* Kernel: reimplement memory management on physical FCRAM * Kernel/Process: Unmap does not care the source memory permission What game usually does is after mapping the memory, they reprotect the source memory as no permission to avoid modification there * Kernel/SharedMemory: zero initialize new-allocated memory * Process/Thread: zero new TLS entry * Kernel: fix a bug where code segments memory usage are accumulated twice It is added to both misc and heap (done inside HeapAlloc), which results a doubled number reported by svcGetProcessInfo. While we are on it, we just merge the three number misc, heap and linear heap usage together, as there is no where they are distinguished. Question: is TLS page also added to this number? * Kernel/SharedMemory: add more object info on mapping error * Process: lower log level; SharedMemory: store phys offset * VMManager: add helper function to retrieve backing block list for a range
261 lines
9.8 KiB
C++
261 lines
9.8 KiB
C++
// Copyright 2015 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#pragma once
|
|
|
|
#include <map>
|
|
#include <memory>
|
|
#include <utility>
|
|
#include <vector>
|
|
#include "common/common_types.h"
|
|
#include "core/hle/result.h"
|
|
#include "core/memory.h"
|
|
#include "core/mmio.h"
|
|
|
|
namespace Kernel {
|
|
|
|
enum class VMAType : u8 {
|
|
/// VMA represents an unmapped region of the address space.
|
|
Free,
|
|
/// VMA is backed by a ref-counted allocate memory block.
|
|
AllocatedMemoryBlock,
|
|
/// VMA is backed by a raw, unmanaged pointer.
|
|
BackingMemory,
|
|
/// VMA is mapped to MMIO registers at a fixed PAddr.
|
|
MMIO,
|
|
// TODO(yuriks): Implement MemoryAlias to support MAP/UNMAP
|
|
};
|
|
|
|
/// Permissions for mapped memory blocks
|
|
enum class VMAPermission : u8 {
|
|
None = 0,
|
|
Read = 1,
|
|
Write = 2,
|
|
Execute = 4,
|
|
|
|
ReadWrite = Read | Write,
|
|
ReadExecute = Read | Execute,
|
|
WriteExecute = Write | Execute,
|
|
ReadWriteExecute = Read | Write | Execute,
|
|
};
|
|
|
|
/// Set of values returned in MemoryInfo.state by svcQueryMemory.
|
|
enum class MemoryState : u8 {
|
|
Free = 0,
|
|
Reserved = 1,
|
|
IO = 2,
|
|
Static = 3,
|
|
Code = 4,
|
|
Private = 5,
|
|
Shared = 6,
|
|
Continuous = 7,
|
|
Aliased = 8,
|
|
Alias = 9,
|
|
AliasCode = 10,
|
|
Locked = 11,
|
|
};
|
|
|
|
/**
|
|
* Represents a VMA in an address space. A VMA is a contiguous region of virtual addressing space
|
|
* with homogeneous attributes across its extents. In this particular implementation each VMA is
|
|
* also backed by a single host memory allocation.
|
|
*/
|
|
struct VirtualMemoryArea {
|
|
/// Virtual base address of the region.
|
|
VAddr base = 0;
|
|
/// Size of the region.
|
|
u32 size = 0;
|
|
|
|
VMAType type = VMAType::Free;
|
|
VMAPermission permissions = VMAPermission::None;
|
|
/// Tag returned by svcQueryMemory. Not otherwise used.
|
|
MemoryState meminfo_state = MemoryState::Free;
|
|
|
|
// Settings for type = AllocatedMemoryBlock
|
|
/// Memory block backing this VMA.
|
|
std::shared_ptr<std::vector<u8>> backing_block = nullptr;
|
|
/// Offset into the backing_memory the mapping starts from.
|
|
std::size_t offset = 0;
|
|
|
|
// Settings for type = BackingMemory
|
|
/// Pointer backing this VMA. It will not be destroyed or freed when the VMA is removed.
|
|
u8* backing_memory = nullptr;
|
|
|
|
// Settings for type = MMIO
|
|
/// Physical address of the register area this VMA maps to.
|
|
PAddr paddr = 0;
|
|
Memory::MMIORegionPointer mmio_handler = nullptr;
|
|
|
|
/// Tests if this area can be merged to the right with `next`.
|
|
bool CanBeMergedWith(const VirtualMemoryArea& next) const;
|
|
};
|
|
|
|
/**
|
|
* Manages a process' virtual addressing space. This class maintains a list of allocated and free
|
|
* regions in the address space, along with their attributes, and allows kernel clients to
|
|
* manipulate it, adjusting the page table to match.
|
|
*
|
|
* This is similar in idea and purpose to the VM manager present in operating system kernels, with
|
|
* the main difference being that it doesn't have to support swapping or memory mapping of files.
|
|
* The implementation is also simplified by not having to allocate page frames. See these articles
|
|
* about the Linux kernel for an explantion of the concept and implementation:
|
|
* - http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-memory/
|
|
* - http://duartes.org/gustavo/blog/post/page-cache-the-affair-between-memory-and-files/
|
|
*/
|
|
class VMManager final {
|
|
public:
|
|
/**
|
|
* The maximum amount of address space managed by the kernel. Addresses above this are never
|
|
* used.
|
|
* @note This is the limit used by the New 3DS kernel. Old 3DS used 0x20000000.
|
|
*/
|
|
static const u32 MAX_ADDRESS = 0x40000000;
|
|
|
|
/**
|
|
* A map covering the entirety of the managed address space, keyed by the `base` field of each
|
|
* VMA. It must always be modified by splitting or merging VMAs, so that the invariant
|
|
* `elem.base + elem.size == next.base` is preserved, and mergeable regions must always be
|
|
* merged when possible so that no two similar and adjacent regions exist that have not been
|
|
* merged.
|
|
*/
|
|
std::map<VAddr, VirtualMemoryArea> vma_map;
|
|
using VMAHandle = decltype(vma_map)::const_iterator;
|
|
|
|
VMManager();
|
|
~VMManager();
|
|
|
|
/// Clears the address space map, re-initializing with a single free area.
|
|
void Reset();
|
|
|
|
/// Finds the VMA in which the given address is included in, or `vma_map.end()`.
|
|
VMAHandle FindVMA(VAddr target) const;
|
|
|
|
// TODO(yuriks): Should these functions actually return the handle?
|
|
|
|
/**
|
|
* Maps part of a ref-counted block of memory at a given address.
|
|
*
|
|
* @param target The guest address to start the mapping at.
|
|
* @param block The block to be mapped.
|
|
* @param offset Offset into `block` to map from.
|
|
* @param size Size of the mapping.
|
|
* @param state MemoryState tag to attach to the VMA.
|
|
*/
|
|
ResultVal<VMAHandle> MapMemoryBlock(VAddr target, std::shared_ptr<std::vector<u8>> block,
|
|
std::size_t offset, u32 size, MemoryState state);
|
|
|
|
/**
|
|
* Maps part of a ref-counted block of memory at the first free address after the given base.
|
|
*
|
|
* @param base The base address to start the mapping at.
|
|
* @param region_size The max size of the region from where we'll try to find an address.
|
|
* @param block The block to be mapped.
|
|
* @param offset Offset into `block` to map from.
|
|
* @param size Size of the mapping.
|
|
* @param state MemoryState tag to attach to the VMA.
|
|
* @returns The address at which the memory was mapped.
|
|
*/
|
|
ResultVal<VAddr> MapMemoryBlockToBase(VAddr base, u32 region_size,
|
|
std::shared_ptr<std::vector<u8>> block,
|
|
std::size_t offset, u32 size, MemoryState state);
|
|
/**
|
|
* Maps an unmanaged host memory pointer at a given address.
|
|
*
|
|
* @param target The guest address to start the mapping at.
|
|
* @param memory The memory to be mapped.
|
|
* @param size Size of the mapping.
|
|
* @param state MemoryState tag to attach to the VMA.
|
|
*/
|
|
ResultVal<VMAHandle> MapBackingMemory(VAddr target, u8* memory, u32 size, MemoryState state);
|
|
|
|
/**
|
|
* Maps a memory-mapped IO region at a given address.
|
|
*
|
|
* @param target The guest address to start the mapping at.
|
|
* @param paddr The physical address where the registers are present.
|
|
* @param size Size of the mapping.
|
|
* @param state MemoryState tag to attach to the VMA.
|
|
* @param mmio_handler The handler that will implement read and write for this MMIO region.
|
|
*/
|
|
ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u32 size, MemoryState state,
|
|
Memory::MMIORegionPointer mmio_handler);
|
|
|
|
/**
|
|
* Updates the memory state and permissions of the specified range. The range's original memory
|
|
* state and permissions must match the `expected` parameters.
|
|
*
|
|
* @param target The guest address of the beginning of the range.
|
|
* @param size The size of the range
|
|
* @param expected_state Expected MemoryState of the range.
|
|
* @param expected_perms Expected VMAPermission of the range.
|
|
* @param new_state New MemoryState for the range.
|
|
* @param new_perms New VMAPermission for the range.
|
|
*/
|
|
ResultCode ChangeMemoryState(VAddr target, u32 size, MemoryState expected_state,
|
|
VMAPermission expected_perms, MemoryState new_state,
|
|
VMAPermission new_perms);
|
|
|
|
/// Unmaps a range of addresses, splitting VMAs as necessary.
|
|
ResultCode UnmapRange(VAddr target, u32 size);
|
|
|
|
/// Changes the permissions of the given VMA.
|
|
VMAHandle Reprotect(VMAHandle vma, VMAPermission new_perms);
|
|
|
|
/// Changes the permissions of a range of addresses, splitting VMAs as necessary.
|
|
ResultCode ReprotectRange(VAddr target, u32 size, VMAPermission new_perms);
|
|
|
|
/**
|
|
* Scans all VMAs and updates the page table range of any that use the given vector as backing
|
|
* memory. This should be called after any operation that causes reallocation of the vector.
|
|
*/
|
|
void RefreshMemoryBlockMappings(const std::vector<u8>* block);
|
|
|
|
/// Dumps the address space layout to the log, for debugging
|
|
void LogLayout(Log::Level log_level) const;
|
|
|
|
/// Gets a list of backing memory blocks for the specified range
|
|
ResultVal<std::vector<std::pair<u8*, u32>>> GetBackingBlocksForRange(VAddr address, u32 size);
|
|
|
|
/// Each VMManager has its own page table, which is set as the main one when the owning process
|
|
/// is scheduled.
|
|
Memory::PageTable page_table;
|
|
|
|
private:
|
|
using VMAIter = decltype(vma_map)::iterator;
|
|
|
|
/// Converts a VMAHandle to a mutable VMAIter.
|
|
VMAIter StripIterConstness(const VMAHandle& iter);
|
|
|
|
/// Unmaps the given VMA.
|
|
VMAIter Unmap(VMAIter vma);
|
|
|
|
/**
|
|
* Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
|
|
* the appropriate error checking.
|
|
*/
|
|
ResultVal<VMAIter> CarveVMA(VAddr base, u32 size);
|
|
|
|
/**
|
|
* Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each
|
|
* end of the range.
|
|
*/
|
|
ResultVal<VMAIter> CarveVMARange(VAddr base, u32 size);
|
|
|
|
/**
|
|
* Splits a VMA in two, at the specified offset.
|
|
* @returns the right side of the split, with the original iterator becoming the left side.
|
|
*/
|
|
VMAIter SplitVMA(VMAIter vma, u32 offset_in_vma);
|
|
|
|
/**
|
|
* Checks for and merges the specified VMA with adjacent ones if possible.
|
|
* @returns the merged VMA or the original if no merging was possible.
|
|
*/
|
|
VMAIter MergeAdjacent(VMAIter vma);
|
|
|
|
/// Updates the pages corresponding to this VMA so they match the VMA's attributes.
|
|
void UpdatePageTableForVMA(const VirtualMemoryArea& vma);
|
|
};
|
|
} // namespace Kernel
|