citra-emu
/
citra
Archived
1
0
Fork 0

Loader: Implemented AppLoader interface for abstracting application loading.

- Various cleanups/refactorings to Loader, ELF, and NCCH modules.
- Added AppLoader interface to ELF and NCCH.
- Updated Qt/GLFW frontends to check AppLoader ResultStatus.

NCCH: Removed extra qualification typos.

Loader: Removed unnecessary #include's.

NCCH: Improved readability of memcmp statements.

NCCH: Added missing space.

Elf: Removed unnecessary usage of unique_ptr.

Loader: Removed unnecessary usage of unique_ptr.
This commit is contained in:
bunnei 2014-06-18 18:58:09 -04:00
parent 79a48082e2
commit 7889cafc76
8 changed files with 690 additions and 551 deletions

View File

@ -16,28 +16,21 @@
/// Application entry point /// Application entry point
int __cdecl main(int argc, char **argv) { int __cdecl main(int argc, char **argv) {
std::string program_dir = File::GetCurrentDir();
LogManager::Init(); LogManager::Init();
if (argc < 2) {
ERROR_LOG(BOOT, "Failed to load ROM: No ROM specified");
return -1;
}
std::string boot_filename = argv[1];
EmuWindow_GLFW* emu_window = new EmuWindow_GLFW; EmuWindow_GLFW* emu_window = new EmuWindow_GLFW;
System::Init(emu_window); System::Init(emu_window);
std::string boot_filename; if (Loader::ResultStatus::Success != Loader::LoadFile(boot_filename)) {
ERROR_LOG(BOOT, "Failed to load ROM!");
if (argc < 2) { return -1;
ERROR_LOG(BOOT, "Failed to load ROM: No ROM specified");
}
else {
boot_filename = argv[1];
}
std::string error_str;
bool res = Loader::LoadFile(boot_filename, &error_str);
if (!res) {
ERROR_LOG(BOOT, "Failed to load ROM: %s", error_str.c_str());
} }
Core::RunLoop(); Core::RunLoop();

View File

@ -135,11 +135,8 @@ void GMainWindow::BootGame(const char* filename)
// Load a game or die... // Load a game or die...
std::string boot_filename = filename; std::string boot_filename = filename;
std::string error_str; if (Loader::ResultStatus::Success != Loader::LoadFile(boot_filename)) {
bool res = Loader::LoadFile(boot_filename, &error_str); ERROR_LOG(BOOT, "Failed to load ROM!");
if (!res) {
ERROR_LOG(BOOT, "Failed to load ROM: %s", error_str.c_str());
} }
disasmWidget->Init(); disasmWidget->Init();

View File

@ -3,6 +3,7 @@
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <string> #include <string>
#include <memory>
#include "common/common.h" #include "common/common.h"
#include "common/file_util.h" #include "common/file_util.h"
@ -12,6 +13,220 @@
#include "core/loader/elf.h" #include "core/loader/elf.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
// ELF Header Constants
// File type
enum ElfType {
ET_NONE = 0,
ET_REL = 1,
ET_EXEC = 2,
ET_DYN = 3,
ET_CORE = 4,
ET_LOPROC = 0xFF00,
ET_HIPROC = 0xFFFF,
};
// Machine/Architecture
enum ElfMachine {
EM_NONE = 0,
EM_M32 = 1,
EM_SPARC = 2,
EM_386 = 3,
EM_68K = 4,
EM_88K = 5,
EM_860 = 7,
EM_MIPS = 8
};
// File version
#define EV_NONE 0
#define EV_CURRENT 1
// Identification index
#define EI_MAG0 0
#define EI_MAG1 1
#define EI_MAG2 2
#define EI_MAG3 3
#define EI_CLASS 4
#define EI_DATA 5
#define EI_VERSION 6
#define EI_PAD 7
#define EI_NIDENT 16
// Magic number
#define ELFMAG0 0x7F
#define ELFMAG1 'E'
#define ELFMAG2 'L'
#define ELFMAG3 'F'
// Sections constants
// Section types
#define SHT_NULL 0
#define SHT_PROGBITS 1
#define SHT_SYMTAB 2
#define SHT_STRTAB 3
#define SHT_RELA 4
#define SHT_HASH 5
#define SHT_DYNAMIC 6
#define SHT_NOTE 7
#define SHT_NOBITS 8
#define SHT_REL 9
#define SHT_SHLIB 10
#define SHT_DYNSYM 11
#define SHT_LOPROC 0x70000000
#define SHT_HIPROC 0x7FFFFFFF
#define SHT_LOUSER 0x80000000
#define SHT_HIUSER 0xFFFFFFFF
// Section flags
enum ElfSectionFlags
{
SHF_WRITE = 0x1,
SHF_ALLOC = 0x2,
SHF_EXECINSTR = 0x4,
SHF_MASKPROC = 0xF0000000,
};
// Segment types
#define PT_NULL 0
#define PT_LOAD 1
#define PT_DYNAMIC 2
#define PT_INTERP 3
#define PT_NOTE 4
#define PT_SHLIB 5
#define PT_PHDR 6
#define PT_LOPROC 0x70000000
#define PT_HIPROC 0x7FFFFFFF
typedef unsigned int Elf32_Addr;
typedef unsigned short Elf32_Half;
typedef unsigned int Elf32_Off;
typedef signed int Elf32_Sword;
typedef unsigned int Elf32_Word;
////////////////////////////////////////////////////////////////////////////////////////////////////
// ELF file header
struct Elf32_Ehdr {
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;
};
// Section header
struct Elf32_Shdr {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;
};
// Segment header
struct Elf32_Phdr {
Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;
};
// Symbol table entry
struct Elf32_Sym {
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;
};
// Relocation entries
struct Elf32_Rel {
Elf32_Addr r_offset;
Elf32_Word r_info;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// ElfReader class
typedef int SectionID;
class ElfReader {
private:
char *base;
u32 *base32;
Elf32_Ehdr *header;
Elf32_Phdr *segments;
Elf32_Shdr *sections;
u32 *sectionAddrs;
bool relocate;
u32 entryPoint;
public:
ElfReader(void *ptr);
~ElfReader() { }
u32 Read32(int off) const { return base32[off >> 2]; }
// Quick accessors
ElfType GetType() const { return (ElfType)(header->e_type); }
ElfMachine GetMachine() const { return (ElfMachine)(header->e_machine); }
u32 GetEntryPoint() const { return entryPoint; }
u32 GetFlags() const { return (u32)(header->e_flags); }
bool LoadInto(u32 vaddr);
bool LoadSymbols();
int GetNumSegments() const { return (int)(header->e_phnum); }
int GetNumSections() const { return (int)(header->e_shnum); }
const u8 *GetPtr(int offset) const { return (u8*)base + offset; }
const char *GetSectionName(int section) const;
const u8 *GetSectionDataPtr(int section) const {
if (section < 0 || section >= header->e_shnum)
return nullptr;
if (sections[section].sh_type != SHT_NOBITS)
return GetPtr(sections[section].sh_offset);
else
return nullptr;
}
bool IsCodeSection(int section) const {
return sections[section].sh_type == SHT_PROGBITS;
}
const u8 *GetSegmentPtr(int segment) {
return GetPtr(segments[segment].p_offset);
}
u32 GetSectionAddr(SectionID section) const { return sectionAddrs[section]; }
int GetSectionSize(SectionID section) const { return sections[section].sh_size; }
SectionID GetSectionByName(const char *name, int firstSection = 0) const; //-1 for not found
bool DidRelocate() {
return relocate;
}
};
ElfReader::ElfReader(void *ptr) { ElfReader::ElfReader(void *ptr) {
base = (char*)ptr; base = (char*)ptr;
base32 = (u32 *)ptr; base32 = (u32 *)ptr;
@ -29,12 +244,12 @@ const char *ElfReader::GetSectionName(int section) const {
if (sections[section].sh_type == SHT_NULL) if (sections[section].sh_type == SHT_NULL)
return nullptr; return nullptr;
int nameOffset = sections[section].sh_name; int name_offset = sections[section].sh_name;
char *ptr = (char*)GetSectionDataPtr(header->e_shstrndx); char *ptr = (char*)GetSectionDataPtr(header->e_shstrndx);
if (ptr) if (ptr)
return ptr + nameOffset; return ptr + name_offset;
else
return nullptr; return nullptr;
} }
@ -42,15 +257,12 @@ bool ElfReader::LoadInto(u32 vaddr) {
DEBUG_LOG(MASTER_LOG, "String section: %i", header->e_shstrndx); DEBUG_LOG(MASTER_LOG, "String section: %i", header->e_shstrndx);
// Should we relocate? // Should we relocate?
bRelocate = (header->e_type != ET_EXEC); relocate = (header->e_type != ET_EXEC);
if (bRelocate) if (relocate) {
{
DEBUG_LOG(MASTER_LOG, "Relocatable module"); DEBUG_LOG(MASTER_LOG, "Relocatable module");
entryPoint += vaddr; entryPoint += vaddr;
} } else {
else
{
DEBUG_LOG(MASTER_LOG, "Prerelocated executable"); DEBUG_LOG(MASTER_LOG, "Prerelocated executable");
} }
@ -58,17 +270,14 @@ bool ElfReader::LoadInto(u32 vaddr) {
// First pass : Get the bits into RAM // First pass : Get the bits into RAM
u32 segmentVAddr[32]; u32 segmentVAddr[32];
u32 baseAddress = relocate ? vaddr : 0;
u32 baseAddress = bRelocate ? vaddr : 0; for (int i = 0; i < header->e_phnum; i++) {
for (int i = 0; i < header->e_phnum; i++)
{
Elf32_Phdr *p = segments + i; Elf32_Phdr *p = segments + i;
INFO_LOG(MASTER_LOG, "Type: %i Vaddr: %08x Filesz: %i Memsz: %i ", p->p_type, p->p_vaddr, p->p_filesz, p->p_memsz); INFO_LOG(MASTER_LOG, "Type: %i Vaddr: %08x Filesz: %i Memsz: %i ", p->p_type, p->p_vaddr, p->p_filesz, p->p_memsz);
if (p->p_type == PT_LOAD) if (p->p_type == PT_LOAD) {
{
segmentVAddr[i] = baseAddress + p->p_vaddr; segmentVAddr[i] = baseAddress + p->p_vaddr;
u32 writeAddr = segmentVAddr[i]; u32 writeAddr = segmentVAddr[i];
@ -78,27 +287,19 @@ bool ElfReader::LoadInto(u32 vaddr) {
u32 dstSize = p->p_memsz; u32 dstSize = p->p_memsz;
u32 *s = (u32*)src; u32 *s = (u32*)src;
u32 *d = (u32*)dst; u32 *d = (u32*)dst;
for (int j = 0; j < (int)(srcSize + 3) / 4; j++) for (int j = 0; j < (int)(srcSize + 3) / 4; j++) {
{ *d++ = (*s++);
*d++ = /*_byteswap_ulong*/(*s++);
}
if (srcSize < dstSize)
{
//memset(dst + srcSize, 0, dstSize-srcSize); //zero out bss
} }
INFO_LOG(MASTER_LOG, "Loadable Segment Copied to %08x, size %08x", writeAddr, p->p_memsz); INFO_LOG(MASTER_LOG, "Loadable Segment Copied to %08x, size %08x", writeAddr, p->p_memsz);
} }
} }
INFO_LOG(MASTER_LOG, "Done loading."); INFO_LOG(MASTER_LOG, "Done loading.");
return true; return true;
} }
SectionID ElfReader::GetSectionByName(const char *name, int firstSection) const SectionID ElfReader::GetSectionByName(const char *name, int firstSection) const {
{ for (int i = firstSection; i < header->e_shnum; i++) {
for (int i = firstSection; i < header->e_shnum; i++)
{
const char *secname = GetSectionName(i); const char *secname = GetSectionName(i);
if (secname != nullptr && strcmp(name, secname) == 0) if (secname != nullptr && strcmp(name, secname) == 0)
@ -107,25 +308,21 @@ SectionID ElfReader::GetSectionByName(const char *name, int firstSection) const
return -1; return -1;
} }
bool ElfReader::LoadSymbols() bool ElfReader::LoadSymbols() {
{
bool hasSymbols = false; bool hasSymbols = false;
SectionID sec = GetSectionByName(".symtab"); SectionID sec = GetSectionByName(".symtab");
if (sec != -1) if (sec != -1) {
{
int stringSection = sections[sec].sh_link; int stringSection = sections[sec].sh_link;
const char *stringBase = (const char *)GetSectionDataPtr(stringSection); const char *stringBase = (const char *)GetSectionDataPtr(stringSection);
//We have a symbol table! //We have a symbol table!
Elf32_Sym *symtab = (Elf32_Sym *)(GetSectionDataPtr(sec)); Elf32_Sym *symtab = (Elf32_Sym *)(GetSectionDataPtr(sec));
int numSymbols = sections[sec].sh_size / sizeof(Elf32_Sym); int numSymbols = sections[sec].sh_size / sizeof(Elf32_Sym);
for (int sym = 0; sym < numSymbols; sym++) for (int sym = 0; sym < numSymbols; sym++) {
{
int size = symtab[sym].st_size; int size = symtab[sym].st_size;
if (size == 0) if (size == 0)
continue; continue;
// int bind = symtab[sym].st_info >> 4;
int type = symtab[sym].st_info & 0xF; int type = symtab[sym].st_info & 0xF;
const char *name = stringBase + symtab[sym].st_name; const char *name = stringBase + symtab[sym].st_name;
@ -144,42 +341,41 @@ bool ElfReader::LoadSymbols()
namespace Loader { namespace Loader {
/// AppLoader_ELF constructor
AppLoader_ELF::AppLoader_ELF(std::string& filename) : is_loaded(false) {
this->filename = filename;
}
/// AppLoader_NCCH destructor
AppLoader_ELF::~AppLoader_ELF() {
}
/** /**
* Loads an ELF file * Loads an NCCH file (e.g. from a CCI, or the first NCCH in a CXI)
* @param filename String filename of ELF file
* @param error_string Pointer to string to put error message if an error has occurred * @param error_string Pointer to string to put error message if an error has occurred
* @todo Move NCSD parsing out of here and create a separate function for loading these
* @return True on success, otherwise false * @return True on success, otherwise false
*/ */
bool Load_ELF(std::string& filename, std::string* error_string) { const ResultStatus AppLoader_ELF::Load() {
std::string full_path = filename; INFO_LOG(LOADER, "Loading ELF file %s...", filename.c_str());
std::string path, file, extension;
SplitPath(ReplaceAll(full_path, "\\", "/"), &path, &file, &extension);
#if EMU_PLATFORM == PLATFORM_WINDOWS
path = ReplaceAll(path, "/", "\\");
#endif
File::IOFile f(filename, "rb");
if (f.IsOpen()) { if (is_loaded)
u32 size = (u32)f.GetSize(); return ResultStatus::ErrorAlreadyLoaded;
u8* buffer = new u8[size];
ElfReader* elf_reader = NULL;
f.ReadBytes(buffer, size); File::IOFile file(filename, "rb");
elf_reader = new ElfReader(buffer); if (file.IsOpen()) {
elf_reader->LoadInto(0x00100000); u32 size = (u32)file.GetSize();
std::unique_ptr<u8[]> buffer(new u8[size]);
file.ReadBytes(&buffer[0], size);
Kernel::LoadExec(elf_reader->GetEntryPoint()); ElfReader elf_reader(&buffer[0]);
elf_reader.LoadInto(0x00100000);
delete[] buffer; Kernel::LoadExec(elf_reader.GetEntryPoint());
delete elf_reader;
} else { } else {
*error_string = "Unable to open ELF file!"; return ResultStatus::Error;
return false;
} }
f.Close(); return ResultStatus::Success;
return true;
} }
} // namespace Loader } // namespace Loader

View File

@ -5,226 +5,28 @@
#pragma once #pragma once
#include "common/common_types.h" #include "common/common_types.h"
#include "core/loader/loader.h"
// ELF Header Constants
// File type
enum ElfType {
ET_NONE = 0,
ET_REL = 1,
ET_EXEC = 2,
ET_DYN = 3,
ET_CORE = 4,
ET_LOPROC = 0xFF00,
ET_HIPROC = 0xFFFF,
};
// Machine/Architecture
enum ElfMachine {
EM_NONE = 0,
EM_M32 = 1,
EM_SPARC = 2,
EM_386 = 3,
EM_68K = 4,
EM_88K = 5,
EM_860 = 7,
EM_MIPS = 8
};
// File version
#define EV_NONE 0
#define EV_CURRENT 1
// Identification index
#define EI_MAG0 0
#define EI_MAG1 1
#define EI_MAG2 2
#define EI_MAG3 3
#define EI_CLASS 4
#define EI_DATA 5
#define EI_VERSION 6
#define EI_PAD 7
#define EI_NIDENT 16
// Magic number
#define ELFMAG0 0x7F
#define ELFMAG1 'E'
#define ELFMAG2 'L'
#define ELFMAG3 'F'
// Sections constants
// Section types
#define SHT_NULL 0
#define SHT_PROGBITS 1
#define SHT_SYMTAB 2
#define SHT_STRTAB 3
#define SHT_RELA 4
#define SHT_HASH 5
#define SHT_DYNAMIC 6
#define SHT_NOTE 7
#define SHT_NOBITS 8
#define SHT_REL 9
#define SHT_SHLIB 10
#define SHT_DYNSYM 11
#define SHT_LOPROC 0x70000000
#define SHT_HIPROC 0x7FFFFFFF
#define SHT_LOUSER 0x80000000
#define SHT_HIUSER 0xFFFFFFFF
// Section flags
enum ElfSectionFlags
{
SHF_WRITE = 0x1,
SHF_ALLOC = 0x2,
SHF_EXECINSTR = 0x4,
SHF_MASKPROC = 0xF0000000,
};
// Segment types
#define PT_NULL 0
#define PT_LOAD 1
#define PT_DYNAMIC 2
#define PT_INTERP 3
#define PT_NOTE 4
#define PT_SHLIB 5
#define PT_PHDR 6
#define PT_LOPROC 0x70000000
#define PT_HIPROC 0x7FFFFFFF
typedef unsigned int Elf32_Addr;
typedef unsigned short Elf32_Half;
typedef unsigned int Elf32_Off;
typedef signed int Elf32_Sword;
typedef unsigned int Elf32_Word;
// ELF file header
struct Elf32_Ehdr {
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;
};
// Section header
struct Elf32_Shdr {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;
};
// Segment header
struct Elf32_Phdr {
Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;
};
// Symbol table entry
struct Elf32_Sym {
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;
};
// Relocation entries
struct Elf32_Rel {
Elf32_Addr r_offset;
Elf32_Word r_info;
};
typedef int SectionID;
class ElfReader {
private:
char *base;
u32 *base32;
Elf32_Ehdr *header;
Elf32_Phdr *segments;
Elf32_Shdr *sections;
u32 *sectionAddrs;
bool bRelocate;
u32 entryPoint;
public:
ElfReader(void *ptr);
~ElfReader() { }
u32 Read32(int off) const { return base32[off >> 2]; }
// Quick accessors
ElfType GetType() const { return (ElfType)(header->e_type); }
ElfMachine GetMachine() const { return (ElfMachine)(header->e_machine); }
u32 GetEntryPoint() const { return entryPoint; }
u32 GetFlags() const { return (u32)(header->e_flags); }
bool LoadInto(u32 vaddr);
bool LoadSymbols();
int GetNumSegments() const { return (int)(header->e_phnum); }
int GetNumSections() const { return (int)(header->e_shnum); }
const u8 *GetPtr(int offset) const { return (u8*)base + offset; }
const char *GetSectionName(int section) const;
const u8 *GetSectionDataPtr(int section) const {
if (section < 0 || section >= header->e_shnum)
return nullptr;
if (sections[section].sh_type != SHT_NOBITS)
return GetPtr(sections[section].sh_offset);
else
return nullptr;
}
bool IsCodeSection(int section) const {
return sections[section].sh_type == SHT_PROGBITS;
}
const u8 *GetSegmentPtr(int segment) {
return GetPtr(segments[segment].p_offset);
}
u32 GetSectionAddr(SectionID section) const { return sectionAddrs[section]; }
int GetSectionSize(SectionID section) const { return sections[section].sh_size; }
SectionID GetSectionByName(const char *name, int firstSection = 0) const; //-1 for not found
bool DidRelocate() {
return bRelocate;
}
};
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
// Loader namespace // Loader namespace
namespace Loader { namespace Loader {
/// Loads an ELF/AXF file
class AppLoader_ELF : public AppLoader {
public:
AppLoader_ELF(std::string& filename);
~AppLoader_ELF();
/** /**
* Loads an ELF file * Load the bootable file
* @param filename String filename of ELF file * @return ResultStatus result of function
* @param error_string Pointer to string to put error message if an error has occurred
* @return True on success, otherwise false
*/ */
bool Load_ELF(std::string& filename, std::string* error_string); const ResultStatus Load();
private:
std::string filename;
bool is_loaded;
};
} // namespace Loader } // namespace Loader

View File

@ -2,6 +2,8 @@
// Licensed under GPLv2 // Licensed under GPLv2
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <memory>
#include "core/loader/loader.h" #include "core/loader/loader.h"
#include "core/loader/elf.h" #include "core/loader/elf.h"
#include "core/loader/ncch.h" #include "core/loader/ncch.h"
@ -16,59 +18,60 @@ namespace Loader {
* @todo (ShizZy) this function sucks... make it actually check file contents etc. * @todo (ShizZy) this function sucks... make it actually check file contents etc.
* @return FileType of file * @return FileType of file
*/ */
FileType IdentifyFile(std::string &filename) { const FileType IdentifyFile(const std::string &filename) {
if (filename.size() == 0) { if (filename.size() == 0) {
ERROR_LOG(LOADER, "invalid filename %s", filename.c_str()); ERROR_LOG(LOADER, "invalid filename %s", filename.c_str());
return FILETYPE_ERROR; return FileType::Error;
} }
std::string extension = filename.size() >= 5 ? filename.substr(filename.size() - 4) : ""; std::string extension = filename.size() >= 5 ? filename.substr(filename.size() - 4) : "";
if (!strcasecmp(extension.c_str(), ".elf")) { if (!strcasecmp(extension.c_str(), ".elf")) {
return FILETYPE_CTR_ELF; // TODO(bunnei): Do some filetype checking :p return FileType::ELF; // TODO(bunnei): Do some filetype checking :p
} }
else if (!strcasecmp(extension.c_str(), ".axf")) { else if (!strcasecmp(extension.c_str(), ".axf")) {
return FILETYPE_CTR_ELF; // TODO(bunnei): Do some filetype checking :p return FileType::ELF; // TODO(bunnei): Do some filetype checking :p
} }
else if (!strcasecmp(extension.c_str(), ".cxi")) { else if (!strcasecmp(extension.c_str(), ".cxi")) {
return FILETYPE_CTR_CXI; // TODO(bunnei): Do some filetype checking :p return FileType::CXI; // TODO(bunnei): Do some filetype checking :p
} }
else if (!strcasecmp(extension.c_str(), ".cci")) { else if (!strcasecmp(extension.c_str(), ".cci")) {
return FILETYPE_CTR_CCI; // TODO(bunnei): Do some filetype checking :p return FileType::CCI; // TODO(bunnei): Do some filetype checking :p
} }
return FILETYPE_UNKNOWN; return FileType::Unknown;
} }
/** /**
* Identifies and loads a bootable file * Identifies and loads a bootable file
* @param filename String filename of bootable file * @param filename String filename of bootable file
* @param error_string Point to string to put error message if an error has occurred * @return ResultStatus result of function
* @return True on success, otherwise false
*/ */
bool LoadFile(std::string &filename, std::string *error_string) { const ResultStatus LoadFile(std::string& filename) {
INFO_LOG(LOADER, "Identifying file..."); INFO_LOG(LOADER, "Loading file %s...", filename.c_str());
// Note that this can modify filename!
switch (IdentifyFile(filename)) { switch (IdentifyFile(filename)) {
case FILETYPE_CTR_ELF: // Standard ELF file format...
return Loader::Load_ELF(filename, error_string); case FileType::ELF: {
return AppLoader_ELF(filename).Load();
case FILETYPE_CTR_CXI:
case FILETYPE_CTR_CCI:
return Loader::Load_NCCH(filename, error_string);
case FILETYPE_ERROR:
ERROR_LOG(LOADER, "Could not read file");
*error_string = "Error reading file";
break;
case FILETYPE_UNKNOWN:
default:
ERROR_LOG(LOADER, "Failed to identify file");
*error_string = " Failed to identify file";
break;
} }
return false;
// NCCH/NCSD container formats...
case FileType::CXI:
case FileType::CCI: {
return AppLoader_NCCH(filename).Load();
}
// Error occurred durring IdentifyFile...
case FileType::Error:
// IdentifyFile could know identify file type...
case FileType::Unknown:
default:
return ResultStatus::ErrorInvalidFormat;
}
return ResultStatus::Error;
} }
} // namespace Loader } // namespace Loader

View File

@ -4,6 +4,8 @@
#pragma once #pragma once
#include <vector>
#include "common/common.h" #include "common/common.h"
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
@ -11,16 +13,94 @@
namespace Loader { namespace Loader {
enum FileType { /// File types supported by CTR
FILETYPE_ERROR, enum class FileType {
Error,
Unknown,
CCI,
CXI,
CIA,
ELF,
};
FILETYPE_CTR_CCI, /// Return type for functions in Loader namespace
FILETYPE_CTR_CIA, enum class ResultStatus {
FILETYPE_CTR_CXI, Success,
FILETYPE_CTR_ELF, Error,
FILETYPE_CTR_BIN, ErrorInvalidFormat,
ErrorNotImplemented,
ErrorNotLoaded,
ErrorAlreadyLoaded,
};
FILETYPE_UNKNOWN /// Interface for loading an application
class AppLoader : NonCopyable {
public:
AppLoader() { }
virtual ~AppLoader() { }
/**
* Load the application
* @return ResultStatus result of function
*/
virtual const ResultStatus Load() = 0;
/**
* Get the code (typically .code section) of the application
* @param error ResultStatus result of function
* @return Reference to code buffer
*/
virtual const std::vector<u8>& GetCode(ResultStatus& error) const {
error = ResultStatus::ErrorNotImplemented;
return code;
}
/**
* Get the icon (typically .icon section) of the application
* @param error ResultStatus result of function
* @return Reference to icon buffer
*/
virtual const std::vector<u8>& GetIcon(ResultStatus& error) const {
error = ResultStatus::ErrorNotImplemented;
return icon;
}
/**
* Get the banner (typically .banner section) of the application
* @param error ResultStatus result of function
* @return Reference to banner buffer
*/
virtual const std::vector<u8>& GetBanner(ResultStatus& error) const {
error = ResultStatus::ErrorNotImplemented;
return banner;
}
/**
* Get the logo (typically .logo section) of the application
* @param error ResultStatus result of function
* @return Reference to logo buffer
*/
virtual const std::vector<u8>& GetLogo(ResultStatus& error) const {
error = ResultStatus::ErrorNotImplemented;
return logo;
}
/**
* Get the RomFs archive of the application
* @param error ResultStatus result of function
* @return Reference to RomFs archive buffer
*/
virtual const std::vector<u8>& GetRomFs(ResultStatus error) const {
error = ResultStatus::ErrorNotImplemented;
return romfs;
}
protected:
std::vector<u8> code; ///< ExeFS .code section
std::vector<u8> icon; ///< ExeFS .icon section
std::vector<u8> banner; ///< ExeFS .banner section
std::vector<u8> logo; ///< ExeFS .logo section
std::vector<u8> romfs; ///< RomFs archive
}; };
/** /**
@ -28,14 +108,13 @@ enum FileType {
* @param filename String filename of bootable file * @param filename String filename of bootable file
* @return FileType of file * @return FileType of file
*/ */
FileType IdentifyFile(std::string &filename); const FileType IdentifyFile(const std::string &filename);
/** /**
* Identifies and loads a bootable file * Identifies and loads a bootable file
* @param filename String filename of bootable file * @param filename String filename of bootable file
* @param error_string Point to string to put error message if an error has occurred * @return ResultStatus result of function
* @return True on success, otherwise false
*/ */
bool LoadFile(std::string &filename, std::string *error_string); const ResultStatus LoadFile(std::string& filename);
} // namespace } // namespace

View File

@ -2,142 +2,14 @@
// Licensed under GPLv2 // Licensed under GPLv2
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <memory>
#include "common/file_util.h" #include "common/file_util.h"
#include "core/loader/ncch.h" #include "core/loader/ncch.h"
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
#include "core/mem_map.h" #include "core/mem_map.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
/// NCCH header (Note: "NCCH" appears to be a publically unknown acronym)
struct NCCH_Header {
u8 signature[0x100];
char magic[4];
u32 content_size;
u8 partition_id[8];
u16 maker_code;
u16 version;
u8 reserved_0[4];
u8 program_id[8];
u8 temp_flag;
u8 reserved_1[0x2f];
u8 product_code[0x10];
u8 extended_header_hash[0x20];
u32 extended_header_size;
u8 reserved_2[4];
u8 flags[8];
u32 plain_region_offset;
u32 plain_region_size;
u8 reserved_3[8];
u32 exefs_offset;
u32 exefs_size;
u32 exefs_hash_region_size;
u8 reserved_4[4];
u32 romfs_offset;
u32 romfs_size;
u32 romfs_hash_region_size;
u8 reserved_5[4];
u8 exefs_super_block_hash[0x20];
u8 romfs_super_block_hash[0x20];
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// ExeFS (executable file system) headers
typedef struct {
char name[8];
u32 offset;
u32 size;
} ExeFs_SectionHeader;
typedef struct {
ExeFs_SectionHeader section[8];
u8 reserved[0x80];
u8 hashes[8][0x20];
} ExeFs_Header;
////////////////////////////////////////////////////////////////////////////////////////////////////
// ExHeader (executable file system header) headers
struct ExHeader_SystemInfoFlags{
u8 reserved[5];
u8 flag;
u8 remaster_version[2];
} exheader_systeminfoflags;
struct ExHeader_CodeSegmentInfo{
u32 address;
u32 num_max_pages;
u32 code_size;
} exheader_codesegmentinfo;
struct ExHeader_CodeSetInfo {
u8 name[8];
ExHeader_SystemInfoFlags flags;
ExHeader_CodeSegmentInfo text;
u8 stacksize[4];
ExHeader_CodeSegmentInfo ro;
u8 reserved[4];
ExHeader_CodeSegmentInfo data;
u8 bsssize[4];
};
struct ExHeader_DependencyList{
u8 program_id[0x30][8];
};
struct ExHeader_SystemInfo{
u32 save_data_size;
u8 reserved[4];
u8 jump_id[8];
u8 reserved_2[0x30];
};
struct ExHeader_StorageInfo{
u8 ext_save_data_id[8];
u8 system_save_data_id[8];
u8 reserved[8];
u8 access_info[7];
u8 other_attributes;
};
struct ExHeader_ARM11_SystemLocalCaps{
u8 program_id[8];
u8 flags[8];
u8 resource_limit_descriptor[0x10][2];
ExHeader_StorageInfo storage_info;
u8 service_access_control[0x20][8];
u8 reserved[0x1f];
u8 resource_limit_category;
};
struct ExHeader_ARM11_KernelCaps{
u8 descriptors[28][4];
u8 reserved[0x10];
};
struct ExHeader_ARM9_AccessControl{
u8 descriptors[15];
u8 descversion;
};
struct ExHeader_Header{
ExHeader_CodeSetInfo codeset_info;
ExHeader_DependencyList dependency_list;
ExHeader_SystemInfo system_info;
ExHeader_ARM11_SystemLocalCaps arm11_system_local_caps;
ExHeader_ARM11_KernelCaps arm11_kernel_caps;
ExHeader_ARM9_AccessControl arm9_access_control;
struct {
u8 signature[0x100];
u8 ncch_public_key_modulus[0x100];
ExHeader_ARM11_SystemLocalCaps arm11_system_local_caps;
ExHeader_ARM11_KernelCaps arm11_kernel_caps;
ExHeader_ARM9_AccessControl arm9_access_control;
} access_desc;
};
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
// Loader namespace // Loader namespace
@ -163,11 +35,9 @@ u32 LZSS_GetDecompressedSize(u8* buffer, u32 size) {
* @param compressed_size Size of compressed buffer * @param compressed_size Size of compressed buffer
* @param decompressed Decompressed buffer * @param decompressed Decompressed buffer
* @param decompressed_size Size of decompressed buffer * @param decompressed_size Size of decompressed buffer
* @param error_string String populated with error message on failure
* @return True on success, otherwise false * @return True on success, otherwise false
*/ */
bool LZSS_Decompress(u8* compressed, u32 compressed_size, u8* decompressed, u32 decompressed_size, bool LZSS_Decompress(u8* compressed, u32 compressed_size, u8* decompressed, u32 decompressed_size) {
std::string* error_string) {
u8* footer = compressed + compressed_size - 8; u8* footer = compressed + compressed_size - 8;
u32 buffer_top_and_bottom = *(u32*)footer; u32 buffer_top_and_bottom = *(u32*)footer;
u32 i, j; u32 i, j;
@ -191,8 +61,8 @@ bool LZSS_Decompress(u8* compressed, u32 compressed_size, u8* decompressed, u32
break; break;
if(control & 0x80) { if(control & 0x80) {
// Check if compression is out of bounds
if(index < 2) { if(index < 2) {
*error_string = "Compression out of bounds";
return false; return false;
} }
index -= 2; index -= 2;
@ -202,22 +72,22 @@ bool LZSS_Decompress(u8* compressed, u32 compressed_size, u8* decompressed, u32
segment_offset &= 0x0FFF; segment_offset &= 0x0FFF;
segment_offset += 2; segment_offset += 2;
// Check if compression is out of bounds
if(out < segment_size) { if(out < segment_size) {
*error_string = "Compression out of bounds";
return false; return false;
} }
for(j = 0; j < segment_size; j++) { for(j = 0; j < segment_size; j++) {
u8 data; u8 data;
// Check if compression is out of bounds
if(out + segment_offset >= decompressed_size) { if(out + segment_offset >= decompressed_size) {
*error_string = "Compression out of bounds";
return false; return false;
} }
data = decompressed[out + segment_offset]; data = decompressed[out + segment_offset];
decompressed[--out] = data; decompressed[--out] = data;
} }
} else { } else {
// Check if compression is out of bounds
if(out < 1) { if(out < 1) {
*error_string = "Compression out of bounds";
return false; return false;
} }
decompressed[--out] = compressed[--index]; decompressed[--out] = compressed[--index];
@ -228,73 +98,47 @@ bool LZSS_Decompress(u8* compressed, u32 compressed_size, u8* decompressed, u32
return true; return true;
} }
/** ////////////////////////////////////////////////////////////////////////////////////////////////////
* Load a data buffer into memory at the specified address // AppLoader_NCCH class
* @param addr Address to load memory into
* @param buffer Buffer of data to load into memory
* @param size Size of data to load into memory
* @todo Perhaps move this code somewhere more generic?
*/
void LoadBuffer(const u32 addr, const u8* const buffer, const int size) {
u32 *dst = (u32*)Memory::GetPointer(addr);
u32 *src = (u32*)buffer;
int size_aligned = (size + 3) / 4;
for (int j = 0; j < size_aligned; j++) { /// AppLoader_NCCH constructor
*dst++ = (*src++); AppLoader_NCCH::AppLoader_NCCH(std::string& filename) {
this->filename = filename;
is_loaded = false;
is_compressed = false;
entry_point = 0;
ncch_offset = 0;
exefs_offset = 0;
} }
return;
/// AppLoader_NCCH destructor
AppLoader_NCCH::~AppLoader_NCCH() {
} }
/** /**
* Loads an NCCH file (e.g. from a CCI, or the first NCCH in a CXI) * Loads .code section into memory for booting
* @param filename String filename of NCCH file * @return ResultStatus result of function
* @param error_string Pointer to string to put error message if an error has occurred
* @todo Move NCSD parsing out of here and create a separate function for loading these
* @return True on success, otherwise false
*/ */
bool Load_NCCH(std::string& filename, std::string* error_string) { const ResultStatus AppLoader_NCCH::LoadExec() const {
INFO_LOG(LOADER, "Loading NCCH file %s...", filename.c_str()); if (!is_loaded)
return ResultStatus::ErrorNotLoaded;
File::IOFile file(filename, "rb"); for (std::vector<u8>::size_type i = 0; i != code.size(); i++) {
Memory::Write8(entry_point + i, code[i]);
if (file.IsOpen()) {
NCCH_Header ncch_header;
file.ReadBytes(&ncch_header, sizeof(NCCH_Header));
// Skip NCSD header and load first NCCH (NCSD is just a container of NCCH files)...
int ncch_off = 0; // Offset to NCCH header, can be 0 or after NCSD header
if (memcmp(&ncch_header.magic, "NCSD", 4) == 0) {
WARN_LOG(LOADER, "Only loading the first (bootable) NCCH within the NCSD file!");
ncch_off = 0x4000;
file.Seek(ncch_off, 0);
file.ReadBytes(&ncch_header, sizeof(NCCH_Header));
} }
// Verify we are loading the correct file type... Kernel::LoadExec(entry_point);
if (memcmp(&ncch_header.magic, "NCCH", 4) != 0) {
*error_string = "Invalid NCCH magic number (likely incorrect file type)"; return ResultStatus::Success;
return false;
} }
// Read ExHeader
ExHeader_Header exheader_header;
file.ReadBytes(&exheader_header, sizeof(ExHeader_Header));
bool is_compressed = (exheader_header.codeset_info.flags.flag & 1) == 1;
INFO_LOG(LOADER, "Name: %s", exheader_header.codeset_info.name);
INFO_LOG(LOADER, "Code compressed: %s", is_compressed ? "yes" : "no");
// Read ExeFS
u32 exefs_offset = ncch_header.exefs_offset * kExeFs_BlockSize;
u32 exefs_size = ncch_header.exefs_size * kExeFs_BlockSize;
INFO_LOG(LOADER, "ExeFS offset: 0x%08X", exefs_offset);
INFO_LOG(LOADER, "ExeFS size: 0x%08X", exefs_size);
ExeFs_Header exefs_header;
file.Seek(exefs_offset + ncch_off, 0);
file.ReadBytes(&exefs_header, sizeof(ExeFs_Header));
/**
* Reads an application section of an NCCH file into AppLoader (e.g. .code, .logo, etc.)
* @param file Handle to file to read from
* @param name Name of section to read out of NCCH file
* @param buffer Buffer to read section into.
*/
const ResultStatus AppLoader_NCCH::LoadSection(File::IOFile& file, const char* name,
std::vector<u8>& buffer) {
// Iterate through the ExeFs archive until we find the .code file... // Iterate through the ExeFs archive until we find the .code file...
for (int i = 0; i < kExeFs_MaxSections; i++) { for (int i = 0; i < kExeFs_MaxSections; i++) {
INFO_LOG(LOADER, "ExeFS section %d:", i); INFO_LOG(LOADER, "ExeFS section %d:", i);
@ -303,40 +147,98 @@ bool Load_NCCH(std::string& filename, std::string* error_string) {
INFO_LOG(LOADER, " size: 0x%08X", exefs_header.section[i].size); INFO_LOG(LOADER, " size: 0x%08X", exefs_header.section[i].size);
// Load the .code section (executable code)... // Load the .code section (executable code)...
if (strcmp((char*) exefs_header.section[i].name, ".code") == 0) { if (strcmp((const char*)exefs_header.section[i].name, name) == 0) {
file.Seek(exefs_header.section[i].offset + exefs_offset + sizeof(ExeFs_Header) + s64 section_offset = (exefs_header.section[i].offset + exefs_offset +
ncch_off, 0); sizeof(ExeFs_Header) + ncch_offset);
file.Seek(section_offset, 0);
u8* buffer = new u8[exefs_header.section[i].size]; // Section is compressed...
file.ReadBytes(buffer, exefs_header.section[i].size);
// Load compressed executable...
if (i == 0 && is_compressed) { if (i == 0 && is_compressed) {
u32 decompressed_size = LZSS_GetDecompressedSize(buffer, // Read compressed .code section...
exefs_header.section[i].size); std::unique_ptr<u8[]> temp_buffer(new u8[exefs_header.section[i].size]);
file.ReadBytes(&temp_buffer[0], exefs_header.section[i].size);
if (!LZSS_Decompress(buffer, exefs_header.section[i].size, // Decompress .code section...
Memory::GetPointer(exheader_header.codeset_info.text.address), u32 decompressed_size = LZSS_GetDecompressedSize(&temp_buffer[0], exefs_header.section[i].size);
decompressed_size, error_string)) { buffer.resize(decompressed_size);
return false; if (!LZSS_Decompress(&temp_buffer[0], exefs_header.section[i].size, &buffer[0],
decompressed_size)) {
return ResultStatus::ErrorInvalidFormat;
} }
// Load uncompressed executable... // Section is uncompressed...
} else { } else {
// Load .code section into memory... buffer.resize(exefs_header.section[i].size);
LoadBuffer(exheader_header.codeset_info.text.address, buffer, file.ReadBytes(&buffer[0], exefs_header.section[i].size);
exefs_header.section[i].size); }
return ResultStatus::Success;
}
}
return ResultStatus::Error;
} }
delete[] buffer;
// Setup kernel emulation to boot .code section... /**
Kernel::LoadExec(exheader_header.codeset_info.text.address); * Loads an NCCH file (e.g. from a CCI, or the first NCCH in a CXI)
* @param error_string Pointer to string to put error message if an error has occurred
* @todo Move NCSD parsing out of here and create a separate function for loading these
* @return True on success, otherwise false
*/
const ResultStatus AppLoader_NCCH::Load() {
INFO_LOG(LOADER, "Loading NCCH file %s...", filename.c_str());
// No need to load the other files from ExeFS until we do something with them... if (is_loaded)
return true; return ResultStatus::ErrorAlreadyLoaded;
File::IOFile file(filename, "rb");
if (file.IsOpen()) {
NCCH_Header ncch_header;
file.ReadBytes(&ncch_header, sizeof(NCCH_Header));
// Skip NCSD header and load first NCCH (NCSD is just a container of NCCH files)...
if (0 == memcmp(&ncch_header.magic, "NCSD", 4)) {
WARN_LOG(LOADER, "Only loading the first (bootable) NCCH within the NCSD file!");
ncch_offset = 0x4000;
file.Seek(ncch_offset, 0);
file.ReadBytes(&ncch_header, sizeof(NCCH_Header));
} }
// Verify we are loading the correct file type...
if (0 != memcmp(&ncch_header.magic, "NCCH", 4))
return ResultStatus::ErrorInvalidFormat;
// Read ExHeader
file.ReadBytes(&exheader_header, sizeof(ExHeader_Header));
is_compressed = (exheader_header.codeset_info.flags.flag & 1) == 1;
entry_point = exheader_header.codeset_info.text.address;
INFO_LOG(LOADER, "Name: %s", exheader_header.codeset_info.name);
INFO_LOG(LOADER, "Code compressed: %s", is_compressed ? "yes" : "no");
INFO_LOG(LOADER, "Entry point: 0x%08X", entry_point);
// Read ExeFS
exefs_offset = ncch_header.exefs_offset * kExeFs_BlockSize;
u32 exefs_size = ncch_header.exefs_size * kExeFs_BlockSize;
INFO_LOG(LOADER, "ExeFS offset: 0x%08X", exefs_offset);
INFO_LOG(LOADER, "ExeFS size: 0x%08X", exefs_size);
file.Seek(exefs_offset + ncch_offset, 0);
file.ReadBytes(&exefs_header, sizeof(ExeFs_Header));
// TODO(bunnei): Check ResultStatus here...
LoadSection(file, ".code", code);
LoadSection(file, ".icon", icon);
LoadSection(file, ".banner", banner);
LoadSection(file, ".logo", logo);
is_loaded = true; // Set state to loaded
LoadExec(); // Load the executable into memory for booting
return ResultStatus::Success;
} }
} return ResultStatus::Error;
return false;
} }
} // namespace Loader } // namespace Loader

View File

@ -5,17 +5,184 @@
#pragma once #pragma once
#include "common/common.h" #include "common/common.h"
#include "common/file_util.h"
#include "core/loader/loader.h"
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
/// NCCH header (Note: "NCCH" appears to be a publically unknown acronym)
struct NCCH_Header {
u8 signature[0x100];
char magic[4];
u32 content_size;
u8 partition_id[8];
u16 maker_code;
u16 version;
u8 reserved_0[4];
u8 program_id[8];
u8 temp_flag;
u8 reserved_1[0x2f];
u8 product_code[0x10];
u8 extended_header_hash[0x20];
u32 extended_header_size;
u8 reserved_2[4];
u8 flags[8];
u32 plain_region_offset;
u32 plain_region_size;
u8 reserved_3[8];
u32 exefs_offset;
u32 exefs_size;
u32 exefs_hash_region_size;
u8 reserved_4[4];
u32 romfs_offset;
u32 romfs_size;
u32 romfs_hash_region_size;
u8 reserved_5[4];
u8 exefs_super_block_hash[0x20];
u8 romfs_super_block_hash[0x20];
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// ExeFS (executable file system) headers
typedef struct {
char name[8];
u32 offset;
u32 size;
} ExeFs_SectionHeader;
typedef struct {
ExeFs_SectionHeader section[8];
u8 reserved[0x80];
u8 hashes[8][0x20];
} ExeFs_Header;
////////////////////////////////////////////////////////////////////////////////////////////////////
// ExHeader (executable file system header) headers
struct ExHeader_SystemInfoFlags{
u8 reserved[5];
u8 flag;
u8 remaster_version[2];
};
struct ExHeader_CodeSegmentInfo{
u32 address;
u32 num_max_pages;
u32 code_size;
};
struct ExHeader_CodeSetInfo {
u8 name[8];
ExHeader_SystemInfoFlags flags;
ExHeader_CodeSegmentInfo text;
u8 stacksize[4];
ExHeader_CodeSegmentInfo ro;
u8 reserved[4];
ExHeader_CodeSegmentInfo data;
u8 bsssize[4];
};
struct ExHeader_DependencyList{
u8 program_id[0x30][8];
};
struct ExHeader_SystemInfo{
u32 save_data_size;
u8 reserved[4];
u8 jump_id[8];
u8 reserved_2[0x30];
};
struct ExHeader_StorageInfo{
u8 ext_save_data_id[8];
u8 system_save_data_id[8];
u8 reserved[8];
u8 access_info[7];
u8 other_attributes;
};
struct ExHeader_ARM11_SystemLocalCaps{
u8 program_id[8];
u8 flags[8];
u8 resource_limit_descriptor[0x10][2];
ExHeader_StorageInfo storage_info;
u8 service_access_control[0x20][8];
u8 reserved[0x1f];
u8 resource_limit_category;
};
struct ExHeader_ARM11_KernelCaps{
u8 descriptors[28][4];
u8 reserved[0x10];
};
struct ExHeader_ARM9_AccessControl{
u8 descriptors[15];
u8 descversion;
};
struct ExHeader_Header{
ExHeader_CodeSetInfo codeset_info;
ExHeader_DependencyList dependency_list;
ExHeader_SystemInfo system_info;
ExHeader_ARM11_SystemLocalCaps arm11_system_local_caps;
ExHeader_ARM11_KernelCaps arm11_kernel_caps;
ExHeader_ARM9_AccessControl arm9_access_control;
struct {
u8 signature[0x100];
u8 ncch_public_key_modulus[0x100];
ExHeader_ARM11_SystemLocalCaps arm11_system_local_caps;
ExHeader_ARM11_KernelCaps arm11_kernel_caps;
ExHeader_ARM9_AccessControl arm9_access_control;
} access_desc;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Loader namespace
namespace Loader { namespace Loader {
/// Loads an NCCH file (e.g. from a CCI, or the first NCCH in a CXI)
class AppLoader_NCCH : public AppLoader {
public:
AppLoader_NCCH(std::string& filename);
~AppLoader_NCCH();
/** /**
* Loads an NCCH file (e.g. from a CCI or CXI) * Load the application
* @param filename String filename of NCCH file * @return ResultStatus result of function
* @param error_string Pointer to string to put error message if an error has occurred
* @return True on success, otherwise false
*/ */
bool Load_NCCH(std::string& filename, std::string* error_string); const ResultStatus Load();
private:
/**
* Reads an application section of an NCCH file into AppLoader (e.g. .code, .logo, etc.)
* @param file Handle to file to read from
* @param name Name of section to read out of NCCH file
* @param buffer Buffer to read section into.
*/
const ResultStatus LoadSection(File::IOFile& file, const char* name,
std::vector<u8>& buffer);
/**
* Loads .code section into memory for booting
* @return ResultStatus result of function
*/
const ResultStatus LoadExec() const;
std::string filename;
bool is_loaded;
bool is_compressed;
u32 entry_point;
u32 ncch_offset; // Offset to NCCH header, can be 0 or after NCSD header
u32 exefs_offset;
ExeFs_Header exefs_header;
ExHeader_Header exheader_header;
};
} // namespace Loader } // namespace Loader