Merge pull request #2260 from Subv/scheduling
Threading: Reworked the way our scheduler works.
This commit is contained in:
commit
cda7210fad
|
@ -229,7 +229,8 @@ std::vector<std::unique_ptr<WaitTreeItem>> WaitTreeThread::GetChildren() const {
|
|||
list.push_back(std::make_unique<WaitTreeMutexList>(thread.held_mutexes));
|
||||
}
|
||||
if (thread.status == THREADSTATUS_WAIT_SYNCH) {
|
||||
list.push_back(std::make_unique<WaitTreeObjectList>(thread.wait_objects, thread.wait_all));
|
||||
list.push_back(std::make_unique<WaitTreeObjectList>(thread.wait_objects,
|
||||
thread.IsSleepingOnWaitAll()));
|
||||
}
|
||||
|
||||
return list;
|
||||
|
|
|
@ -79,8 +79,6 @@ ResultCode AddressArbiter::ArbitrateAddress(ArbitrationType type, VAddr address,
|
|||
ErrorSummary::WrongArgument, ErrorLevel::Usage);
|
||||
}
|
||||
|
||||
HLE::Reschedule(__func__);
|
||||
|
||||
// The calls that use a timeout seem to always return a Timeout error even if they did not put
|
||||
// the thread to sleep
|
||||
if (type == ArbitrationType::WaitIfLessThanWithTimeout ||
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
// Refer to the license.txt file included.
|
||||
|
||||
#include <algorithm>
|
||||
#include <boost/range/algorithm_ext/erase.hpp>
|
||||
#include "common/assert.h"
|
||||
#include "common/logging/log.h"
|
||||
#include "core/hle/config_mem.h"
|
||||
|
@ -31,13 +32,60 @@ void WaitObject::RemoveWaitingThread(Thread* thread) {
|
|||
waiting_threads.erase(itr);
|
||||
}
|
||||
|
||||
SharedPtr<Thread> WaitObject::GetHighestPriorityReadyThread() {
|
||||
// Remove the threads that are ready or already running from our waitlist
|
||||
boost::range::remove_erase_if(waiting_threads, [](const SharedPtr<Thread>& thread) {
|
||||
return thread->status == THREADSTATUS_RUNNING || thread->status == THREADSTATUS_READY;
|
||||
});
|
||||
|
||||
// TODO(Subv): This call should be performed inside the loop below to check if an object can be
|
||||
// acquired by a particular thread. This is useful for things like recursive locking of Mutexes.
|
||||
if (ShouldWait())
|
||||
return nullptr;
|
||||
|
||||
Thread* candidate = nullptr;
|
||||
s32 candidate_priority = THREADPRIO_LOWEST + 1;
|
||||
|
||||
for (const auto& thread : waiting_threads) {
|
||||
if (thread->current_priority >= candidate_priority)
|
||||
continue;
|
||||
|
||||
bool ready_to_run =
|
||||
std::none_of(thread->wait_objects.begin(), thread->wait_objects.end(),
|
||||
[](const SharedPtr<WaitObject>& object) { return object->ShouldWait(); });
|
||||
if (ready_to_run) {
|
||||
candidate = thread.get();
|
||||
candidate_priority = thread->current_priority;
|
||||
}
|
||||
}
|
||||
|
||||
return candidate;
|
||||
}
|
||||
|
||||
void WaitObject::WakeupAllWaitingThreads() {
|
||||
for (auto thread : waiting_threads)
|
||||
while (auto thread = GetHighestPriorityReadyThread()) {
|
||||
if (!thread->IsSleepingOnWaitAll()) {
|
||||
Acquire();
|
||||
// Set the output index of the WaitSynchronizationN call to the index of this object.
|
||||
if (thread->wait_set_output) {
|
||||
thread->SetWaitSynchronizationOutput(thread->GetWaitObjectIndex(this));
|
||||
thread->wait_set_output = false;
|
||||
}
|
||||
} else {
|
||||
for (auto& object : thread->wait_objects) {
|
||||
object->Acquire();
|
||||
object->RemoveWaitingThread(thread.get());
|
||||
}
|
||||
// Note: This case doesn't update the output index of WaitSynchronizationN.
|
||||
// Clear the thread's waitlist
|
||||
thread->wait_objects.clear();
|
||||
}
|
||||
|
||||
thread->SetWaitSynchronizationResult(RESULT_SUCCESS);
|
||||
thread->ResumeFromWait();
|
||||
|
||||
waiting_threads.clear();
|
||||
|
||||
HLE::Reschedule(__func__);
|
||||
// Note: Removing the thread from the object's waitlist will be
|
||||
// done by GetHighestPriorityReadyThread.
|
||||
}
|
||||
}
|
||||
|
||||
const std::vector<SharedPtr<Thread>>& WaitObject::GetWaitingThreads() const {
|
||||
|
|
|
@ -151,9 +151,15 @@ public:
|
|||
*/
|
||||
void RemoveWaitingThread(Thread* thread);
|
||||
|
||||
/// Wake up all threads waiting on this object
|
||||
/**
|
||||
* Wake up all threads waiting on this object that can be awoken, in priority order,
|
||||
* and set the synchronization result and output of the thread.
|
||||
*/
|
||||
void WakeupAllWaitingThreads();
|
||||
|
||||
/// Obtains the highest priority thread that is ready to run from this object's waiting list.
|
||||
SharedPtr<Thread> GetHighestPriorityReadyThread();
|
||||
|
||||
/// Get a const reference to the waiting threads list for debug use
|
||||
const std::vector<SharedPtr<Thread>>& GetWaitingThreads() const;
|
||||
|
||||
|
|
|
@ -120,8 +120,6 @@ void Thread::Stop() {
|
|||
u32 tls_slot =
|
||||
((tls_address - Memory::TLS_AREA_VADDR) % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE;
|
||||
Kernel::g_current_process->tls_slots[tls_page].reset(tls_slot);
|
||||
|
||||
HLE::Reschedule(__func__);
|
||||
}
|
||||
|
||||
Thread* ArbitrateHighestPriorityThread(u32 address) {
|
||||
|
@ -180,50 +178,6 @@ static void PriorityBoostStarvedThreads() {
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the registers for timeout parameter of the next WaitSynchronization call.
|
||||
* @param thread a pointer to the thread that is ready to call WaitSynchronization
|
||||
* @returns a tuple of two register pointers to low and high part of the timeout parameter
|
||||
*/
|
||||
static std::tuple<u32*, u32*> GetWaitSynchTimeoutParameterRegister(Thread* thread) {
|
||||
bool thumb_mode = (thread->context.cpsr & TBIT) != 0;
|
||||
u16 thumb_inst = Memory::Read16(thread->context.pc & 0xFFFFFFFE);
|
||||
u32 inst = Memory::Read32(thread->context.pc & 0xFFFFFFFC) & 0x0FFFFFFF;
|
||||
|
||||
if ((thumb_mode && thumb_inst == 0xDF24) || (!thumb_mode && inst == 0x0F000024)) {
|
||||
// svc #0x24 (WaitSynchronization1)
|
||||
return std::make_tuple(&thread->context.cpu_registers[2],
|
||||
&thread->context.cpu_registers[3]);
|
||||
} else if ((thumb_mode && thumb_inst == 0xDF25) || (!thumb_mode && inst == 0x0F000025)) {
|
||||
// svc #0x25 (WaitSynchronizationN)
|
||||
return std::make_tuple(&thread->context.cpu_registers[0],
|
||||
&thread->context.cpu_registers[4]);
|
||||
}
|
||||
|
||||
UNREACHABLE();
|
||||
}
|
||||
|
||||
/**
|
||||
* Updates the WaitSynchronization timeout parameter according to the difference
|
||||
* between ticks of the last WaitSynchronization call and the incoming one.
|
||||
* @param timeout_low a pointer to the register for the low part of the timeout parameter
|
||||
* @param timeout_high a pointer to the register for the high part of the timeout parameter
|
||||
* @param last_tick tick of the last WaitSynchronization call
|
||||
*/
|
||||
static void UpdateTimeoutParameter(u32* timeout_low, u32* timeout_high, u64 last_tick) {
|
||||
s64 timeout = ((s64)*timeout_high << 32) | *timeout_low;
|
||||
|
||||
if (timeout != -1) {
|
||||
timeout -= cyclesToUs(CoreTiming::GetTicks() - last_tick) * 1000; // in nanoseconds
|
||||
|
||||
if (timeout < 0)
|
||||
timeout = 0;
|
||||
|
||||
*timeout_low = timeout & 0xFFFFFFFF;
|
||||
*timeout_high = timeout >> 32;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Switches the CPU's active thread context to that of the specified thread
|
||||
* @param new_thread The thread to switch to
|
||||
|
@ -254,32 +208,6 @@ static void SwitchContext(Thread* new_thread) {
|
|||
|
||||
current_thread = new_thread;
|
||||
|
||||
// If the thread was waited by a svcWaitSynch call, step back PC by one instruction to rerun
|
||||
// the SVC when the thread wakes up. This is necessary to ensure that the thread can acquire
|
||||
// the requested wait object(s) before continuing.
|
||||
if (new_thread->waitsynch_waited) {
|
||||
// CPSR flag indicates CPU mode
|
||||
bool thumb_mode = (new_thread->context.cpsr & TBIT) != 0;
|
||||
|
||||
// SVC instruction is 2 bytes for THUMB, 4 bytes for ARM
|
||||
new_thread->context.pc -= thumb_mode ? 2 : 4;
|
||||
|
||||
// Get the register for timeout parameter
|
||||
u32 *timeout_low, *timeout_high;
|
||||
std::tie(timeout_low, timeout_high) = GetWaitSynchTimeoutParameterRegister(new_thread);
|
||||
|
||||
// Update the timeout parameter
|
||||
UpdateTimeoutParameter(timeout_low, timeout_high, new_thread->last_running_ticks);
|
||||
}
|
||||
|
||||
// Clean up the thread's wait_objects, they'll be restored if needed during
|
||||
// the svcWaitSynchronization call
|
||||
for (size_t i = 0; i < new_thread->wait_objects.size(); ++i) {
|
||||
SharedPtr<WaitObject> object = new_thread->wait_objects[i];
|
||||
object->RemoveWaitingThread(new_thread);
|
||||
}
|
||||
new_thread->wait_objects.clear();
|
||||
|
||||
ready_queue.remove(new_thread->current_priority, new_thread);
|
||||
new_thread->status = THREADSTATUS_RUNNING;
|
||||
|
||||
|
@ -319,17 +247,13 @@ static Thread* PopNextReadyThread() {
|
|||
void WaitCurrentThread_Sleep() {
|
||||
Thread* thread = GetCurrentThread();
|
||||
thread->status = THREADSTATUS_WAIT_SLEEP;
|
||||
|
||||
HLE::Reschedule(__func__);
|
||||
}
|
||||
|
||||
void WaitCurrentThread_WaitSynchronization(std::vector<SharedPtr<WaitObject>> wait_objects,
|
||||
bool wait_set_output, bool wait_all) {
|
||||
bool wait_set_output) {
|
||||
Thread* thread = GetCurrentThread();
|
||||
thread->wait_set_output = wait_set_output;
|
||||
thread->wait_all = wait_all;
|
||||
thread->wait_objects = std::move(wait_objects);
|
||||
thread->waitsynch_waited = true;
|
||||
thread->status = THREADSTATUS_WAIT_SYNCH;
|
||||
}
|
||||
|
||||
|
@ -351,15 +275,15 @@ static void ThreadWakeupCallback(u64 thread_handle, int cycles_late) {
|
|||
return;
|
||||
}
|
||||
|
||||
thread->waitsynch_waited = false;
|
||||
|
||||
if (thread->status == THREADSTATUS_WAIT_SYNCH || thread->status == THREADSTATUS_WAIT_ARB) {
|
||||
thread->wait_set_output = false;
|
||||
// Remove the thread from each of its waiting objects' waitlists
|
||||
for (auto& object : thread->wait_objects)
|
||||
object->RemoveWaitingThread(thread.get());
|
||||
thread->wait_objects.clear();
|
||||
thread->SetWaitSynchronizationResult(ResultCode(ErrorDescription::Timeout, ErrorModule::OS,
|
||||
ErrorSummary::StatusChanged,
|
||||
ErrorLevel::Info));
|
||||
|
||||
if (thread->wait_set_output)
|
||||
thread->SetWaitSynchronizationOutput(-1);
|
||||
}
|
||||
|
||||
thread->ResumeFromWait();
|
||||
|
@ -399,6 +323,7 @@ void Thread::ResumeFromWait() {
|
|||
|
||||
ready_queue.push_back(current_priority, this);
|
||||
status = THREADSTATUS_READY;
|
||||
HLE::Reschedule(__func__);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -494,13 +419,11 @@ ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point,
|
|||
thread->last_running_ticks = CoreTiming::GetTicks();
|
||||
thread->processor_id = processor_id;
|
||||
thread->wait_set_output = false;
|
||||
thread->wait_all = false;
|
||||
thread->wait_objects.clear();
|
||||
thread->wait_address = 0;
|
||||
thread->name = std::move(name);
|
||||
thread->callback_handle = wakeup_callback_handle_table.Create(thread).MoveFrom();
|
||||
thread->owner_process = g_current_process;
|
||||
thread->waitsynch_waited = false;
|
||||
|
||||
// Find the next available TLS index, and mark it as used
|
||||
auto& tls_slots = Kernel::g_current_process->tls_slots;
|
||||
|
@ -555,8 +478,6 @@ ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point,
|
|||
ready_queue.push_back(thread->current_priority, thread.get());
|
||||
thread->status = THREADSTATUS_READY;
|
||||
|
||||
HLE::Reschedule(__func__);
|
||||
|
||||
return MakeResult<SharedPtr<Thread>>(std::move(thread));
|
||||
}
|
||||
|
||||
|
@ -619,14 +540,6 @@ void Reschedule() {
|
|||
|
||||
HLE::DoneRescheduling();
|
||||
|
||||
// Don't bother switching to the same thread.
|
||||
// But if the thread was waiting on objects, we still need to switch it
|
||||
// to perform PC modification, change state to RUNNING, etc.
|
||||
// This occurs in the case when an object the thread is waiting on immediately wakes up
|
||||
// the current thread before Reschedule() is called.
|
||||
if (next == cur && (next == nullptr || next->waitsynch_waited == false))
|
||||
return;
|
||||
|
||||
if (cur && next) {
|
||||
LOG_TRACE(Kernel, "context switch %u -> %u", cur->GetObjectId(), next->GetObjectId());
|
||||
} else if (cur) {
|
||||
|
|
|
@ -5,7 +5,9 @@
|
|||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <boost/container/flat_map.hpp>
|
||||
#include <boost/container/flat_set.hpp>
|
||||
#include "common/common_types.h"
|
||||
#include "core/core.h"
|
||||
|
@ -124,6 +126,16 @@ public:
|
|||
*/
|
||||
void SetWaitSynchronizationOutput(s32 output);
|
||||
|
||||
/**
|
||||
* Retrieves the index that this particular object occupies in the list of objects
|
||||
* that the thread passed to WaitSynchronizationN.
|
||||
* It is used to set the output value of WaitSynchronizationN when the thread is awakened.
|
||||
* @param object Object to query the index of.
|
||||
*/
|
||||
s32 GetWaitObjectIndex(const WaitObject* object) const {
|
||||
return wait_objects_index.at(object->GetObjectId());
|
||||
}
|
||||
|
||||
/**
|
||||
* Stops a thread, invalidating it from further use
|
||||
*/
|
||||
|
@ -137,6 +149,15 @@ public:
|
|||
return tls_address;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns whether this thread is waiting for all the objects in
|
||||
* its wait list to become ready, as a result of a WaitSynchronizationN call
|
||||
* with wait_all = true, or a ReplyAndReceive call.
|
||||
*/
|
||||
bool IsSleepingOnWaitAll() const {
|
||||
return !wait_objects.empty();
|
||||
}
|
||||
|
||||
Core::ThreadContext context;
|
||||
|
||||
u32 thread_id;
|
||||
|
@ -154,16 +175,22 @@ public:
|
|||
|
||||
VAddr tls_address; ///< Virtual address of the Thread Local Storage of the thread
|
||||
|
||||
bool waitsynch_waited; ///< Set to true if the last svcWaitSynch call caused the thread to wait
|
||||
|
||||
/// Mutexes currently held by this thread, which will be released when it exits.
|
||||
boost::container::flat_set<SharedPtr<Mutex>> held_mutexes;
|
||||
|
||||
SharedPtr<Process> owner_process; ///< Process that owns this thread
|
||||
std::vector<SharedPtr<WaitObject>> wait_objects; ///< Objects that the thread is waiting on
|
||||
VAddr wait_address; ///< If waiting on an AddressArbiter, this is the arbitration address
|
||||
bool wait_all; ///< True if the thread is waiting on all objects before resuming
|
||||
bool wait_set_output; ///< True if the output parameter should be set on thread wakeup
|
||||
SharedPtr<Process> owner_process; ///< Process that owns this thread
|
||||
|
||||
/// Objects that the thread is waiting on.
|
||||
/// This is only populated when the thread should wait for all the objects to become ready.
|
||||
std::vector<SharedPtr<WaitObject>> wait_objects;
|
||||
|
||||
/// Mapping of Object ids to their position in the last waitlist that this object waited on.
|
||||
boost::container::flat_map<int, s32> wait_objects_index;
|
||||
|
||||
VAddr wait_address; ///< If waiting on an AddressArbiter, this is the arbitration address
|
||||
|
||||
/// True if the WaitSynchronizationN output parameter should be set on thread wakeup.
|
||||
bool wait_set_output;
|
||||
|
||||
std::string name;
|
||||
|
||||
|
@ -215,10 +242,9 @@ void WaitCurrentThread_Sleep();
|
|||
* @param wait_objects Kernel objects that we are waiting on
|
||||
* @param wait_set_output If true, set the output parameter on thread wakeup (for
|
||||
* WaitSynchronizationN only)
|
||||
* @param wait_all If true, wait on all objects before resuming (for WaitSynchronizationN only)
|
||||
*/
|
||||
void WaitCurrentThread_WaitSynchronization(std::vector<SharedPtr<WaitObject>> wait_objects,
|
||||
bool wait_set_output, bool wait_all);
|
||||
bool wait_set_output);
|
||||
|
||||
/**
|
||||
* Waits the current thread from an ArbitrateAddress call
|
||||
|
|
|
@ -60,14 +60,10 @@ void Timer::Set(s64 initial, s64 interval) {
|
|||
u64 initial_microseconds = initial / 1000;
|
||||
CoreTiming::ScheduleEvent(usToCycles(initial_microseconds), timer_callback_event_type,
|
||||
callback_handle);
|
||||
|
||||
HLE::Reschedule(__func__);
|
||||
}
|
||||
|
||||
void Timer::Cancel() {
|
||||
CoreTiming::UnscheduleEvent(timer_callback_event_type, callback_handle);
|
||||
|
||||
HLE::Reschedule(__func__);
|
||||
}
|
||||
|
||||
void Timer::Clear() {
|
||||
|
|
|
@ -43,6 +43,9 @@ const ResultCode ERR_PORT_NAME_TOO_LONG(ErrorDescription(30), ErrorModule::OS,
|
|||
ErrorSummary::InvalidArgument,
|
||||
ErrorLevel::Usage); // 0xE0E0181E
|
||||
|
||||
const ResultCode ERR_SYNC_TIMEOUT(ErrorDescription::Timeout, ErrorModule::OS,
|
||||
ErrorSummary::StatusChanged, ErrorLevel::Info);
|
||||
|
||||
const ResultCode ERR_MISALIGNED_ADDRESS{// 0xE0E01BF1
|
||||
ErrorDescription::MisalignedAddress, ErrorModule::OS,
|
||||
ErrorSummary::InvalidArgument, ErrorLevel::Usage};
|
||||
|
@ -260,27 +263,30 @@ static ResultCode WaitSynchronization1(Handle handle, s64 nano_seconds) {
|
|||
auto object = Kernel::g_handle_table.GetWaitObject(handle);
|
||||
Kernel::Thread* thread = Kernel::GetCurrentThread();
|
||||
|
||||
thread->waitsynch_waited = false;
|
||||
|
||||
if (object == nullptr)
|
||||
return ERR_INVALID_HANDLE;
|
||||
|
||||
LOG_TRACE(Kernel_SVC, "called handle=0x%08X(%s:%s), nanoseconds=%lld", handle,
|
||||
object->GetTypeName().c_str(), object->GetName().c_str(), nano_seconds);
|
||||
|
||||
HLE::Reschedule(__func__);
|
||||
|
||||
// Check for next thread to schedule
|
||||
if (object->ShouldWait()) {
|
||||
|
||||
if (nano_seconds == 0)
|
||||
return ERR_SYNC_TIMEOUT;
|
||||
|
||||
object->AddWaitingThread(thread);
|
||||
Kernel::WaitCurrentThread_WaitSynchronization({object}, false, false);
|
||||
// TODO(Subv): Perform things like update the mutex lock owner's priority to
|
||||
// prevent priority inversion. Currently this is done in Mutex::ShouldWait,
|
||||
// but it should be moved to a function that is called from here.
|
||||
thread->status = THREADSTATUS_WAIT_SYNCH;
|
||||
|
||||
// Create an event to wake the thread up after the specified nanosecond delay has passed
|
||||
thread->WakeAfterDelay(nano_seconds);
|
||||
|
||||
// NOTE: output of this SVC will be set later depending on how the thread resumes
|
||||
return HLE::RESULT_INVALID;
|
||||
// Note: The output of this SVC will be set to RESULT_SUCCESS if the thread
|
||||
// resumes due to a signal in its wait objects.
|
||||
// Otherwise we retain the default value of timeout.
|
||||
return ERR_SYNC_TIMEOUT;
|
||||
}
|
||||
|
||||
object->Acquire();
|
||||
|
@ -291,11 +297,7 @@ static ResultCode WaitSynchronization1(Handle handle, s64 nano_seconds) {
|
|||
/// Wait for the given handles to synchronize, timeout after the specified nanoseconds
|
||||
static ResultCode WaitSynchronizationN(s32* out, Handle* handles, s32 handle_count, bool wait_all,
|
||||
s64 nano_seconds) {
|
||||
bool wait_thread = !wait_all;
|
||||
int handle_index = 0;
|
||||
Kernel::Thread* thread = Kernel::GetCurrentThread();
|
||||
bool was_waiting = thread->waitsynch_waited;
|
||||
thread->waitsynch_waited = false;
|
||||
|
||||
// Check if 'handles' is invalid
|
||||
if (handles == nullptr)
|
||||
|
@ -311,90 +313,113 @@ static ResultCode WaitSynchronizationN(s32* out, Handle* handles, s32 handle_cou
|
|||
return ResultCode(ErrorDescription::OutOfRange, ErrorModule::OS,
|
||||
ErrorSummary::InvalidArgument, ErrorLevel::Usage);
|
||||
|
||||
// If 'handle_count' is non-zero, iterate through each handle and wait the current thread if
|
||||
// necessary
|
||||
if (handle_count != 0) {
|
||||
bool selected = false; // True once an object has been selected
|
||||
using ObjectPtr = Kernel::SharedPtr<Kernel::WaitObject>;
|
||||
std::vector<ObjectPtr> objects(handle_count);
|
||||
|
||||
Kernel::SharedPtr<Kernel::WaitObject> wait_object;
|
||||
|
||||
for (int i = 0; i < handle_count; ++i) {
|
||||
auto object = Kernel::g_handle_table.GetWaitObject(handles[i]);
|
||||
if (object == nullptr)
|
||||
return ERR_INVALID_HANDLE;
|
||||
|
||||
// Check if the current thread should wait on this object...
|
||||
if (object->ShouldWait()) {
|
||||
|
||||
// Check we are waiting on all objects...
|
||||
if (wait_all)
|
||||
// Wait the thread
|
||||
wait_thread = true;
|
||||
} else {
|
||||
// Do not wait on this object, check if this object should be selected...
|
||||
if (!wait_all && (!selected || (wait_object == object && was_waiting))) {
|
||||
// Do not wait the thread
|
||||
wait_thread = false;
|
||||
handle_index = i;
|
||||
wait_object = object;
|
||||
selected = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// If no handles were passed in, put the thread to sleep only when 'wait_all' is false
|
||||
// NOTE: This should deadlock the current thread if no timeout was specified
|
||||
if (!wait_all) {
|
||||
wait_thread = true;
|
||||
}
|
||||
}
|
||||
|
||||
SCOPE_EXIT({
|
||||
HLE::Reschedule("WaitSynchronizationN");
|
||||
}); // Reschedule after putting the threads to sleep.
|
||||
|
||||
// If thread should wait, then set its state to waiting
|
||||
if (wait_thread) {
|
||||
|
||||
// Actually wait the current thread on each object if we decided to wait...
|
||||
std::vector<SharedPtr<Kernel::WaitObject>> wait_objects;
|
||||
wait_objects.reserve(handle_count);
|
||||
|
||||
for (int i = 0; i < handle_count; ++i) {
|
||||
auto object = Kernel::g_handle_table.GetWaitObject(handles[i]);
|
||||
object->AddWaitingThread(Kernel::GetCurrentThread());
|
||||
wait_objects.push_back(object);
|
||||
}
|
||||
|
||||
Kernel::WaitCurrentThread_WaitSynchronization(std::move(wait_objects), true, wait_all);
|
||||
|
||||
// Create an event to wake the thread up after the specified nanosecond delay has passed
|
||||
Kernel::GetCurrentThread()->WakeAfterDelay(nano_seconds);
|
||||
|
||||
// NOTE: output of this SVC will be set later depending on how the thread resumes
|
||||
return HLE::RESULT_INVALID;
|
||||
}
|
||||
|
||||
// Acquire objects if we did not wait...
|
||||
for (int i = 0; i < handle_count; ++i) {
|
||||
auto object = Kernel::g_handle_table.GetWaitObject(handles[i]);
|
||||
|
||||
// Acquire the object if it is not waiting...
|
||||
if (!object->ShouldWait()) {
|
||||
object->Acquire();
|
||||
|
||||
// If this was the first non-waiting object and 'wait_all' is false, don't acquire
|
||||
// any other objects
|
||||
if (!wait_all)
|
||||
break;
|
||||
}
|
||||
if (object == nullptr)
|
||||
return ERR_INVALID_HANDLE;
|
||||
objects[i] = object;
|
||||
}
|
||||
|
||||
// TODO(bunnei): If 'wait_all' is true, this is probably wrong. However, real hardware does
|
||||
// not seem to set it to any meaningful value.
|
||||
*out = handle_count != 0 ? (wait_all ? -1 : handle_index) : 0;
|
||||
// Clear the mapping of wait object indices.
|
||||
// We don't want any lingering state in this map.
|
||||
// It will be repopulated later in the wait_all = false case.
|
||||
thread->wait_objects_index.clear();
|
||||
|
||||
return RESULT_SUCCESS;
|
||||
if (wait_all) {
|
||||
bool all_available =
|
||||
std::all_of(objects.begin(), objects.end(),
|
||||
[](const ObjectPtr& object) { return !object->ShouldWait(); });
|
||||
if (all_available) {
|
||||
// We can acquire all objects right now, do so.
|
||||
for (auto& object : objects)
|
||||
object->Acquire();
|
||||
// Note: In this case, the `out` parameter is not set,
|
||||
// and retains whatever value it had before.
|
||||
return RESULT_SUCCESS;
|
||||
}
|
||||
|
||||
// Not all objects were available right now, prepare to suspend the thread.
|
||||
|
||||
// If a timeout value of 0 was provided, just return the Timeout error code instead of
|
||||
// suspending the thread.
|
||||
if (nano_seconds == 0)
|
||||
return ERR_SYNC_TIMEOUT;
|
||||
|
||||
// Put the thread to sleep
|
||||
thread->status = THREADSTATUS_WAIT_SYNCH;
|
||||
|
||||
// Add the thread to each of the objects' waiting threads.
|
||||
for (auto& object : objects) {
|
||||
object->AddWaitingThread(thread);
|
||||
// TODO(Subv): Perform things like update the mutex lock owner's priority to
|
||||
// prevent priority inversion. Currently this is done in Mutex::ShouldWait,
|
||||
// but it should be moved to a function that is called from here.
|
||||
}
|
||||
|
||||
// Set the thread's waitlist to the list of objects passed to WaitSynchronizationN
|
||||
thread->wait_objects = std::move(objects);
|
||||
|
||||
// Create an event to wake the thread up after the specified nanosecond delay has passed
|
||||
thread->WakeAfterDelay(nano_seconds);
|
||||
|
||||
// This value gets set to -1 by default in this case, it is not modified after this.
|
||||
*out = -1;
|
||||
// Note: The output of this SVC will be set to RESULT_SUCCESS if the thread resumes due to
|
||||
// a signal in one of its wait objects.
|
||||
return ERR_SYNC_TIMEOUT;
|
||||
} else {
|
||||
// Find the first object that is acquirable in the provided list of objects
|
||||
auto itr = std::find_if(objects.begin(), objects.end(),
|
||||
[](const ObjectPtr& object) { return !object->ShouldWait(); });
|
||||
|
||||
if (itr != objects.end()) {
|
||||
// We found a ready object, acquire it and set the result value
|
||||
Kernel::WaitObject* object = itr->get();
|
||||
object->Acquire();
|
||||
*out = std::distance(objects.begin(), itr);
|
||||
return RESULT_SUCCESS;
|
||||
}
|
||||
|
||||
// No objects were ready to be acquired, prepare to suspend the thread.
|
||||
|
||||
// If a timeout value of 0 was provided, just return the Timeout error code instead of
|
||||
// suspending the thread.
|
||||
if (nano_seconds == 0)
|
||||
return ERR_SYNC_TIMEOUT;
|
||||
|
||||
// Put the thread to sleep
|
||||
thread->status = THREADSTATUS_WAIT_SYNCH;
|
||||
|
||||
// Clear the thread's waitlist, we won't use it for wait_all = false
|
||||
thread->wait_objects.clear();
|
||||
|
||||
// Add the thread to each of the objects' waiting threads.
|
||||
for (size_t i = 0; i < objects.size(); ++i) {
|
||||
Kernel::WaitObject* object = objects[i].get();
|
||||
// Set the index of this object in the mapping of Objects -> index for this thread.
|
||||
thread->wait_objects_index[object->GetObjectId()] = static_cast<int>(i);
|
||||
object->AddWaitingThread(thread);
|
||||
// TODO(Subv): Perform things like update the mutex lock owner's priority to
|
||||
// prevent priority inversion. Currently this is done in Mutex::ShouldWait,
|
||||
// but it should be moved to a function that is called from here.
|
||||
}
|
||||
|
||||
// Note: If no handles and no timeout were given, then the thread will deadlock, this is
|
||||
// consistent with hardware behavior.
|
||||
|
||||
// Create an event to wake the thread up after the specified nanosecond delay has passed
|
||||
thread->WakeAfterDelay(nano_seconds);
|
||||
|
||||
// Note: The output of this SVC will be set to RESULT_SUCCESS if the thread resumes due to a
|
||||
// signal in one of its wait objects.
|
||||
// Otherwise we retain the default value of timeout, and -1 in the out parameter
|
||||
thread->wait_set_output = true;
|
||||
*out = -1;
|
||||
return ERR_SYNC_TIMEOUT;
|
||||
}
|
||||
}
|
||||
|
||||
/// Create an address arbiter (to allocate access to shared resources)
|
||||
|
@ -1159,6 +1184,8 @@ void CallSVC(u32 immediate) {
|
|||
if (info) {
|
||||
if (info->func) {
|
||||
info->func();
|
||||
// TODO(Subv): Not all service functions should cause a reschedule in all cases.
|
||||
HLE::Reschedule(__func__);
|
||||
} else {
|
||||
LOG_ERROR(Kernel_SVC, "unimplemented SVC function %s(..)", info->name);
|
||||
}
|
||||
|
|
Reference in New Issue