATE(ldc),
INTERPRETER_TRANSLATE(swi),
INTERPRETER_TRANSLATE(bbl),
INTERPRETER_TRANSLATE(ldrexd),
INTERPRETER_TRANSLATE(strexd),
INTERPRETER_TRANSLATE(ldrexh),
INTERPRETER_TRANSLATE(strexh),
// All the thumb instructions should be placed the end of table
INTERPRETER_TRANSLATE(b_2_thumb),
INTERPRETER_TRANSLATE(b_cond_thumb),
@ -3551,6 +3538,7 @@ unsigned InterpreterMainLoop(ARMul_State* state) {
#define CRm inst_cream->crm
#define CP15_REG(n) cpu->CP15[CP15(n)]
#define RD cpu->Reg[inst_cream->Rd]
#define RD2 cpu->Reg[inst_cream->Rd + 1]
#define RN cpu->Reg[inst_cream->Rn]
#define RM cpu->Reg[inst_cream->Rm]
#define RS cpu->Reg[inst_cream->Rs]
@ -3762,14 +3750,18 @@ unsigned InterpreterMainLoop(ARMul_State* state) {
case 182: goto LDC_INST; \
case 183: goto SWI_INST; \
case 184: goto BBL_INST; \
case 185: goto B_2_THUMB ; \
case 186: goto B_COND_THUMB ; \
case 187: goto BL_1_THUMB ; \
case 188: goto BL_2_THUMB ; \
case 189: goto BLX_1_THUMB ; \
case 190: goto DISPATCH; \
case 191: goto INIT_INST_LENGTH; \
case 192: goto END; \
case 185: goto LDREXD_INST; \
case 186: goto STREXD_INST; \
case 187: goto LDREXH_INST; \
case 188: goto STREXH_INST; \
case 189: goto B_2_THUMB ; \
case 190: goto B_COND_THUMB ; \
case 191: goto BL_1_THUMB ; \
case 192: goto BL_2_THUMB ; \
case 193: goto BLX_1_THUMB ; \
case 194: goto DISPATCH; \
case 195: goto INIT_INST_LENGTH; \
case 196: goto END; \
}
#endif
@ -3830,8 +3822,9 @@ unsigned InterpreterMainLoop(ARMul_State* state) {
&&MLA_INST,&&SSAT_INST,&&USAT_INST,&&MRS_INST,&&MSR_INST,&&AND_INST,&&BIC_INST,&&LDM_INST,&&EOR_INST,&&ADD_INST,&&RSB_INST,&&RSC_INST,
&&SBC_INST,&&ADC_INST,&&SUB_INST,&&ORR_INST,&&MVN_INST,&&MOV_INST,&&STM_INST,&&LDM_INST,&&LDRSH_INST,&&STM_INST,&&LDM_INST,&&LDRSB_INST,
&&STRD_INST,&&LDRH_INST,&&STRH_INST,&&LDRD_INST,&&STRT_INST,&&STRBT_INST,&&LDRBT_INST,&&LDRT_INST,&&MRC_INST,&&MCR_INST,&&MSR_INST,
&&LDRB_INST,&&STRB_INST,&&LDR_INST,&&LDRCOND_INST, &&STR_INST,&&CDP_INST,&&STC_INST,&&LDC_INST,&&SWI_INST,&&BBL_INST,&&B_2_THUMB, &&B_COND_THUMB,
&&BL_1_THUMB, &&BL_2_THUMB, &&BLX_1_THUMB, &&DISPATCH,&&INIT_INST_LENGTH,&&END
&&LDRB_INST,&&STRB_INST,&&LDR_INST,&&LDRCOND_INST, &&STR_INST,&&CDP_INST,&&STC_INST,&&LDC_INST,&&SWI_INST,&&BBL_INST,&&LDREXD_INST,
&&STREXD_INST,&&LDREXH_INST,&&STREXH_INST,&&B_2_THUMB, &&B_COND_THUMB,&&BL_1_THUMB, &&BL_2_THUMB, &&BLX_1_THUMB, &&DISPATCH,
&&INIT_INST_LENGTH,&&END
};
#endif
arm_inst * inst_base;
@ -4432,45 +4425,84 @@ unsigned InterpreterMainLoop(ARMul_State* state) {
LDREX_INST:
{
ldst_inst *inst_cream = (ldst_inst *)inst_base->component;
generic_arm_inst* inst_cream = (generic_arm_inst*)inst_base->component;
if ((inst_base->cond == 0xe) || CondPassed(cpu, inst_base->cond)) {
addr = cpu->Reg[BITS(inst_cream->inst, 16, 19)];
unsigned int read_addr = RN;
unsigned int value = Memory::Read32(addr);
add_exclusive_addr(cpu, addr);
add_exclusive_addr(cpu, read_addr);
cpu->exclusive_state = 1;
cpu->Reg[BITS(inst_cream->inst, 12, 15)] = value;
if (BITS(inst_cream->inst, 12, 15) == 15) {
INC_PC(sizeof(ldst_inst));
RD = Memory::Read32(read_addr);
if (inst_cream->Rd == 15) {
INC_PC(sizeof(generic_arm_inst));
goto DISPATCH;
}
}
cpu->Reg[15] += GET_INST_SIZE(cpu);
INC_PC(sizeof(ldst_inst));
INC_PC(sizeof(generic_arm_inst));
FETCH_INST;
GOTO_NEXT_INST;
}
LDREXB_INST:
{
ldst_inst *inst_cream = (ldst_inst *)inst_base->component;
generic_arm_inst* inst_cream = (generic_arm_inst*)inst_base->component;
if ((inst_base->cond == 0xe) || CondPassed(cpu, inst_base->cond)) {
addr = cpu->Reg[BITS(inst_cream->inst, 16, 19)];
unsigned int read_addr = RN;
unsigned int value = Memory::Read8(addr);
add_exclusive_addr(cpu, addr);
add_exclusive_addr(cpu, read_addr);
cpu->exclusive_state = 1;
cpu->Reg[BITS(inst_cream->inst, 12, 15)] = value;
if (BITS(inst_cream->inst, 12, 15) == 15) {
INC_PC(sizeof(ldst_inst));
RD = Memory::Read8(read_addr);
if (inst_cream->Rd == 15) {
INC_PC(sizeof(generic_arm_inst));
goto DISPATCH;
}
}
cpu->Reg[15] += GET_INST_SIZE(cpu);
INC_PC(sizeof(ldst_inst));
INC_PC(sizeof(generic_arm_inst));
FETCH_INST;
GOTO_NEXT_INST;
}
LDREXH_INST:
{
generic_arm_inst* inst_cream = (generic_arm_inst*)inst_base->component;
if ((inst_base->cond == 0xe) || CondPassed(cpu, inst_base->cond)) {
unsigned int read_addr = RN;
add_exclusive_addr(cpu, read_addr);
cpu->exclusive_state = 1;
RD = Memory::Read16(read_addr);
if (inst_cream->Rd == 15) {
INC_PC(sizeof(generic_arm_inst));
goto DISPATCH;
}
}
cpu->Reg[15] += GET_INST_SIZE(cpu);
INC_PC(sizeof(generic_arm_inst));
FETCH_INST;
GOTO_NEXT_INST;
}
LDREXD_INST:
{
generic_arm_inst* inst_cream = (generic_arm_inst*)inst_base->component;
if ((inst_base->cond == 0xe) || CondPassed(cpu, inst_base->cond)) {
unsigned int read_addr = RN;
add_exclusive_addr(cpu, read_addr);
cpu->exclusive_state = 1;
// TODO(bunnei): Do we need to also make [read_addr + 4] exclusive?
RD = Memory::Read32(read_addr);
RD2 = Memory::Read32(read_addr + 4);
if (inst_cream->Rd == 15) {
INC_PC(sizeof(generic_arm_inst));
goto DISPATCH;
}
}
cpu->Reg[15] += GET_INST_SIZE(cpu);
INC_PC(sizeof(generic_arm_inst));
FETCH_INST;
GOTO_NEXT_INST;
}
@ -5762,46 +5794,96 @@ unsigned InterpreterMainLoop(ARMul_State* state) {
}
STREX_INST:
{
ldst_inst *inst_cream = (ldst_inst *)inst_base->component;
if ((inst_base->cond == 0xe) || CondPassed(cpu, inst_base->cond)) {
addr = cpu->Reg[BITS(inst_cream->inst, 16, 19)];
unsigned int value = cpu->Reg[BITS(inst_cream->inst, 0, 3)];
generic_arm_inst* inst_cream = (generic_arm_inst*)inst_base->component;
int dest_reg = BITS(inst_cream->inst, 12, 15);
if((exclusive_detect(cpu, addr) == 0) && (cpu->exclusive_state == 1)){
remove_exclusive(cpu, addr);
cpu->Reg[dest_reg] = 0;
if ((inst_base->cond == 0xe) || CondPassed(cpu, inst_base->cond)) {
unsigned int write_addr = cpu->Reg[inst_cream->Rn];
if ((exclusive_detect(cpu, write_addr) == 0) && (cpu->exclusive_state == 1)) {
remove_exclusive(cpu, write_addr);
cpu->exclusive_state = 0;
Memory::Write32(addr, value);
Memory::Write32(write_addr, cpu->Reg[inst_cream->Rm]);
RD = 0;
} else {
// Failed to write due to mutex access
cpu->Reg[dest_reg] = 1;
RD = 1;
}
}
cpu->Reg[15] += GET_INST_SIZE(cpu);
INC_PC(sizeof(ldst_inst));
INC_PC(sizeof(generic_arm_inst));
FETCH_INST;
GOTO_NEXT_INST;
}
STREXB_INST:
{
ldst_inst *inst_cream = (ldst_inst *)inst_base->component;
generic_arm_inst* inst_cream = (generic_arm_inst*)inst_base->component;
if ((inst_base->cond == 0xe) || CondPassed(cpu, inst_base->cond)) {
addr = cpu->Reg[BITS(inst_cream->inst, 16, 19)];
unsigned int value = cpu->Reg[BITS(inst_cream->inst, 0, 3)] & 0xff;
int dest_reg = BITS(inst_cream->inst, 12, 15);
if((exclusive_detect(cpu, addr) == 0) && (cpu->exclusive_state == 1)){
remove_exclusive(cpu, addr);
cpu->Reg[dest_reg] = 0;
unsigned int write_addr = cpu->Reg[inst_cream->Rn];
if ((exclusive_detect(cpu, write_addr) == 0) && (cpu->exclusive_state == 1)) {
remove_exclusive(cpu, write_addr);
cpu->exclusive_state = 0;
Memory::Write8(addr, value);
Memory::Write8(write_addr, cpu->Reg[inst_cream->Rm]);
RD = 0;
} else {
cpu->Reg[dest_reg] = 1;
// Failed to write due to mutex access
RD = 1;
}
}
cpu->Reg[15] += GET_INST_SIZE(cpu);
INC_PC(sizeof(ldst_inst));
INC_PC(sizeof(generic_arm_inst));
FETCH_INST;
GOTO_NEXT_INST;
}
STREXD_INST:
{
generic_arm_inst* inst_cream = (generic_arm_inst*)inst_base->component;
if ((inst_base->cond == 0xe) || CondPassed(cpu, inst_base->cond)) {
unsigned int write_addr = cpu->Reg[inst_cream->Rn];
if ((exclusive_detect(cpu, write_addr) == 0) && (cpu->exclusive_state == 1)) {
remove_exclusive(cpu, write_addr);
cpu->exclusive_state = 0;
// TODO(bunnei): Remove exclusive from [write_addr + 4] if we implement this in LDREXD
Memory::Write32(write_addr, cpu->Reg[inst_cream->Rm]);
Memory::Write32(write_addr + 4, cpu->Reg[inst_cream->Rm + 1]);
RD = 0;
}
else {
// Failed to write due to mutex access
RD = 1;
}
}
cpu->Reg[15] += GET_INST_SIZE(cpu);
INC_PC(sizeof(generic_arm_inst));
FETCH_INST;
GOTO_NEXT_INST;
}
STREXH_INST:
{
generic_arm_inst* inst_cream = (generic_arm_inst*)inst_base->component;
if ((inst_base->cond == 0xe) || CondPassed(cpu, inst_base->cond)) {
unsigned int write_addr = cpu->Reg[inst_cream->Rn];
if ((exclusive_detect(cpu, write_addr) == 0) && (cpu->exclusive_state == 1)) {
remove_exclusive(cpu, write_addr);
cpu->exclusive_state = 0;
Memory::Write16(write_addr, cpu->Reg[inst_cream->Rm]);
RD = 0;
} else {
// Failed to write due to mutex access
RD = 1;
}
}
cpu->Reg[15] += GET_INST_SIZE(cpu);
INC_PC(sizeof(generic_arm_inst));
FETCH_INST;
GOTO_NEXT_INST;
}