citra-emu
/
citra
Archived
1
0
Fork 0

Merge pull request #3516 from wwylele/shadow-sw

SwRasterizer: Implement shadow mapping
This commit is contained in:
James Rowe 2018-03-31 23:29:22 -06:00 committed by GitHub
commit 384849232b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 172 additions and 10 deletions

View File

@ -15,6 +15,12 @@
namespace Pica { namespace Pica {
struct FramebufferRegs { struct FramebufferRegs {
enum class FragmentOperationMode : u32 {
Default = 0,
Gas = 1,
Shadow = 3,
};
enum class LogicOp : u32 { enum class LogicOp : u32 {
Clear = 0, Clear = 0,
And = 1, And = 1,
@ -84,6 +90,7 @@ struct FramebufferRegs {
struct { struct {
union { union {
BitField<0, 2, FragmentOperationMode> fragment_operation_mode;
// If false, logic blending is used // If false, logic blending is used
BitField<8, 1, u32> alphablend_enable; BitField<8, 1, u32> alphablend_enable;
}; };
@ -274,7 +281,14 @@ struct FramebufferRegs {
ASSERT_MSG(false, "Unknown depth format %u", static_cast<u32>(format)); ASSERT_MSG(false, "Unknown depth format %u", static_cast<u32>(format));
} }
INSERT_PADDING_WORDS(0x20); INSERT_PADDING_WORDS(0x10); // Gas related registers
union {
BitField<0, 16, u32> constant; // float1.5.10
BitField<16, 16, u32> linear; // float1.5.10
} shadow;
INSERT_PADDING_WORDS(0xF);
}; };
static_assert(sizeof(FramebufferRegs) == 0x40 * sizeof(u32), static_assert(sizeof(FramebufferRegs) == 0x40 * sizeof(u32),

View File

@ -187,9 +187,15 @@ struct LightingRegs {
BitField<0, 3, u32> max_light_index; // Number of enabled lights - 1 BitField<0, 3, u32> max_light_index; // Number of enabled lights - 1
union { union {
BitField<0, 1, u32> enable_shadow;
BitField<2, 2, LightingFresnelSelector> fresnel_selector; BitField<2, 2, LightingFresnelSelector> fresnel_selector;
BitField<4, 4, LightingConfig> config; BitField<4, 4, LightingConfig> config;
BitField<16, 1, u32> shadow_primary;
BitField<17, 1, u32> shadow_secondary;
BitField<18, 1, u32> shadow_invert;
BitField<19, 1, u32> shadow_alpha;
BitField<22, 2, u32> bump_selector; // 0: Texture 0, 1: Texture 1, 2: Texture 2 BitField<22, 2, u32> bump_selector; // 0: Texture 0, 1: Texture 1, 2: Texture 2
BitField<24, 2, u32> shadow_selector;
BitField<27, 1, u32> clamp_highlights; BitField<27, 1, u32> clamp_highlights;
BitField<28, 2, LightingBumpMode> bump_mode; BitField<28, 2, LightingBumpMode> bump_mode;
BitField<30, 1, u32> disable_bump_renorm; BitField<30, 1, u32> disable_bump_renorm;
@ -198,6 +204,9 @@ struct LightingRegs {
union { union {
u32 raw; u32 raw;
// Each bit specifies whether shadow should be applied for the corresponding light.
BitField<0, 8, u32> disable_shadow;
// Each bit specifies whether spot light attenuation should be applied for the corresponding // Each bit specifies whether spot light attenuation should be applied for the corresponding
// light. // light.
BitField<8, 8, u32> disable_spot_atten; BitField<8, 8, u32> disable_spot_atten;
@ -224,6 +233,10 @@ struct LightingRegs {
return (config1.disable_spot_atten & (1 << index)) != 0; return (config1.disable_spot_atten & (1 << index)) != 0;
} }
bool IsShadowDisabled(unsigned index) const {
return (config1.disable_shadow & (1 << index)) != 0;
}
union { union {
BitField<0, 8, u32> index; ///< Index at which to set data in the LUT BitField<0, 8, u32> index; ///< Index at which to set data in the LUT
BitField<8, 5, u32> type; ///< Type of LUT for which to set data BitField<8, 5, u32> type; ///< Type of LUT for which to set data

View File

@ -158,7 +158,12 @@ struct TexturingRegs {
return address * 8; return address * 8;
} }
INSERT_PADDING_WORDS(0x3); union {
BitField<0, 1, u32> orthographic; // 0: enable perspective divide
BitField<1, 23, u32> bias; // 23-bit fraction
} shadow;
INSERT_PADDING_WORDS(0x2);
BitField<0, 4, TextureFormat> texture0_format; BitField<0, 4, TextureFormat> texture0_format;
BitField<0, 1, u32> fragment_lighting_enable; BitField<0, 1, u32> fragment_lighting_enable;
INSERT_PADDING_WORDS(0x1); INSERT_PADDING_WORDS(0x1);

View File

@ -359,5 +359,54 @@ u8 LogicOp(u8 src, u8 dest, FramebufferRegs::LogicOp op) {
UNREACHABLE(); UNREACHABLE();
}; };
// Decode/Encode for shadow map format. It is similar to D24S8 format, but the depth field is in
// big-endian
static const Math::Vec2<u32> DecodeD24S8Shadow(const u8* bytes) {
return {static_cast<u32>((bytes[0] << 16) | (bytes[1] << 8) | bytes[2]), bytes[3]};
}
static void EncodeD24X8Shadow(u32 depth, u8* bytes) {
bytes[2] = depth & 0xFF;
bytes[1] = (depth >> 8) & 0xFF;
bytes[0] = (depth >> 16) & 0xFF;
}
static void EncodeX24S8Shadow(u8 stencil, u8* bytes) {
bytes[3] = stencil;
}
void DrawShadowMapPixel(int x, int y, u32 depth, u8 stencil) {
const auto& framebuffer = g_state.regs.framebuffer.framebuffer;
const auto& shadow = g_state.regs.framebuffer.shadow;
const PAddr addr = framebuffer.GetColorBufferPhysicalAddress();
y = framebuffer.height - y;
const u32 coarse_y = y & ~7;
u32 bytes_per_pixel = 4;
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) +
coarse_y * framebuffer.width * bytes_per_pixel;
u8* dst_pixel = Memory::GetPhysicalPointer(addr) + dst_offset;
auto ref = DecodeD24S8Shadow(dst_pixel);
u32 ref_z = ref.x;
u32 ref_s = ref.y;
if (depth < ref_z) {
if (stencil == 0) {
EncodeD24X8Shadow(depth, dst_pixel);
} else {
float16 constant = float16::FromRaw(shadow.constant);
float16 linear = float16::FromRaw(shadow.linear);
float16 x = float16::FromFloat32(static_cast<float>(depth) / ref_z);
float16 stencil_new = float16::FromFloat32(stencil) / (constant + linear * x);
stencil = static_cast<u8>(MathUtil::Clamp(stencil_new.ToFloat32(), 0.0f, 255.0f));
if (stencil < ref_s)
EncodeX24S8Shadow(stencil, dst_pixel);
}
}
}
} // namespace Rasterizer } // namespace Rasterizer
} // namespace Pica } // namespace Pica

View File

@ -25,5 +25,7 @@ Math::Vec4<u8> EvaluateBlendEquation(const Math::Vec4<u8>& src, const Math::Vec4
u8 LogicOp(u8 src, u8 dest, FramebufferRegs::LogicOp op); u8 LogicOp(u8 src, u8 dest, FramebufferRegs::LogicOp op);
void DrawShadowMapPixel(int x, int y, u32 depth, u8 stencil);
} // namespace Rasterizer } // namespace Rasterizer
} // namespace Pica } // namespace Pica

View File

@ -25,6 +25,16 @@ std::tuple<Math::Vec4<u8>, Math::Vec4<u8>> ComputeFragmentsColors(
const Math::Quaternion<float>& normquat, const Math::Vec3<float>& view, const Math::Quaternion<float>& normquat, const Math::Vec3<float>& view,
const Math::Vec4<u8> (&texture_color)[4]) { const Math::Vec4<u8> (&texture_color)[4]) {
Math::Vec4<float> shadow;
if (lighting.config0.enable_shadow) {
shadow = texture_color[lighting.config0.shadow_selector].Cast<float>() / 255.0f;
if (lighting.config0.shadow_invert) {
shadow = Math::MakeVec(1.0f, 1.0f, 1.0f, 1.0f) - shadow;
}
} else {
shadow = Math::MakeVec(1.0f, 1.0f, 1.0f, 1.0f);
}
Math::Vec3<float> surface_normal; Math::Vec3<float> surface_normal;
Math::Vec3<float> surface_tangent; Math::Vec3<float> surface_tangent;
@ -278,11 +288,38 @@ std::tuple<Math::Vec4<u8>, Math::Vec4<u8>> ComputeFragmentsColors(
} }
auto diffuse = auto diffuse =
light_config.diffuse.ToVec3f() * dot_product + light_config.ambient.ToVec3f(); (light_config.diffuse.ToVec3f() * dot_product + light_config.ambient.ToVec3f()) *
diffuse_sum += Math::MakeVec(diffuse * dist_atten * spot_atten, 0.0f); dist_atten * spot_atten;
auto specular = (specular_0 + specular_1) * clamp_highlights * dist_atten * spot_atten;
specular_sum += Math::MakeVec( if (!lighting.IsShadowDisabled(num)) {
(specular_0 + specular_1) * clamp_highlights * dist_atten * spot_atten, 0.0f); if (lighting.config0.shadow_primary) {
diffuse = diffuse * shadow.xyz();
}
if (lighting.config0.shadow_secondary) {
specular = specular * shadow.xyz();
}
}
diffuse_sum += Math::MakeVec(diffuse, 0.0f);
specular_sum += Math::MakeVec(specular, 0.0f);
}
if (lighting.config0.shadow_alpha) {
// Alpha shadow also uses the Fresnel selecotr to determine which alpha to apply
// Enabled for diffuse lighting alpha component
if (lighting.config0.fresnel_selector ==
LightingRegs::LightingFresnelSelector::PrimaryAlpha ||
lighting.config0.fresnel_selector == LightingRegs::LightingFresnelSelector::Both) {
diffuse_sum.a() *= shadow.w;
}
// Enabled for the specular lighting alpha component
if (lighting.config0.fresnel_selector ==
LightingRegs::LightingFresnelSelector::SecondaryAlpha ||
lighting.config0.fresnel_selector == LightingRegs::LightingFresnelSelector::Both) {
specular_sum.a() *= shadow.w;
}
} }
diffuse_sum += Math::MakeVec(lighting.global_ambient.ToVec3f(), 0.0f); diffuse_sum += Math::MakeVec(lighting.global_ambient.ToVec3f(), 0.0f);

View File

@ -74,8 +74,9 @@ static int SignedArea(const Math::Vec2<Fix12P4>& vtx1, const Math::Vec2<Fix12P4>
}; };
/// Convert a 3D vector for cube map coordinates to 2D texture coordinates along with the face name /// Convert a 3D vector for cube map coordinates to 2D texture coordinates along with the face name
static std::tuple<float24, float24, PAddr> ConvertCubeCoord(float24 u, float24 v, float24 w, static std::tuple<float24, float24, float24, PAddr> ConvertCubeCoord(float24 u, float24 v,
const TexturingRegs& regs) { float24 w,
const TexturingRegs& regs) {
const float abs_u = std::abs(u.ToFloat32()); const float abs_u = std::abs(u.ToFloat32());
const float abs_v = std::abs(v.ToFloat32()); const float abs_v = std::abs(v.ToFloat32());
const float abs_w = std::abs(w.ToFloat32()); const float abs_w = std::abs(w.ToFloat32());
@ -112,8 +113,9 @@ static std::tuple<float24, float24, PAddr> ConvertCubeCoord(float24 u, float24 v
x = u; x = u;
z = w; z = w;
} }
float24 z_abs = float24::FromFloat32(std::abs(z.ToFloat32()));
const float24 half = float24::FromFloat32(0.5f); const float24 half = float24::FromFloat32(0.5f);
return std::make_tuple(x / z * half + half, y / z * half + half, addr); return std::make_tuple(x / z * half + half, y / z * half + half, z_abs, addr);
} }
MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 240)); MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 240));
@ -331,13 +333,16 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve
// Only unit 0 respects the texturing type (according to 3DBrew) // Only unit 0 respects the texturing type (according to 3DBrew)
// TODO: Refactor so cubemaps and shadowmaps can be handled // TODO: Refactor so cubemaps and shadowmaps can be handled
PAddr texture_address = texture.config.GetPhysicalAddress(); PAddr texture_address = texture.config.GetPhysicalAddress();
float24 shadow_z;
if (i == 0) { if (i == 0) {
switch (texture.config.type) { switch (texture.config.type) {
case TexturingRegs::TextureConfig::Texture2D: case TexturingRegs::TextureConfig::Texture2D:
break; break;
case TexturingRegs::TextureConfig::ShadowCube:
case TexturingRegs::TextureConfig::TextureCube: { case TexturingRegs::TextureConfig::TextureCube: {
auto w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w); auto w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w);
std::tie(u, v, texture_address) = ConvertCubeCoord(u, v, w, regs.texturing); std::tie(u, v, shadow_z, texture_address) =
ConvertCubeCoord(u, v, w, regs.texturing);
break; break;
} }
case TexturingRegs::TextureConfig::Projection2D: { case TexturingRegs::TextureConfig::Projection2D: {
@ -346,6 +351,16 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve
v /= tc0_w; v /= tc0_w;
break; break;
} }
case TexturingRegs::TextureConfig::Shadow2D: {
auto tc0_w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w);
if (!regs.texturing.shadow.orthographic) {
u /= tc0_w;
v /= tc0_w;
}
shadow_z = float24::FromFloat32(std::abs(tc0_w.ToFloat32()));
break;
}
default: default:
// TODO: Change to LOG_ERROR when more types are handled. // TODO: Change to LOG_ERROR when more types are handled.
LOG_DEBUG(HW_GPU, "Unhandled texture type %x", (int)texture.config.type); LOG_DEBUG(HW_GPU, "Unhandled texture type %x", (int)texture.config.type);
@ -394,6 +409,22 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve
// TODO: Apply the min and mag filters to the texture // TODO: Apply the min and mag filters to the texture
texture_color[i] = Texture::LookupTexture(texture_data, s, t, info); texture_color[i] = Texture::LookupTexture(texture_data, s, t, info);
} }
if (i == 0 && (texture.config.type == TexturingRegs::TextureConfig::Shadow2D ||
texture.config.type == TexturingRegs::TextureConfig::ShadowCube)) {
s32 z_int = static_cast<s32>(std::min(shadow_z.ToFloat32(), 1.0f) * 0xFFFFFF);
z_int -= regs.texturing.shadow.bias << 1;
auto& color = texture_color[i];
s32 z_ref = (color.w << 16) | (color.z << 8) | color.y;
u8 density;
if (z_ref >= z_int) {
density = color.x;
} else {
density = 0;
}
texture_color[i] = {density, density, density, density};
}
} }
// sample procedural texture // sample procedural texture
@ -541,6 +572,17 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve
} }
const auto& output_merger = regs.framebuffer.output_merger; const auto& output_merger = regs.framebuffer.output_merger;
if (output_merger.fragment_operation_mode ==
FramebufferRegs::FragmentOperationMode::Shadow) {
u32 depth_int = static_cast<u32>(depth * 0xFFFFFF);
// use green color as the shadow intensity
u8 stencil = combiner_output.y;
DrawShadowMapPixel(x >> 4, y >> 4, depth_int, stencil);
// skip the normal output merger pipeline if it is in shadow mode
continue;
}
// TODO: Does alpha testing happen before or after stencil? // TODO: Does alpha testing happen before or after stencil?
if (output_merger.alpha_test.enable) { if (output_merger.alpha_test.enable) {
bool pass = false; bool pass = false;