citra-emu
/
citra
Archived
1
0
Fork 0

Merge pull request #1271 from lioncash/dyncom-misc

dyncom: Miscellaneous minor changes
This commit is contained in:
bunnei 2015-12-07 16:24:08 -05:00
commit 2589a68c42
5 changed files with 23 additions and 28 deletions

View File

@ -14,10 +14,6 @@ namespace Core {
/// Generic ARM11 CPU interface /// Generic ARM11 CPU interface
class ARM_Interface : NonCopyable { class ARM_Interface : NonCopyable {
public: public:
ARM_Interface() {
num_instructions = 0;
}
virtual ~ARM_Interface() { virtual ~ARM_Interface() {
} }
@ -146,11 +142,11 @@ public:
virtual void PrepareReschedule() = 0; virtual void PrepareReschedule() = 0;
/// Getter for num_instructions /// Getter for num_instructions
u64 GetNumInstructions() { u64 GetNumInstructions() const {
return num_instructions; return num_instructions;
} }
s64 down_count; ///< A decreasing counter of remaining cycles before the next event, decreased by the cpu run loop s64 down_count = 0; ///< A decreasing counter of remaining cycles before the next event, decreased by the cpu run loop
protected: protected:
@ -162,6 +158,5 @@ protected:
private: private:
u64 num_instructions; ///< Number of instructions executed u64 num_instructions = 0; ///< Number of instructions executed
}; };

View File

@ -51,7 +51,7 @@ enum {
typedef unsigned int (*shtop_fp_t)(ARMul_State* cpu, unsigned int sht_oper); typedef unsigned int (*shtop_fp_t)(ARMul_State* cpu, unsigned int sht_oper);
static bool CondPassed(ARMul_State* cpu, unsigned int cond) { static bool CondPassed(const ARMul_State* cpu, unsigned int cond) {
const bool n_flag = cpu->NFlag != 0; const bool n_flag = cpu->NFlag != 0;
const bool z_flag = cpu->ZFlag != 0; const bool z_flag = cpu->ZFlag != 0;
const bool c_flag = cpu->CFlag != 0; const bool c_flag = cpu->CFlag != 0;

View File

@ -30,7 +30,7 @@
* @return If the PC is being read, then the word-aligned PC value is returned. * @return If the PC is being read, then the word-aligned PC value is returned.
* If the PC is not being read, then the value stored in the register is returned. * If the PC is not being read, then the value stored in the register is returned.
*/ */
static inline u32 CHECK_READ_REG15_WA(ARMul_State* cpu, int Rn) { inline u32 CHECK_READ_REG15_WA(const ARMul_State* cpu, int Rn) {
return (Rn == 15) ? ((cpu->Reg[15] & ~0x3) + cpu->GetInstructionSize() * 2) : cpu->Reg[Rn]; return (Rn == 15) ? ((cpu->Reg[15] & ~0x3) + cpu->GetInstructionSize() * 2) : cpu->Reg[Rn];
} }
@ -43,6 +43,6 @@ static inline u32 CHECK_READ_REG15_WA(ARMul_State* cpu, int Rn) {
* @return If the PC is being read, then the incremented PC value is returned. * @return If the PC is being read, then the incremented PC value is returned.
* If the PC is not being read, then the values stored in the register is returned. * If the PC is not being read, then the values stored in the register is returned.
*/ */
static inline u32 CHECK_READ_REG15(ARMul_State* cpu, int Rn) { inline u32 CHECK_READ_REG15(const ARMul_State* cpu, int Rn) {
return (Rn == 15) ? ((cpu->Reg[15] & ~0x1) + cpu->GetInstructionSize() * 2) : cpu->Reg[Rn]; return (Rn == 15) ? ((cpu->Reg[15] & ~0x1) + cpu->GetInstructionSize() * 2) : cpu->Reg[Rn];
} }

View File

@ -38,7 +38,7 @@ enum class ThumbDecodeStatus {
// Translates a Thumb mode instruction into its ARM equivalent. // Translates a Thumb mode instruction into its ARM equivalent.
ThumbDecodeStatus TranslateThumbInstruction(u32 addr, u32 instr, u32* ainstr, u32* inst_size); ThumbDecodeStatus TranslateThumbInstruction(u32 addr, u32 instr, u32* ainstr, u32* inst_size);
static inline u32 GetThumbInstruction(u32 instr, u32 address) { inline u32 GetThumbInstruction(u32 instr, u32 address) {
// Normally you would need to handle instruction endianness, // Normally you would need to handle instruction endianness,
// however, it is fixed to little-endian on the MPCore, so // however, it is fixed to little-endian on the MPCore, so
// there's no need to check for this beforehand. // there's no need to check for this beforehand.

View File

@ -85,7 +85,7 @@ enum : u32 {
#define vfp_single(inst) (((inst) & 0x0000f00) == 0xa00) #define vfp_single(inst) (((inst) & 0x0000f00) == 0xa00)
static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
{ {
if (shift) { if (shift) {
if (shift < 32) if (shift < 32)
@ -96,7 +96,7 @@ static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
return val; return val;
} }
static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
{ {
if (shift) { if (shift) {
if (shift < 64) if (shift < 64)
@ -107,7 +107,7 @@ static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
return val; return val;
} }
static inline u32 vfp_hi64to32jamming(u64 val) inline u32 vfp_hi64to32jamming(u64 val)
{ {
u32 v; u32 v;
u32 highval = val >> 32; u32 highval = val >> 32;
@ -121,7 +121,7 @@ static inline u32 vfp_hi64to32jamming(u64 val)
return v; return v;
} }
static inline void add128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) inline void add128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml)
{ {
*resl = nl + ml; *resl = nl + ml;
*resh = nh + mh; *resh = nh + mh;
@ -129,7 +129,7 @@ static inline void add128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml)
*resh += 1; *resh += 1;
} }
static inline void sub128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) inline void sub128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml)
{ {
*resl = nl - ml; *resl = nl - ml;
*resh = nh - mh; *resh = nh - mh;
@ -137,7 +137,7 @@ static inline void sub128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml)
*resh -= 1; *resh -= 1;
} }
static inline void mul64to128(u64* resh, u64* resl, u64 n, u64 m) inline void mul64to128(u64* resh, u64* resl, u64 n, u64 m)
{ {
u32 nh, nl, mh, ml; u32 nh, nl, mh, ml;
u64 rh, rma, rmb, rl; u64 rh, rma, rmb, rl;
@ -164,20 +164,20 @@ static inline void mul64to128(u64* resh, u64* resl, u64 n, u64 m)
*resh = rh; *resh = rh;
} }
static inline void shift64left(u64* resh, u64* resl, u64 n) inline void shift64left(u64* resh, u64* resl, u64 n)
{ {
*resh = n >> 63; *resh = n >> 63;
*resl = n << 1; *resl = n << 1;
} }
static inline u64 vfp_hi64multiply64(u64 n, u64 m) inline u64 vfp_hi64multiply64(u64 n, u64 m)
{ {
u64 rh, rl; u64 rh, rl;
mul64to128(&rh, &rl, n, m); mul64to128(&rh, &rl, n, m);
return rh | (rl != 0); return rh | (rl != 0);
} }
static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
{ {
u64 mh, ml, remh, reml, termh, terml, z; u64 mh, ml, remh, reml, termh, terml, z;
@ -249,7 +249,7 @@ enum : u32 {
VFP_SNAN = (VFP_NAN|VFP_NAN_SIGNAL) VFP_SNAN = (VFP_NAN|VFP_NAN_SIGNAL)
}; };
static inline int vfp_single_type(vfp_single* s) inline int vfp_single_type(const vfp_single* s)
{ {
int type = VFP_NUMBER; int type = VFP_NUMBER;
if (s->exponent == 255) { if (s->exponent == 255) {
@ -271,7 +271,7 @@ static inline int vfp_single_type(vfp_single* s)
// Unpack a single-precision float. Note that this returns the magnitude // Unpack a single-precision float. Note that this returns the magnitude
// of the single-precision float mantissa with the 1. if necessary, // of the single-precision float mantissa with the 1. if necessary,
// aligned to bit 30. // aligned to bit 30.
static inline void vfp_single_unpack(vfp_single* s, s32 val, u32* fpscr) inline void vfp_single_unpack(vfp_single* s, s32 val, u32* fpscr)
{ {
s->sign = vfp_single_packed_sign(val) >> 16, s->sign = vfp_single_packed_sign(val) >> 16,
s->exponent = vfp_single_packed_exponent(val); s->exponent = vfp_single_packed_exponent(val);
@ -293,7 +293,7 @@ static inline void vfp_single_unpack(vfp_single* s, s32 val, u32* fpscr)
// Re-pack a single-precision float. This assumes that the float is // Re-pack a single-precision float. This assumes that the float is
// already normalised such that the MSB is bit 30, _not_ bit 31. // already normalised such that the MSB is bit 30, _not_ bit 31.
static inline s32 vfp_single_pack(vfp_single* s) inline s32 vfp_single_pack(const vfp_single* s)
{ {
u32 val = (s->sign << 16) + u32 val = (s->sign << 16) +
(s->exponent << VFP_SINGLE_MANTISSA_BITS) + (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
@ -335,7 +335,7 @@ struct vfp_double {
#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
static inline int vfp_double_type(vfp_double* s) inline int vfp_double_type(const vfp_double* s)
{ {
int type = VFP_NUMBER; int type = VFP_NUMBER;
if (s->exponent == 2047) { if (s->exponent == 2047) {
@ -357,7 +357,7 @@ static inline int vfp_double_type(vfp_double* s)
// Unpack a double-precision float. Note that this returns the magnitude // Unpack a double-precision float. Note that this returns the magnitude
// of the double-precision float mantissa with the 1. if necessary, // of the double-precision float mantissa with the 1. if necessary,
// aligned to bit 62. // aligned to bit 62.
static inline void vfp_double_unpack(vfp_double* s, s64 val, u32* fpscr) inline void vfp_double_unpack(vfp_double* s, s64 val, u32* fpscr)
{ {
s->sign = vfp_double_packed_sign(val) >> 48; s->sign = vfp_double_packed_sign(val) >> 48;
s->exponent = vfp_double_packed_exponent(val); s->exponent = vfp_double_packed_exponent(val);
@ -379,7 +379,7 @@ static inline void vfp_double_unpack(vfp_double* s, s64 val, u32* fpscr)
// Re-pack a double-precision float. This assumes that the float is // Re-pack a double-precision float. This assumes that the float is
// already normalised such that the MSB is bit 30, _not_ bit 31. // already normalised such that the MSB is bit 30, _not_ bit 31.
static inline s64 vfp_double_pack(vfp_double* s) inline s64 vfp_double_pack(const vfp_double* s)
{ {
u64 val = ((u64)s->sign << 48) + u64 val = ((u64)s->sign << 48) +
((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
@ -415,7 +415,7 @@ struct op {
u32 flags; u32 flags;
}; };
static inline u32 fls(u32 x) inline u32 fls(u32 x)
{ {
int r = 32; int r = 32;