citra-emu
/
citra
Archived
1
0
Fork 0

Add HLERequestContext::RunAsync (#7027)

This commit is contained in:
PabloMK7 2023-10-02 20:09:27 +02:00 committed by GitHub
parent 38a0a85777
commit 9ec4954380
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 103 additions and 14 deletions

View File

@ -47,7 +47,7 @@ TimingEventType* Timing::RegisterEvent(const std::string& name, TimedCallback ca
} }
void Timing::ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, void Timing::ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type,
std::uintptr_t user_data, std::size_t core_id) { std::uintptr_t user_data, std::size_t core_id, bool thread_safe_mode) {
if (event_queue_locked) { if (event_queue_locked) {
return; return;
} }
@ -61,6 +61,16 @@ void Timing::ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_
timer = timers.at(core_id).get(); timer = timers.at(core_id).get();
} }
if (thread_safe_mode) {
// Events scheduled in thread safe mode come after blocking operations with
// unpredictable timings in the host machine, so there is no need to be cycle accurate.
// To prevent the event from scheduling before the next advance(), we set a minimum time
// of MAX_SLICE_LENGTH * 2 cycles into the future.
cycles_into_future = std::max(static_cast<s64>(MAX_SLICE_LENGTH * 2), cycles_into_future);
timer->ts_queue.Push(Event{static_cast<s64>(timer->GetTicks() + cycles_into_future), 0,
user_data, event_type});
} else {
s64 timeout = timer->GetTicks() + cycles_into_future; s64 timeout = timer->GetTicks() + cycles_into_future;
if (current_timer == timer) { if (current_timer == timer) {
// If this event needs to be scheduled before the next advance(), force one early // If this event needs to be scheduled before the next advance(), force one early
@ -74,6 +84,7 @@ void Timing::ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_
timer->ts_queue.Push(Event{static_cast<s64>(timer->GetTicks() + cycles_into_future), 0, timer->ts_queue.Push(Event{static_cast<s64>(timer->GetTicks() + cycles_into_future), 0,
user_data, event_type}); user_data, event_type});
} }
}
} }
void Timing::UnscheduleEvent(const TimingEventType* event_type, std::uintptr_t user_data) { void Timing::UnscheduleEvent(const TimingEventType* event_type, std::uintptr_t user_data) {

View File

@ -254,9 +254,12 @@ public:
*/ */
TimingEventType* RegisterEvent(const std::string& name, TimedCallback callback); TimingEventType* RegisterEvent(const std::string& name, TimedCallback callback);
// Make sure to use thread_safe_mode = true if called from a different thread than the
// emulator thread, such as coroutines.
void ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, void ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type,
std::uintptr_t user_data = 0, std::uintptr_t user_data = 0,
std::size_t core_id = std::numeric_limits<std::size_t>::max()); std::size_t core_id = std::numeric_limits<std::size_t>::max(),
bool thread_safe_mode = false);
void UnscheduleEvent(const TimingEventType* event_type, std::uintptr_t user_data); void UnscheduleEvent(const TimingEventType* event_type, std::uintptr_t user_data);

View File

@ -7,6 +7,7 @@
#include <algorithm> #include <algorithm>
#include <array> #include <array>
#include <chrono> #include <chrono>
#include <future>
#include <memory> #include <memory>
#include <string> #include <string>
#include <vector> #include <vector>
@ -247,6 +248,76 @@ public:
std::chrono::nanoseconds timeout, std::chrono::nanoseconds timeout,
std::shared_ptr<WakeupCallback> callback); std::shared_ptr<WakeupCallback> callback);
private:
template <typename ResultFunctor>
class AsyncWakeUpCallback : public WakeupCallback {
public:
explicit AsyncWakeUpCallback(ResultFunctor res_functor, std::future<void> fut)
: functor(res_functor) {
future = std::move(fut);
}
void WakeUp(std::shared_ptr<Kernel::Thread> thread, Kernel::HLERequestContext& ctx,
Kernel::ThreadWakeupReason reason) {
functor(ctx);
}
private:
ResultFunctor functor;
std::future<void> future;
template <class Archive>
void serialize(Archive& ar, const unsigned int) {
if (!Archive::is_loading::value && future.valid()) {
future.wait();
}
ar& functor;
}
friend class boost::serialization::access;
};
public:
/**
* Puts the game thread to sleep and calls the specified async_section asynchronously.
* Once the execution of the async section finishes, result_function is called. Use this
* mechanism to run blocking IO operations, so that other game threads are allowed to run
* while the one performing the blocking operation waits.
* @param async_section Callable that takes Kernel::HLERequestContext& as argument
* and returns the amount of nanoseconds to wait before calling result_function.
* This callable is ran asynchronously.
* @param result_function Callable that takes Kernel::HLERequestContext& as argument
* and doesn't return anything. This callable is ran from the emulator thread
* and can be used to set the IPC result.
* @param really_async If set to false, it will call both async_section and result_function
* from the emulator thread.
*/
template <typename AsyncFunctor, typename ResultFunctor>
void RunAsync(AsyncFunctor async_section, ResultFunctor result_function,
bool really_async = true) {
if (really_async) {
this->SleepClientThread(
"RunAsync", std::chrono::nanoseconds(-1),
std::make_shared<AsyncWakeUpCallback<ResultFunctor>>(
result_function,
std::move(std::async(std::launch::async, [this, async_section] {
s64 sleep_for = async_section(*this);
this->thread->WakeAfterDelay(sleep_for, true);
}))));
} else {
s64 sleep_for = async_section(*this);
if (sleep_for > 0) {
auto parallel_wakeup = std::make_shared<AsyncWakeUpCallback<ResultFunctor>>(
result_function, std::move(std::future<void>()));
this->SleepClientThread("RunAsync", std::chrono::nanoseconds(sleep_for),
parallel_wakeup);
} else {
result_function(*this);
}
}
}
/** /**
* Resolves a object id from the request command buffer into a pointer to an object. See the * Resolves a object id from the request command buffer into a pointer to an object. See the
* "HLE handle protocol" section in the class documentation for more details. * "HLE handle protocol" section in the class documentation for more details.

View File

@ -244,13 +244,15 @@ void ThreadManager::ThreadWakeupCallback(u64 thread_id, s64 cycles_late) {
thread->ResumeFromWait(); thread->ResumeFromWait();
} }
void Thread::WakeAfterDelay(s64 nanoseconds) { void Thread::WakeAfterDelay(s64 nanoseconds, bool thread_safe_mode) {
// Don't schedule a wakeup if the thread wants to wait forever // Don't schedule a wakeup if the thread wants to wait forever
if (nanoseconds == -1) if (nanoseconds == -1)
return; return;
size_t core = thread_safe_mode ? core_id : std::numeric_limits<std::size_t>::max();
thread_manager.kernel.timing.ScheduleEvent(nsToCycles(nanoseconds), thread_manager.kernel.timing.ScheduleEvent(nsToCycles(nanoseconds),
thread_manager.ThreadWakeupEventType, thread_id); thread_manager.ThreadWakeupEventType, thread_id,
core, thread_safe_mode);
} }
void Thread::ResumeFromWait() { void Thread::ResumeFromWait() {

View File

@ -238,8 +238,10 @@ public:
/** /**
* Schedules an event to wake up the specified thread after the specified delay * Schedules an event to wake up the specified thread after the specified delay
* @param nanoseconds The time this thread will be allowed to sleep for * @param nanoseconds The time this thread will be allowed to sleep for
* @param thread_safe_mode Set to true if called from a different thread than the emulator
* thread, such as coroutines.
*/ */
void WakeAfterDelay(s64 nanoseconds); void WakeAfterDelay(s64 nanoseconds, bool thread_safe_mode = false);
/** /**
* Sets the result after the thread awakens (from either WaitSynchronization SVC) * Sets the result after the thread awakens (from either WaitSynchronization SVC)