Merge pull request #1723 from MerryMage/audio-interp
AudioCore: Implement interpolation
This commit is contained in:
commit
4c235955cf
|
@ -4,6 +4,7 @@ set(SRCS
|
||||||
hle/dsp.cpp
|
hle/dsp.cpp
|
||||||
hle/filter.cpp
|
hle/filter.cpp
|
||||||
hle/pipe.cpp
|
hle/pipe.cpp
|
||||||
|
interpolate.cpp
|
||||||
)
|
)
|
||||||
|
|
||||||
set(HEADERS
|
set(HEADERS
|
||||||
|
@ -13,6 +14,7 @@ set(HEADERS
|
||||||
hle/dsp.h
|
hle/dsp.h
|
||||||
hle/filter.h
|
hle/filter.h
|
||||||
hle/pipe.h
|
hle/pipe.h
|
||||||
|
interpolate.h
|
||||||
sink.h
|
sink.h
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,85 @@
|
||||||
|
// Copyright 2016 Citra Emulator Project
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#include "audio_core/interpolate.h"
|
||||||
|
|
||||||
|
#include "common/assert.h"
|
||||||
|
#include "common/math_util.h"
|
||||||
|
|
||||||
|
namespace AudioInterp {
|
||||||
|
|
||||||
|
// Calculations are done in fixed point with 24 fractional bits.
|
||||||
|
// (This is not verified. This was chosen for minimal error.)
|
||||||
|
constexpr u64 scale_factor = 1 << 24;
|
||||||
|
constexpr u64 scale_mask = scale_factor - 1;
|
||||||
|
|
||||||
|
/// Here we step over the input in steps of rate_multiplier, until we consume all of the input.
|
||||||
|
/// Three adjacent samples are passed to fn each step.
|
||||||
|
template <typename Function>
|
||||||
|
static StereoBuffer16 StepOverSamples(State& state, const StereoBuffer16& input, float rate_multiplier, Function fn) {
|
||||||
|
ASSERT(rate_multiplier > 0);
|
||||||
|
|
||||||
|
if (input.size() < 2)
|
||||||
|
return {};
|
||||||
|
|
||||||
|
StereoBuffer16 output;
|
||||||
|
output.reserve(static_cast<size_t>(input.size() / rate_multiplier));
|
||||||
|
|
||||||
|
u64 step_size = static_cast<u64>(rate_multiplier * scale_factor);
|
||||||
|
|
||||||
|
u64 fposition = 0;
|
||||||
|
const u64 max_fposition = input.size() * scale_factor;
|
||||||
|
|
||||||
|
while (fposition < 1 * scale_factor) {
|
||||||
|
u64 fraction = fposition & scale_mask;
|
||||||
|
|
||||||
|
output.push_back(fn(fraction, state.xn2, state.xn1, input[0]));
|
||||||
|
|
||||||
|
fposition += step_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
while (fposition < 2 * scale_factor) {
|
||||||
|
u64 fraction = fposition & scale_mask;
|
||||||
|
|
||||||
|
output.push_back(fn(fraction, state.xn1, input[0], input[1]));
|
||||||
|
|
||||||
|
fposition += step_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
while (fposition < max_fposition) {
|
||||||
|
u64 fraction = fposition & scale_mask;
|
||||||
|
|
||||||
|
size_t index = static_cast<size_t>(fposition / scale_factor);
|
||||||
|
output.push_back(fn(fraction, input[index - 2], input[index - 1], input[index]));
|
||||||
|
|
||||||
|
fposition += step_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
state.xn2 = input[input.size() - 2];
|
||||||
|
state.xn1 = input[input.size() - 1];
|
||||||
|
|
||||||
|
return output;
|
||||||
|
}
|
||||||
|
|
||||||
|
StereoBuffer16 None(State& state, const StereoBuffer16& input, float rate_multiplier) {
|
||||||
|
return StepOverSamples(state, input, rate_multiplier, [](u64 fraction, const auto& x0, const auto& x1, const auto& x2) {
|
||||||
|
return x0;
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
StereoBuffer16 Linear(State& state, const StereoBuffer16& input, float rate_multiplier) {
|
||||||
|
// Note on accuracy: Some values that this produces are +/- 1 from the actual firmware.
|
||||||
|
return StepOverSamples(state, input, rate_multiplier, [](u64 fraction, const auto& x0, const auto& x1, const auto& x2) {
|
||||||
|
// This is a saturated subtraction. (Verified by black-box fuzzing.)
|
||||||
|
s64 delta0 = MathUtil::Clamp<s64>(x1[0] - x0[0], -32768, 32767);
|
||||||
|
s64 delta1 = MathUtil::Clamp<s64>(x1[1] - x0[1], -32768, 32767);
|
||||||
|
|
||||||
|
return std::array<s16, 2> {
|
||||||
|
static_cast<s16>(x0[0] + fraction * delta0 / scale_factor),
|
||||||
|
static_cast<s16>(x0[1] + fraction * delta1 / scale_factor)
|
||||||
|
};
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace AudioInterp
|
|
@ -0,0 +1,41 @@
|
||||||
|
// Copyright 2016 Citra Emulator Project
|
||||||
|
// Licensed under GPLv2 or any later version
|
||||||
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <array>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "common/common_types.h"
|
||||||
|
|
||||||
|
namespace AudioInterp {
|
||||||
|
|
||||||
|
/// A variable length buffer of signed PCM16 stereo samples.
|
||||||
|
using StereoBuffer16 = std::vector<std::array<s16, 2>>;
|
||||||
|
|
||||||
|
struct State {
|
||||||
|
// Two historical samples.
|
||||||
|
std::array<s16, 2> xn1 = {}; ///< x[n-1]
|
||||||
|
std::array<s16, 2> xn2 = {}; ///< x[n-2]
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* No interpolation. This is equivalent to a zero-order hold. There is a two-sample predelay.
|
||||||
|
* @param input Input buffer.
|
||||||
|
* @param rate_multiplier Stretch factor. Must be a positive non-zero value.
|
||||||
|
* rate_multiplier > 1.0 performs decimation and rate_multipler < 1.0 performs upsampling.
|
||||||
|
* @return The resampled audio buffer.
|
||||||
|
*/
|
||||||
|
StereoBuffer16 None(State& state, const StereoBuffer16& input, float rate_multiplier);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Linear interpolation. This is equivalent to a first-order hold. There is a two-sample predelay.
|
||||||
|
* @param input Input buffer.
|
||||||
|
* @param rate_multiplier Stretch factor. Must be a positive non-zero value.
|
||||||
|
* rate_multiplier > 1.0 performs decimation and rate_multipler < 1.0 performs upsampling.
|
||||||
|
* @return The resampled audio buffer.
|
||||||
|
*/
|
||||||
|
StereoBuffer16 Linear(State& state, const StereoBuffer16& input, float rate_multiplier);
|
||||||
|
|
||||||
|
} // namespace AudioInterp
|
Reference in New Issue