citra-emu
/
citra
Archived
1
0
Fork 0
This repository has been archived on 2024-03-23. You can view files and clone it, but cannot push or open issues or pull requests.
citra/src/core/memory.cpp

202 lines
6.0 KiB
C++
Raw Normal View History

// Copyright 2015 Citra Emulator Project
2014-12-17 05:38:14 +00:00
// Licensed under GPLv2 or any later version
2014-04-08 23:15:46 +00:00
// Refer to the license.txt file included.
2013-09-19 03:52:51 +00:00
#include <array>
#include "common/assert.h"
2015-05-06 07:06:12 +00:00
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/swap.h"
2013-09-19 03:52:51 +00:00
#include "core/mem_map.h"
#include "core/memory.h"
#include "core/memory_setup.h"
2013-09-19 03:52:51 +00:00
namespace Memory {
enum class PageType {
/// Page is unmapped and should cause an access error.
Unmapped,
/// Page is mapped to regular memory. This is the only type you can get pointers to.
Memory,
/// Page is mapped to a I/O region. Writing and reading to this page is handled by functions.
Special,
};
/**
* A (reasonably) fast way of allowing switchable and remmapable process address spaces. It loosely
* mimics the way a real CPU page table works, but instead is optimized for minimal decoding and
* fetching requirements when acessing. In the usual case of an access to regular memory, it only
* requires an indexed fetch and a check for NULL.
*/
struct PageTable {
static const size_t NUM_ENTRIES = 1 << (32 - PAGE_BITS);
/**
* Array of memory pointers backing each page. An entry can only be non-null if the
* corresponding entry in the `attributes` array is of type `Memory`.
*/
std::array<u8*, NUM_ENTRIES> pointers;
/**
* Array of fine grained page attributes. If it is set to any value other than `Memory`, then
* the corresponding entry in `pointer` MUST be set to null.
*/
std::array<PageType, NUM_ENTRIES> attributes;
};
/// Singular page table used for the singleton process
static PageTable main_page_table;
/// Currently active page table
static PageTable* current_page_table = &main_page_table;
static void MapPages(u32 base, u32 size, u8* memory, PageType type) {
LOG_DEBUG(HW_Memory, "Mapping %p onto %08X-%08X", memory, base * PAGE_SIZE, (base + size) * PAGE_SIZE);
u32 end = base + size;
while (base != end) {
ASSERT_MSG(base < PageTable::NUM_ENTRIES, "out of range mapping at %08X", base);
current_page_table->attributes[base] = type;
current_page_table->pointers[base] = memory;
base += 1;
2015-07-10 01:47:27 +00:00
if (memory != nullptr)
memory += PAGE_SIZE;
}
2013-09-19 03:52:51 +00:00
}
void InitMemoryMap() {
main_page_table.pointers.fill(nullptr);
main_page_table.attributes.fill(PageType::Unmapped);
}
void MapMemoryRegion(VAddr base, u32 size, u8* target) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory);
}
2014-04-26 05:27:25 +00:00
void MapIoRegion(VAddr base, u32 size) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);
}
void UnmapRegion(VAddr base, u32 size) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
}
template <typename T>
T Read(const VAddr vaddr) {
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
return *reinterpret_cast<const T*>(page_pointer + (vaddr & PAGE_MASK));
}
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Read%lu @ 0x%08X", sizeof(T) * 8, vaddr);
return 0;
case PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
case PageType::Special:
LOG_ERROR(HW_Memory, "I/O reads aren't implemented yet @ %08X", vaddr);
return 0;
default:
UNREACHABLE();
}
2013-09-19 03:52:51 +00:00
}
template <typename T>
void Write(const VAddr vaddr, const T data) {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
*reinterpret_cast<T*>(page_pointer + (vaddr & PAGE_MASK)) = data;
return;
}
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32) data, vaddr);
return;
case PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
case PageType::Special:
LOG_ERROR(HW_Memory, "I/O writes aren't implemented yet @ %08X", vaddr);
return;
default:
UNREACHABLE();
}
}
2014-04-26 05:27:25 +00:00
u8* GetPointer(const VAddr vaddr) {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
return page_pointer + (vaddr & PAGE_MASK);
}
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr);
return nullptr;
}
u8* GetPhysicalPointer(PAddr address) {
return GetPointer(PhysicalToVirtualAddress(address));
2015-04-28 01:59:06 +00:00
}
u8 Read8(const VAddr addr) {
return Read<u8>(addr);
2013-09-19 03:52:51 +00:00
}
u16 Read16(const VAddr addr) {
return Read<u16_le>(addr);
2013-09-19 03:52:51 +00:00
}
u32 Read32(const VAddr addr) {
return Read<u32_le>(addr);
2013-09-19 03:52:51 +00:00
}
u64 Read64(const VAddr addr) {
return Read<u64_le>(addr);
2013-09-19 03:52:51 +00:00
}
void Write8(const VAddr addr, const u8 data) {
Write<u8>(addr, data);
2013-09-19 03:52:51 +00:00
}
void Write16(const VAddr addr, const u16 data) {
Write<u16_le>(addr, data);
2013-09-19 03:52:51 +00:00
}
void Write32(const VAddr addr, const u32 data) {
Write<u32_le>(addr, data);
2013-09-19 03:52:51 +00:00
}
void Write64(const VAddr addr, const u64 data) {
Write<u64_le>(addr, data);
2013-09-19 03:52:51 +00:00
}
void WriteBlock(const VAddr addr, const u8* data, const size_t size) {
2014-09-28 15:30:29 +00:00
u32 offset = 0;
while (offset < (size & ~3)) {
Write32(addr + offset, *(u32*)&data[offset]);
offset += 4;
}
if (size & 2) {
Write16(addr + offset, *(u16*)&data[offset]);
offset += 2;
}
if (size & 1)
Write8(addr + offset, data[offset]);
}
2013-09-19 03:52:51 +00:00
} // namespace