citra-emu
/
citra
Archived
1
0
Fork 0

Common: Ported over boilerplate x86 JIT code from Dolphin/PPSSPP.

This commit is contained in:
bunnei 2015-07-21 20:08:49 -04:00
parent 4d51792285
commit ddbeebb887
11 changed files with 4382 additions and 6 deletions

View File

@ -14,7 +14,7 @@ set(HEADERS
create_directory_groups(${SRCS} ${HEADERS})
add_executable(citra ${SRCS} ${HEADERS})
target_link_libraries(citra core common video_core)
target_link_libraries(citra core video_core common)
target_link_libraries(citra ${GLFW_LIBRARIES} ${OPENGL_gl_LIBRARY} inih)
if (MSVC)
target_link_libraries(citra getopt)

View File

@ -71,7 +71,7 @@ if (APPLE)
else()
add_executable(citra-qt ${SRCS} ${HEADERS} ${UI_HDRS})
endif()
target_link_libraries(citra-qt core common video_core qhexedit)
target_link_libraries(citra-qt core video_core common qhexedit)
target_link_libraries(citra-qt ${OPENGL_gl_LIBRARY} ${CITRA_QT_LIBS})
target_link_libraries(citra-qt ${PLATFORM_LIBRARIES})

View File

@ -2,6 +2,7 @@
configure_file("${CMAKE_CURRENT_SOURCE_DIR}/scm_rev.cpp.in" "${CMAKE_CURRENT_SOURCE_DIR}/scm_rev.cpp" @ONLY)
set(SRCS
abi.cpp
break_points.cpp
emu_window.cpp
file_util.cpp
@ -20,10 +21,12 @@ set(SRCS
)
set(HEADERS
abi.h
assert.h
bit_field.h
break_points.h
chunk_file.h
code_block.h
color.h
common_funcs.h
common_paths.h
@ -58,10 +61,17 @@ set(HEADERS
if(_M_X86)
set(SRCS ${SRCS}
cpu_detect_x86.cpp)
cpu_detect_x86.cpp
x64_emitter.cpp)
set(HEADERS ${HEADERS}
x64_emitter.h)
else()
set(SRCS ${SRCS}
cpu_detect_generic.cpp)
cpu_detect_generic.cpp)
set(HEADERS ${HEADERS}
fake_emitter.h)
endif()
create_directory_groups(${SRCS} ${HEADERS})

680
src/common/abi.cpp Normal file
View File

@ -0,0 +1,680 @@
// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "x64_emitter.h"
#include "abi.h"
using namespace Gen;
// Shared code between Win64 and Unix64
// Sets up a __cdecl function.
void XEmitter::ABI_EmitPrologue(int maxCallParams)
{
#ifdef _M_IX86
// Don't really need to do anything
#elif defined(_M_X86_64)
#if _WIN32
int stacksize = ((maxCallParams + 1) & ~1) * 8 + 8;
// Set up a stack frame so that we can call functions
// TODO: use maxCallParams
SUB(64, R(RSP), Imm8(stacksize));
#endif
#else
#error Arch not supported
#endif
}
void XEmitter::ABI_EmitEpilogue(int maxCallParams)
{
#ifdef _M_IX86
RET();
#elif defined(_M_X86_64)
#ifdef _WIN32
int stacksize = ((maxCallParams+1)&~1)*8 + 8;
ADD(64, R(RSP), Imm8(stacksize));
#endif
RET();
#else
#error Arch not supported
#endif
}
#ifdef _M_IX86 // All32
// Shared code between Win32 and Unix32
void XEmitter::ABI_CallFunction(const void *func) {
ABI_AlignStack(0);
CALL(func);
ABI_RestoreStack(0);
}
void XEmitter::ABI_CallFunctionC16(const void *func, u16 param1) {
ABI_AlignStack(1 * 2);
PUSH(16, Imm16(param1));
CALL(func);
ABI_RestoreStack(1 * 2);
}
void XEmitter::ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2) {
ABI_AlignStack(1 * 2 + 1 * 4);
PUSH(16, Imm16(param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(1 * 2 + 1 * 4);
}
void XEmitter::ABI_CallFunctionC(const void *func, u32 param1) {
ABI_AlignStack(1 * 4);
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(1 * 4);
}
void XEmitter::ABI_CallFunctionCC(const void *func, u32 param1, u32 param2) {
ABI_AlignStack(2 * 4);
PUSH(32, Imm32(param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(2 * 4);
}
void XEmitter::ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3) {
ABI_AlignStack(3 * 4);
PUSH(32, Imm32(param3));
PUSH(32, Imm32(param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(3 * 4);
}
void XEmitter::ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3) {
ABI_AlignStack(3 * 4);
PUSH(32, ImmPtr(param3));
PUSH(32, Imm32(param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(3 * 4);
}
void XEmitter::ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2,u32 param3, void *param4) {
ABI_AlignStack(4 * 4);
PUSH(32, ImmPtr(param4));
PUSH(32, Imm32(param3));
PUSH(32, Imm32(param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(4 * 4);
}
void XEmitter::ABI_CallFunctionP(const void *func, void *param1) {
ABI_AlignStack(1 * 4);
PUSH(32, ImmPtr(param1));
CALL(func);
ABI_RestoreStack(1 * 4);
}
void XEmitter::ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2) {
ABI_AlignStack(2 * 4);
PUSH(32, arg2);
PUSH(32, ImmPtr(param1));
CALL(func);
ABI_RestoreStack(2 * 4);
}
void XEmitter::ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3) {
ABI_AlignStack(3 * 4);
PUSH(32, arg3);
PUSH(32, arg2);
PUSH(32, ImmPtr(param1));
CALL(func);
ABI_RestoreStack(3 * 4);
}
void XEmitter::ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3) {
ABI_AlignStack(3 * 4);
PUSH(32, Imm32(param3));
PUSH(32, ImmPtr(param2));
PUSH(32, ImmPtr(param1));
CALL(func);
ABI_RestoreStack(3 * 4);
}
// Pass a register as a parameter.
void XEmitter::ABI_CallFunctionR(const void *func, X64Reg reg1) {
ABI_AlignStack(1 * 4);
PUSH(32, R(reg1));
CALL(func);
ABI_RestoreStack(1 * 4);
}
// Pass two registers as parameters.
void XEmitter::ABI_CallFunctionRR(const void *func, Gen::X64Reg reg1, Gen::X64Reg reg2)
{
ABI_AlignStack(2 * 4);
PUSH(32, R(reg2));
PUSH(32, R(reg1));
CALL(func);
ABI_RestoreStack(2 * 4);
}
void XEmitter::ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2)
{
ABI_AlignStack(2 * 4);
PUSH(32, Imm32(param2));
PUSH(32, arg1);
CALL(func);
ABI_RestoreStack(2 * 4);
}
void XEmitter::ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3)
{
ABI_AlignStack(3 * 4);
PUSH(32, Imm32(param3));
PUSH(32, Imm32(param2));
PUSH(32, arg1);
CALL(func);
ABI_RestoreStack(3 * 4);
}
void XEmitter::ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1)
{
ABI_AlignStack(1 * 4);
PUSH(32, arg1);
CALL(func);
ABI_RestoreStack(1 * 4);
}
void XEmitter::ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2)
{
ABI_AlignStack(2 * 4);
PUSH(32, arg2);
PUSH(32, arg1);
CALL(func);
ABI_RestoreStack(2 * 4);
}
void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
// Note: 4 * 4 = 16 bytes, so alignment is preserved.
PUSH(EBP);
PUSH(EBX);
PUSH(ESI);
PUSH(EDI);
}
void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
POP(EDI);
POP(ESI);
POP(EBX);
POP(EBP);
}
unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize) {
frameSize += 4; // reserve space for return address
unsigned int alignedSize =
#ifdef __GNUC__
(frameSize + 15) & -16;
#else
(frameSize + 3) & -4;
#endif
return alignedSize;
}
void XEmitter::ABI_AlignStack(unsigned int frameSize) {
// Mac OS X requires the stack to be 16-byte aligned before every call.
// Linux requires the stack to be 16-byte aligned before calls that put SSE
// vectors on the stack, but since we do not keep track of which calls do that,
// it is effectively every call as well.
// Windows binaries compiled with MSVC do not have such a restriction*, but I
// expect that GCC on Windows acts the same as GCC on Linux in this respect.
// It would be nice if someone could verify this.
// *However, the MSVC optimizing compiler assumes a 4-byte-aligned stack at times.
unsigned int fillSize =
ABI_GetAlignedFrameSize(frameSize) - (frameSize + 4);
if (fillSize != 0) {
SUB(32, R(ESP), Imm8(fillSize));
}
}
void XEmitter::ABI_RestoreStack(unsigned int frameSize) {
unsigned int alignedSize = ABI_GetAlignedFrameSize(frameSize);
alignedSize -= 4; // return address is POPped at end of call
if (alignedSize != 0) {
ADD(32, R(ESP), Imm8(alignedSize));
}
}
#else //64bit
// Common functions
void XEmitter::ABI_CallFunction(const void *func) {
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionC16(const void *func, u16 param1) {
MOV(32, R(ABI_PARAM1), Imm32((u32)param1));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32((u32)param2));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionC(const void *func, u32 param1) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionCC(const void *func, u32 param1, u32 param2) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
MOV(32, R(ABI_PARAM3), Imm32(param3));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
MOV(64, R(ABI_PARAM3), ImmPtr(param3));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4) {
MOV(32, R(ABI_PARAM1), Imm32(param1));
MOV(32, R(ABI_PARAM2), Imm32(param2));
MOV(32, R(ABI_PARAM3), Imm32(param3));
MOV(64, R(ABI_PARAM4), ImmPtr(param4));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionP(const void *func, void *param1) {
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2) {
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
if (!arg2.IsSimpleReg(ABI_PARAM2))
MOV(32, R(ABI_PARAM2), arg2);
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3) {
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
if (!arg2.IsSimpleReg(ABI_PARAM2))
MOV(32, R(ABI_PARAM2), arg2);
if (!arg3.IsSimpleReg(ABI_PARAM3))
MOV(32, R(ABI_PARAM3), arg3);
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3) {
MOV(64, R(ABI_PARAM1), ImmPtr(param1));
MOV(64, R(ABI_PARAM2), ImmPtr(param2));
MOV(32, R(ABI_PARAM3), Imm32(param3));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
// Pass a register as a parameter.
void XEmitter::ABI_CallFunctionR(const void *func, X64Reg reg1) {
if (reg1 != ABI_PARAM1)
MOV(32, R(ABI_PARAM1), R(reg1));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
// Pass two registers as parameters.
void XEmitter::ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2) {
if (reg2 != ABI_PARAM1) {
if (reg1 != ABI_PARAM1)
MOV(64, R(ABI_PARAM1), R(reg1));
if (reg2 != ABI_PARAM2)
MOV(64, R(ABI_PARAM2), R(reg2));
} else {
if (reg2 != ABI_PARAM2)
MOV(64, R(ABI_PARAM2), R(reg2));
if (reg1 != ABI_PARAM1)
MOV(64, R(ABI_PARAM1), R(reg1));
}
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2)
{
if (!arg1.IsSimpleReg(ABI_PARAM1))
MOV(32, R(ABI_PARAM1), arg1);
MOV(32, R(ABI_PARAM2), Imm32(param2));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3)
{
if (!arg1.IsSimpleReg(ABI_PARAM1))
MOV(32, R(ABI_PARAM1), arg1);
MOV(32, R(ABI_PARAM2), Imm32(param2));
MOV(64, R(ABI_PARAM3), Imm64(param3));
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1)
{
if (!arg1.IsSimpleReg(ABI_PARAM1))
MOV(32, R(ABI_PARAM1), arg1);
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
void XEmitter::ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2)
{
if (!arg1.IsSimpleReg(ABI_PARAM1))
MOV(32, R(ABI_PARAM1), arg1);
if (!arg2.IsSimpleReg(ABI_PARAM2))
MOV(32, R(ABI_PARAM2), arg2);
u64 distance = u64(func) - (u64(code) + 5);
if (distance >= 0x0000000080000000ULL
&& distance < 0xFFFFFFFF80000000ULL) {
// Far call
MOV(64, R(RAX), ImmPtr(func));
CALLptr(R(RAX));
} else {
CALL(func);
}
}
unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize) {
return frameSize;
}
#ifdef _WIN32
// The Windows x64 ABI requires XMM6 - XMM15 to be callee saved. 10 regs.
// But, not saving XMM4 and XMM5 breaks things in VS 2010, even though they are volatile regs.
// Let's just save all 16.
const int XMM_STACK_SPACE = 16 * 16;
// Win64 Specific Code
void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
//we only want to do this once
PUSH(RBX);
PUSH(RSI);
PUSH(RDI);
PUSH(RBP);
PUSH(R12);
PUSH(R13);
PUSH(R14);
PUSH(R15);
ABI_AlignStack(0);
// Do this after aligning, because before it's offset by 8.
SUB(64, R(RSP), Imm32(XMM_STACK_SPACE));
for (int i = 0; i < 16; ++i)
MOVAPS(MDisp(RSP, i * 16), (X64Reg)(XMM0 + i));
}
void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
for (int i = 0; i < 16; ++i)
MOVAPS((X64Reg)(XMM0 + i), MDisp(RSP, i * 16));
ADD(64, R(RSP), Imm32(XMM_STACK_SPACE));
ABI_RestoreStack(0);
POP(R15);
POP(R14);
POP(R13);
POP(R12);
POP(RBP);
POP(RDI);
POP(RSI);
POP(RBX);
}
// Win64 Specific Code
void XEmitter::ABI_PushAllCallerSavedRegsAndAdjustStack() {
PUSH(RCX);
PUSH(RDX);
PUSH(RSI);
PUSH(RDI);
PUSH(R8);
PUSH(R9);
PUSH(R10);
PUSH(R11);
// TODO: Callers preserve XMM4-5 (XMM0-3 are args.)
ABI_AlignStack(0);
}
void XEmitter::ABI_PopAllCallerSavedRegsAndAdjustStack() {
ABI_RestoreStack(0);
POP(R11);
POP(R10);
POP(R9);
POP(R8);
POP(RDI);
POP(RSI);
POP(RDX);
POP(RCX);
}
void XEmitter::ABI_AlignStack(unsigned int /*frameSize*/) {
SUB(64, R(RSP), Imm8(0x28));
}
void XEmitter::ABI_RestoreStack(unsigned int /*frameSize*/) {
ADD(64, R(RSP), Imm8(0x28));
}
#else
// Unix64 Specific Code
void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
PUSH(RBX);
PUSH(RBP);
PUSH(R12);
PUSH(R13);
PUSH(R14);
PUSH(R15);
PUSH(R15); //just to align stack. duped push/pop doesn't hurt.
// TODO: XMM?
}
void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
POP(R15);
POP(R15);
POP(R14);
POP(R13);
POP(R12);
POP(RBP);
POP(RBX);
}
void XEmitter::ABI_PushAllCallerSavedRegsAndAdjustStack() {
PUSH(RCX);
PUSH(RDX);
PUSH(RSI);
PUSH(RDI);
PUSH(R8);
PUSH(R9);
PUSH(R10);
PUSH(R11);
PUSH(R11);
}
void XEmitter::ABI_PopAllCallerSavedRegsAndAdjustStack() {
POP(R11);
POP(R11);
POP(R10);
POP(R9);
POP(R8);
POP(RDI);
POP(RSI);
POP(RDX);
POP(RCX);
}
void XEmitter::ABI_AlignStack(unsigned int /*frameSize*/) {
SUB(64, R(RSP), Imm8(0x08));
}
void XEmitter::ABI_RestoreStack(unsigned int /*frameSize*/) {
ADD(64, R(RSP), Imm8(0x08));
}
#endif // WIN32
#endif // 32bit

78
src/common/abi.h Normal file
View File

@ -0,0 +1,78 @@
// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#pragma once
#include "common_types.h"
// x86/x64 ABI:s, and helpers to help follow them when JIT-ing code.
// All convensions return values in EAX (+ possibly EDX).
// Linux 32-bit, Windows 32-bit (cdecl, System V):
// * Caller pushes left to right
// * Caller fixes stack after call
// * function subtract from stack for local storage only.
// Scratch: EAX ECX EDX
// Callee-save: EBX ESI EDI EBP
// Parameters: -
// Windows 64-bit
// * 4-reg "fastcall" variant, very new-skool stack handling
// * Callee moves stack pointer, to make room for shadow regs for the biggest function _it itself calls_
// * Parameters passed in RCX, RDX, ... further parameters are MOVed into the allocated stack space.
// Scratch: RAX RCX RDX R8 R9 R10 R11
// Callee-save: RBX RSI RDI RBP R12 R13 R14 R15
// Parameters: RCX RDX R8 R9, further MOV-ed
// Linux 64-bit
// * 6-reg "fastcall" variant, old skool stack handling (parameters are pushed)
// Scratch: RAX RCX RDX RSI RDI R8 R9 R10 R11
// Callee-save: RBX RBP R12 R13 R14 R15
// Parameters: RDI RSI RDX RCX R8 R9
#ifdef _M_IX86 // 32 bit calling convention, shared by all
// 32-bit don't pass parameters in regs, but these are convenient to have anyway when we have to
// choose regs to put stuff in.
#define ABI_PARAM1 RCX
#define ABI_PARAM2 RDX
// There are no ABI_PARAM* here, since args are pushed.
// 32-bit bog standard cdecl, shared between linux and windows
// MacOSX 32-bit is same as System V with a few exceptions that we probably don't care much about.
#elif _M_X86_64 // 64 bit calling convention
#ifdef _WIN32 // 64-bit Windows - the really exotic calling convention
#define ABI_PARAM1 RCX
#define ABI_PARAM2 RDX
#define ABI_PARAM3 R8
#define ABI_PARAM4 R9
#else //64-bit Unix (hopefully MacOSX too)
#define ABI_PARAM1 RDI
#define ABI_PARAM2 RSI
#define ABI_PARAM3 RDX
#define ABI_PARAM4 RCX
#define ABI_PARAM5 R8
#define ABI_PARAM6 R9
#endif // WIN32
#endif // X86

87
src/common/code_block.h Normal file
View File

@ -0,0 +1,87 @@
// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include "common_types.h"
#include "memory_util.h"
// Everything that needs to generate code should inherit from this.
// You get memory management for free, plus, you can use all emitter functions without
// having to prefix them with gen-> or something similar.
// Example implementation:
// class JIT : public CodeBlock<ARMXEmitter> {}
template<class T> class CodeBlock : public T, NonCopyable
{
private:
// A privately used function to set the executable RAM space to something invalid.
// For debugging usefulness it should be used to set the RAM to a host specific breakpoint instruction
virtual void PoisonMemory() = 0;
protected:
u8 *region;
size_t region_size;
public:
CodeBlock() : region(nullptr), region_size(0) {}
virtual ~CodeBlock() { if (region) FreeCodeSpace(); }
// Call this before you generate any code.
void AllocCodeSpace(int size)
{
region_size = size;
region = (u8*)AllocateExecutableMemory(region_size);
T::SetCodePtr(region);
}
// Always clear code space with breakpoints, so that if someone accidentally executes
// uninitialized, it just breaks into the debugger.
void ClearCodeSpace()
{
PoisonMemory();
ResetCodePtr();
}
// Call this when shutting down. Don't rely on the destructor, even though it'll do the job.
void FreeCodeSpace()
{
#ifdef __SYMBIAN32__
ResetExecutableMemory(region);
#else
FreeMemoryPages(region, region_size);
#endif
region = nullptr;
region_size = 0;
}
bool IsInSpace(const u8 *ptr)
{
return (ptr >= region) && (ptr < (region + region_size));
}
// Cannot currently be undone. Will write protect the entire code region.
// Start over if you need to change the code (call FreeCodeSpace(), AllocCodeSpace()).
void WriteProtect()
{
WriteProtectMemory(region, region_size, true);
}
void ResetCodePtr()
{
T::SetCodePtr(region);
}
size_t GetSpaceLeft() const
{
return region_size - (T::GetCodePtr() - region);
}
u8 *GetBasePtr() {
return region;
}
size_t GetOffset(const u8 *ptr) const {
return ptr - region;
}
};

View File

@ -35,7 +35,7 @@
#ifndef _MSC_VER
#if defined(__x86_64__) || defined(_M_X64)
#if defined(__x86_64__) || defined(_M_X86_64)
#define Crash() __asm__ __volatile__("int $3")
#elif defined(_M_ARM)
#define Crash() __asm__ __volatile__("trap")

465
src/common/fake_emitter.h Normal file
View File

@ -0,0 +1,465 @@
// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
// WARNING - THIS LIBRARY IS NOT THREAD SAFE!!!
#pragma once
#include <vector>
#include <stdint.h>
#include "assert.h"
#include "common_types.h"
// TODO: Check if Pandora still needs signal.h/kill here. Symbian doesn't.
// VCVT flags
#define TO_FLOAT 0
#define TO_INT 1 << 0
#define IS_SIGNED 1 << 1
#define ROUND_TO_ZERO 1 << 2
namespace FakeGen
{
enum FakeReg
{
// GPRs
R0 = 0, R1, R2, R3, R4, R5,
R6, R7, R8, R9, R10, R11,
// SPRs
// R13 - R15 are SP, LR, and PC.
// Almost always referred to by name instead of register number
R12 = 12, R13 = 13, R14 = 14, R15 = 15,
R_IP = 12, R_SP = 13, R_LR = 14, R_PC = 15,
// VFP single precision registers
S0, S1, S2, S3, S4, S5, S6,
S7, S8, S9, S10, S11, S12, S13,
S14, S15, S16, S17, S18, S19, S20,
S21, S22, S23, S24, S25, S26, S27,
S28, S29, S30, S31,
// VFP Double Precision registers
D0, D1, D2, D3, D4, D5, D6, D7,
D8, D9, D10, D11, D12, D13, D14, D15,
D16, D17, D18, D19, D20, D21, D22, D23,
D24, D25, D26, D27, D28, D29, D30, D31,
// ASIMD Quad-Word registers
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,
Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15,
// for NEON VLD/VST instructions
REG_UPDATE = R13,
INVALID_REG = 0xFFFFFFFF
};
enum CCFlags
{
CC_EQ = 0, // Equal
CC_NEQ, // Not equal
CC_CS, // Carry Set
CC_CC, // Carry Clear
CC_MI, // Minus (Negative)
CC_PL, // Plus
CC_VS, // Overflow
CC_VC, // No Overflow
CC_HI, // Unsigned higher
CC_LS, // Unsigned lower or same
CC_GE, // Signed greater than or equal
CC_LT, // Signed less than
CC_GT, // Signed greater than
CC_LE, // Signed less than or equal
CC_AL, // Always (unconditional) 14
CC_HS = CC_CS, // Alias of CC_CS Unsigned higher or same
CC_LO = CC_CC, // Alias of CC_CC Unsigned lower
};
const u32 NO_COND = 0xE0000000;
enum ShiftType
{
ST_LSL = 0,
ST_ASL = 0,
ST_LSR = 1,
ST_ASR = 2,
ST_ROR = 3,
ST_RRX = 4
};
enum IntegerSize
{
I_I8 = 0,
I_I16,
I_I32,
I_I64
};
enum
{
NUMGPRs = 13,
};
class FakeXEmitter;
enum OpType
{
TYPE_IMM = 0,
TYPE_REG,
TYPE_IMMSREG,
TYPE_RSR,
TYPE_MEM
};
// This is no longer a proper operand2 class. Need to split up.
class Operand2
{
friend class FakeXEmitter;
protected:
u32 Value;
private:
OpType Type;
// IMM types
u8 Rotation; // Only for u8 values
// Register types
u8 IndexOrShift;
ShiftType Shift;
public:
OpType GetType()
{
return Type;
}
Operand2() {}
Operand2(u32 imm, OpType type = TYPE_IMM)
{
Type = type;
Value = imm;
Rotation = 0;
}
Operand2(FakeReg Reg)
{
Type = TYPE_REG;
Value = Reg;
Rotation = 0;
}
Operand2(u8 imm, u8 rotation)
{
Type = TYPE_IMM;
Value = imm;
Rotation = rotation;
}
Operand2(FakeReg base, ShiftType type, FakeReg shift) // RSR
{
Type = TYPE_RSR;
ASSERT_MSG(type != ST_RRX, "Invalid Operand2: RRX does not take a register shift amount");
IndexOrShift = shift;
Shift = type;
Value = base;
}
Operand2(FakeReg base, ShiftType type, u8 shift)// For IMM shifted register
{
if(shift == 32) shift = 0;
switch (type)
{
case ST_LSL:
ASSERT_MSG(shift < 32, "Invalid Operand2: LSL %u", shift);
break;
case ST_LSR:
ASSERT_MSG(shift <= 32, "Invalid Operand2: LSR %u", shift);
if (!shift)
type = ST_LSL;
if (shift == 32)
shift = 0;
break;
case ST_ASR:
ASSERT_MSG(shift < 32, "Invalid Operand2: ASR %u", shift);
if (!shift)
type = ST_LSL;
if (shift == 32)
shift = 0;
break;
case ST_ROR:
ASSERT_MSG(shift < 32, "Invalid Operand2: ROR %u", shift);
if (!shift)
type = ST_LSL;
break;
case ST_RRX:
ASSERT_MSG(shift == 0, "Invalid Operand2: RRX does not take an immediate shift amount");
type = ST_ROR;
break;
}
IndexOrShift = shift;
Shift = type;
Value = base;
Type = TYPE_IMMSREG;
}
u32 GetData()
{
switch(Type)
{
case TYPE_IMM:
return Imm12Mod(); // This'll need to be changed later
case TYPE_REG:
return Rm();
case TYPE_IMMSREG:
return IMMSR();
case TYPE_RSR:
return RSR();
default:
ASSERT_MSG(false, "GetData with Invalid Type");
return 0;
}
}
u32 IMMSR() // IMM shifted register
{
ASSERT_MSG(Type == TYPE_IMMSREG, "IMMSR must be imm shifted register");
return ((IndexOrShift & 0x1f) << 7 | (Shift << 5) | Value);
}
u32 RSR() // Register shifted register
{
ASSERT_MSG(Type == TYPE_RSR, "RSR must be RSR Of Course");
return (IndexOrShift << 8) | (Shift << 5) | 0x10 | Value;
}
u32 Rm()
{
ASSERT_MSG(Type == TYPE_REG, "Rm must be with Reg");
return Value;
}
u32 Imm5()
{
ASSERT_MSG((Type == TYPE_IMM), "Imm5 not IMM value");
return ((Value & 0x0000001F) << 7);
}
u32 Imm8()
{
ASSERT_MSG((Type == TYPE_IMM), "Imm8Rot not IMM value");
return Value & 0xFF;
}
u32 Imm8Rot() // IMM8 with Rotation
{
ASSERT_MSG((Type == TYPE_IMM), "Imm8Rot not IMM value");
ASSERT_MSG((Rotation & 0xE1) != 0, "Invalid Operand2: immediate rotation %u", Rotation);
return (1 << 25) | (Rotation << 7) | (Value & 0x000000FF);
}
u32 Imm12()
{
ASSERT_MSG((Type == TYPE_IMM), "Imm12 not IMM");
return (Value & 0x00000FFF);
}
u32 Imm12Mod()
{
// This is an IMM12 with the top four bits being rotation and the
// bottom eight being an IMM. This is for instructions that need to
// expand a 8bit IMM to a 32bit value and gives you some rotation as
// well.
// Each rotation rotates to the right by 2 bits
ASSERT_MSG((Type == TYPE_IMM), "Imm12Mod not IMM");
return ((Rotation & 0xF) << 8) | (Value & 0xFF);
}
u32 Imm16()
{
ASSERT_MSG((Type == TYPE_IMM), "Imm16 not IMM");
return ( (Value & 0xF000) << 4) | (Value & 0x0FFF);
}
u32 Imm16Low()
{
return Imm16();
}
u32 Imm16High() // Returns high 16bits
{
ASSERT_MSG((Type == TYPE_IMM), "Imm16 not IMM");
return ( ((Value >> 16) & 0xF000) << 4) | ((Value >> 16) & 0x0FFF);
}
u32 Imm24()
{
ASSERT_MSG((Type == TYPE_IMM), "Imm16 not IMM");
return (Value & 0x0FFFFFFF);
}
};
// Use these when you don't know if an imm can be represented as an operand2.
// This lets you generate both an optimal and a fallback solution by checking
// the return value, which will be false if these fail to find a Operand2 that
// represents your 32-bit imm value.
bool TryMakeOperand2(u32 imm, Operand2 &op2);
bool TryMakeOperand2_AllowInverse(u32 imm, Operand2 &op2, bool *inverse);
bool TryMakeOperand2_AllowNegation(s32 imm, Operand2 &op2, bool *negated);
// Use this only when you know imm can be made into an Operand2.
Operand2 AssumeMakeOperand2(u32 imm);
inline Operand2 R(FakeReg Reg) { return Operand2(Reg, TYPE_REG); }
inline Operand2 IMM(u32 Imm) { return Operand2(Imm, TYPE_IMM); }
inline Operand2 Mem(void *ptr) { return Operand2((u32)(uintptr_t)ptr, TYPE_IMM); }
//usage: struct {int e;} s; STRUCT_OFFSET(s,e)
#define STRUCT_OFF(str,elem) ((u32)((u32)&(str).elem-(u32)&(str)))
struct FixupBranch
{
u8 *ptr;
u32 condition; // Remembers our codition at the time
int type; //0 = B 1 = BL
};
typedef const u8* JumpTarget;
// XXX: Stop polluting the global namespace
const u32 I_8 = (1 << 0);
const u32 I_16 = (1 << 1);
const u32 I_32 = (1 << 2);
const u32 I_64 = (1 << 3);
const u32 I_SIGNED = (1 << 4);
const u32 I_UNSIGNED = (1 << 5);
const u32 F_32 = (1 << 6);
const u32 I_POLYNOMIAL = (1 << 7); // Only used in VMUL/VMULL
u32 EncodeVd(FakeReg Vd);
u32 EncodeVn(FakeReg Vn);
u32 EncodeVm(FakeReg Vm);
u32 encodedSize(u32 value);
// Subtracts the base from the register to give us the real one
FakeReg SubBase(FakeReg Reg);
// See A.7.1 in the Fakev7-A
// VMUL F32 scalars can only be up to D15[0], D15[1] - higher scalars cannot be individually addressed
FakeReg DScalar(FakeReg dreg, int subScalar);
FakeReg QScalar(FakeReg qreg, int subScalar);
enum NEONAlignment {
ALIGN_NONE = 0,
ALIGN_64 = 1,
ALIGN_128 = 2,
ALIGN_256 = 3
};
class NEONXEmitter;
class FakeXEmitter
{
friend struct OpArg; // for Write8 etc
private:
u8 *code, *startcode;
u8 *lastCacheFlushEnd;
u32 condition;
protected:
inline void Write32(u32 value) {*(u32*)code = value; code+=4;}
public:
FakeXEmitter() : code(0), startcode(0), lastCacheFlushEnd(0) {
condition = CC_AL << 28;
}
FakeXEmitter(u8 *code_ptr) {
code = code_ptr;
lastCacheFlushEnd = code_ptr;
startcode = code_ptr;
condition = CC_AL << 28;
}
virtual ~FakeXEmitter() {}
void SetCodePtr(u8 *ptr) {}
void ReserveCodeSpace(u32 bytes) {}
const u8 *AlignCode16() { return nullptr; }
const u8 *AlignCodePage() { return nullptr; }
const u8 *GetCodePtr() const { return nullptr; }
void FlushIcache() {}
void FlushIcacheSection(u8 *start, u8 *end) {}
u8 *GetWritableCodePtr() { return nullptr; }
CCFlags GetCC() { return CCFlags(condition >> 28); }
void SetCC(CCFlags cond = CC_AL) {}
// Special purpose instructions
// Do nothing
void NOP(int count = 1) {} //nop padding - TODO: fast nop slides, for amd and intel (check their manuals)
#ifdef CALL
#undef CALL
#endif
void QuickCallFunction(FakeReg scratchreg, const void *func);
template <typename T> void QuickCallFunction(FakeReg scratchreg, T func) {
QuickCallFunction(scratchreg, (const void *)func);
}
}; // class FakeXEmitter
// Everything that needs to generate machine code should inherit from this.
// You get memory management for free, plus, you can use all the MOV etc functions without
// having to prefix them with gen-> or something similar.
class FakeXCodeBlock : public FakeXEmitter
{
protected:
u8 *region;
size_t region_size;
public:
FakeXCodeBlock() : region(NULL), region_size(0) {}
virtual ~FakeXCodeBlock() { if (region) FreeCodeSpace(); }
// Call this before you generate any code.
void AllocCodeSpace(int size) { }
// Always clear code space with breakpoints, so that if someone accidentally executes
// uninitialized, it just breaks into the debugger.
void ClearCodeSpace() { }
// Call this when shutting down. Don't rely on the destructor, even though it'll do the job.
void FreeCodeSpace() { }
bool IsInSpace(const u8 *ptr) const
{
return ptr >= region && ptr < region + region_size;
}
// Cannot currently be undone. Will write protect the entire code region.
// Start over if you need to change the code (call FreeCodeSpace(), AllocCodeSpace()).
void WriteProtect() { }
void UnWriteProtect() { }
void ResetCodePtr()
{
SetCodePtr(region);
}
size_t GetSpaceLeft() const
{
return region_size - (GetCodePtr() - region);
}
u8 *GetBasePtr() {
return region;
}
size_t GetOffset(const u8 *ptr) const {
return ptr - region;
}
};
} // namespace

View File

@ -27,7 +27,7 @@
////////////////////////////////////////////////////////////////////////////////////////////////////
// Platform detection
#if defined(__x86_64__) || defined(_M_X64) || defined(__aarch64__)
#if defined(__x86_64__) || defined(_M_X86_64) || defined(__aarch64__)
#define EMU_ARCH_BITS 64
#elif defined(__i386) || defined(_M_IX86) || defined(__arm__) || defined(_M_ARM)
#define EMU_ARCH_BITS 32

1989
src/common/x64_emitter.cpp Normal file

File diff suppressed because it is too large Load Diff

1067
src/common/x64_emitter.h Normal file

File diff suppressed because it is too large Load Diff