citra-emu
/
citra
Archived
1
0
Fork 0

Merge pull request #339 from bunnei/fixup-gsp-synch

Fixup gsp synch
This commit is contained in:
bunnei 2014-12-25 22:52:40 -05:00
commit e5ddbfee02
7 changed files with 59 additions and 117 deletions

View File

@ -77,6 +77,12 @@ public:
*/ */
virtual u64 GetTicks() const = 0; virtual u64 GetTicks() const = 0;
/**
* Advance the CPU core by the specified number of ticks (e.g. to simulate CPU execution time)
* @param ticks Number of ticks to advance the CPU core
*/
virtual void AddTicks(u64 ticks) = 0;
/** /**
* Saves the current CPU context * Saves the current CPU context
* @param ctx Thread context to save * @param ctx Thread context to save

View File

@ -47,68 +47,38 @@ ARM_DynCom::ARM_DynCom() : ticks(0) {
ARM_DynCom::~ARM_DynCom() { ARM_DynCom::~ARM_DynCom() {
} }
/**
* Set the Program Counter to an address
* @param addr Address to set PC to
*/
void ARM_DynCom::SetPC(u32 pc) { void ARM_DynCom::SetPC(u32 pc) {
state->pc = state->Reg[15] = pc; state->pc = state->Reg[15] = pc;
} }
/*
* Get the current Program Counter
* @return Returns current PC
*/
u32 ARM_DynCom::GetPC() const { u32 ARM_DynCom::GetPC() const {
return state->Reg[15]; return state->Reg[15];
} }
/**
* Get an ARM register
* @param index Register index (0-15)
* @return Returns the value in the register
*/
u32 ARM_DynCom::GetReg(int index) const { u32 ARM_DynCom::GetReg(int index) const {
return state->Reg[index]; return state->Reg[index];
} }
/**
* Set an ARM register
* @param index Register index (0-15)
* @param value Value to set register to
*/
void ARM_DynCom::SetReg(int index, u32 value) { void ARM_DynCom::SetReg(int index, u32 value) {
state->Reg[index] = value; state->Reg[index] = value;
} }
/**
* Get the current CPSR register
* @return Returns the value of the CPSR register
*/
u32 ARM_DynCom::GetCPSR() const { u32 ARM_DynCom::GetCPSR() const {
return state->Cpsr; return state->Cpsr;
} }
/**
* Set the current CPSR register
* @param cpsr Value to set CPSR to
*/
void ARM_DynCom::SetCPSR(u32 cpsr) { void ARM_DynCom::SetCPSR(u32 cpsr) {
state->Cpsr = cpsr; state->Cpsr = cpsr;
} }
/**
* Returns the number of clock ticks since the last reset
* @return Returns number of clock ticks
*/
u64 ARM_DynCom::GetTicks() const { u64 ARM_DynCom::GetTicks() const {
return ticks; return ticks;
} }
/** void ARM_DynCom::AddTicks(u64 ticks) {
* Executes the given number of instructions this->ticks += ticks;
* @param num_instructions Number of instructions to executes }
*/
void ARM_DynCom::ExecuteInstructions(int num_instructions) { void ARM_DynCom::ExecuteInstructions(int num_instructions) {
state->NumInstrsToExecute = num_instructions; state->NumInstrsToExecute = num_instructions;
@ -118,11 +88,6 @@ void ARM_DynCom::ExecuteInstructions(int num_instructions) {
ticks += InterpreterMainLoop(state.get()); ticks += InterpreterMainLoop(state.get());
} }
/**
* Saves the current CPU context
* @param ctx Thread context to save
* @todo Do we need to save Reg[15] and NextInstr?
*/
void ARM_DynCom::SaveContext(ThreadContext& ctx) { void ARM_DynCom::SaveContext(ThreadContext& ctx) {
memcpy(ctx.cpu_registers, state->Reg, sizeof(ctx.cpu_registers)); memcpy(ctx.cpu_registers, state->Reg, sizeof(ctx.cpu_registers));
memcpy(ctx.fpu_registers, state->ExtReg, sizeof(ctx.fpu_registers)); memcpy(ctx.fpu_registers, state->ExtReg, sizeof(ctx.fpu_registers));
@ -139,11 +104,6 @@ void ARM_DynCom::SaveContext(ThreadContext& ctx) {
ctx.mode = state->NextInstr; ctx.mode = state->NextInstr;
} }
/**
* Loads a CPU context
* @param ctx Thread context to load
* @param Do we need to load Reg[15] and NextInstr?
*/
void ARM_DynCom::LoadContext(const ThreadContext& ctx) { void ARM_DynCom::LoadContext(const ThreadContext& ctx) {
memcpy(state->Reg, ctx.cpu_registers, sizeof(ctx.cpu_registers)); memcpy(state->Reg, ctx.cpu_registers, sizeof(ctx.cpu_registers));
memcpy(state->ExtReg, ctx.fpu_registers, sizeof(ctx.fpu_registers)); memcpy(state->ExtReg, ctx.fpu_registers, sizeof(ctx.fpu_registers));
@ -160,7 +120,6 @@ void ARM_DynCom::LoadContext(const ThreadContext& ctx) {
state->NextInstr = ctx.mode; state->NextInstr = ctx.mode;
} }
/// Prepare core for thread reschedule (if needed to correctly handle state)
void ARM_DynCom::PrepareReschedule() { void ARM_DynCom::PrepareReschedule() {
state->NumInstrsToExecute = 0; state->NumInstrsToExecute = 0;
} }

View File

@ -27,14 +27,14 @@ public:
* Get the current Program Counter * Get the current Program Counter
* @return Returns current PC * @return Returns current PC
*/ */
u32 GetPC() const; u32 GetPC() const override;
/** /**
* Get an ARM register * Get an ARM register
* @param index Register index (0-15) * @param index Register index (0-15)
* @return Returns the value in the register * @return Returns the value in the register
*/ */
u32 GetReg(int index) const; u32 GetReg(int index) const override;
/** /**
* Set an ARM register * Set an ARM register
@ -47,7 +47,7 @@ public:
* Get the current CPSR register * Get the current CPSR register
* @return Returns the value of the CPSR register * @return Returns the value of the CPSR register
*/ */
u32 GetCPSR() const; u32 GetCPSR() const override;
/** /**
* Set the current CPSR register * Set the current CPSR register
@ -59,7 +59,13 @@ public:
* Returns the number of clock ticks since the last reset * Returns the number of clock ticks since the last reset
* @return Returns number of clock ticks * @return Returns number of clock ticks
*/ */
u64 GetTicks() const; u64 GetTicks() const override;
/**
* Advance the CPU core by the specified number of ticks (e.g. to simulate CPU execution time)
* @param ticks Number of ticks to advance the CPU core
*/
void AddTicks(u64 ticks) override;
/** /**
* Saves the current CPU context * Saves the current CPU context

View File

@ -38,78 +38,43 @@ ARM_Interpreter::~ARM_Interpreter() {
delete state; delete state;
} }
/**
* Set the Program Counter to an address
* @param addr Address to set PC to
*/
void ARM_Interpreter::SetPC(u32 pc) { void ARM_Interpreter::SetPC(u32 pc) {
state->pc = state->Reg[15] = pc; state->pc = state->Reg[15] = pc;
} }
/*
* Get the current Program Counter
* @return Returns current PC
*/
u32 ARM_Interpreter::GetPC() const { u32 ARM_Interpreter::GetPC() const {
return state->pc; return state->pc;
} }
/**
* Get an ARM register
* @param index Register index (0-15)
* @return Returns the value in the register
*/
u32 ARM_Interpreter::GetReg(int index) const { u32 ARM_Interpreter::GetReg(int index) const {
return state->Reg[index]; return state->Reg[index];
} }
/**
* Set an ARM register
* @param index Register index (0-15)
* @param value Value to set register to
*/
void ARM_Interpreter::SetReg(int index, u32 value) { void ARM_Interpreter::SetReg(int index, u32 value) {
state->Reg[index] = value; state->Reg[index] = value;
} }
/**
* Get the current CPSR register
* @return Returns the value of the CPSR register
*/
u32 ARM_Interpreter::GetCPSR() const { u32 ARM_Interpreter::GetCPSR() const {
return state->Cpsr; return state->Cpsr;
} }
/**
* Set the current CPSR register
* @param cpsr Value to set CPSR to
*/
void ARM_Interpreter::SetCPSR(u32 cpsr) { void ARM_Interpreter::SetCPSR(u32 cpsr) {
state->Cpsr = cpsr; state->Cpsr = cpsr;
} }
/**
* Returns the number of clock ticks since the last reset
* @return Returns number of clock ticks
*/
u64 ARM_Interpreter::GetTicks() const { u64 ARM_Interpreter::GetTicks() const {
return ARMul_Time(state); return state->NumInstrs;
}
void ARM_Interpreter::AddTicks(u64 ticks) {
state->NumInstrs += ticks;
} }
/**
* Executes the given number of instructions
* @param num_instructions Number of instructions to executes
*/
void ARM_Interpreter::ExecuteInstructions(int num_instructions) { void ARM_Interpreter::ExecuteInstructions(int num_instructions) {
state->NumInstrsToExecute = num_instructions - 1; state->NumInstrsToExecute = num_instructions - 1;
ARMul_Emulate32(state); ARMul_Emulate32(state);
} }
/**
* Saves the current CPU context
* @param ctx Thread context to save
* @todo Do we need to save Reg[15] and NextInstr?
*/
void ARM_Interpreter::SaveContext(ThreadContext& ctx) { void ARM_Interpreter::SaveContext(ThreadContext& ctx) {
memcpy(ctx.cpu_registers, state->Reg, sizeof(ctx.cpu_registers)); memcpy(ctx.cpu_registers, state->Reg, sizeof(ctx.cpu_registers));
memcpy(ctx.fpu_registers, state->ExtReg, sizeof(ctx.fpu_registers)); memcpy(ctx.fpu_registers, state->ExtReg, sizeof(ctx.fpu_registers));
@ -126,11 +91,6 @@ void ARM_Interpreter::SaveContext(ThreadContext& ctx) {
ctx.mode = state->NextInstr; ctx.mode = state->NextInstr;
} }
/**
* Loads a CPU context
* @param ctx Thread context to load
* @param Do we need to load Reg[15] and NextInstr?
*/
void ARM_Interpreter::LoadContext(const ThreadContext& ctx) { void ARM_Interpreter::LoadContext(const ThreadContext& ctx) {
memcpy(state->Reg, ctx.cpu_registers, sizeof(ctx.cpu_registers)); memcpy(state->Reg, ctx.cpu_registers, sizeof(ctx.cpu_registers));
memcpy(state->ExtReg, ctx.fpu_registers, sizeof(ctx.fpu_registers)); memcpy(state->ExtReg, ctx.fpu_registers, sizeof(ctx.fpu_registers));
@ -147,7 +107,6 @@ void ARM_Interpreter::LoadContext(const ThreadContext& ctx) {
state->NextInstr = ctx.mode; state->NextInstr = ctx.mode;
} }
/// Prepare core for thread reschedule (if needed to correctly handle state)
void ARM_Interpreter::PrepareReschedule() { void ARM_Interpreter::PrepareReschedule() {
state->NumInstrsToExecute = 0; state->NumInstrsToExecute = 0;
} }

View File

@ -60,6 +60,12 @@ public:
*/ */
u64 GetTicks() const override; u64 GetTicks() const override;
/**
* Advance the CPU core by the specified number of ticks (e.g. to simulate CPU execution time)
* @param ticks Number of ticks to advance the CPU core
*/
void AddTicks(u64 ticks) override;
/** /**
* Saves the current CPU context * Saves the current CPU context
* @param ctx Thread context to save * @param ctx Thread context to save

View File

@ -43,7 +43,15 @@ void CallSVC(u32 opcode) {
void Reschedule(const char *reason) { void Reschedule(const char *reason) {
_dbg_assert_msg_(Kernel, reason != 0 && strlen(reason) < 256, "Reschedule: Invalid or too long reason."); _dbg_assert_msg_(Kernel, reason != 0 && strlen(reason) < 256, "Reschedule: Invalid or too long reason.");
// TODO(bunnei): It seems that games depend on some CPU execution time elapsing during HLE
// routines. This simulates that time by artificially advancing the number of CPU "ticks".
// The value was chosen empirically, it seems to work well enough for everything tested, but
// is likely not ideal. We should find a more accurate way to simulate timing with HLE.
Core::g_app_core->AddTicks(4000);
Core::g_app_core->PrepareReschedule(); Core::g_app_core->PrepareReschedule();
g_reschedule = true; g_reschedule = true;
} }

View File

@ -21,12 +21,10 @@ namespace GPU {
Regs g_regs; Regs g_regs;
u32 g_cur_line = 0; ///< Current vertical screen line static u64 frame_ticks = 0; ///< 268MHz / 60 frames per second
u64 g_last_line_ticks = 0; ///< CPU tick count from last vertical screen line static u32 cur_line = 0; ///< Current vertical screen line
u64 g_last_frame_ticks = 0; ///< CPU tick count from last frame static u64 last_frame_ticks = 0; ///< CPU tick count from last frame
static u64 last_update_tick = 0; ///< CPU ticl count from last GPU update
static u32 kFrameCycles = 0; ///< 268MHz / 60 frames per second
static u32 kFrameTicks = 0; ///< Approximate number of instructions/frame
template <typename T> template <typename T>
inline void Read(T &var, const u32 raw_addr) { inline void Read(T &var, const u32 raw_addr) {
@ -34,7 +32,7 @@ inline void Read(T &var, const u32 raw_addr) {
u32 index = addr / 4; u32 index = addr / 4;
// Reads other than u32 are untested, so I'd rather have them abort than silently fail // Reads other than u32 are untested, so I'd rather have them abort than silently fail
if (index >= Regs::NumIds() || !std::is_same<T,u32>::value) { if (index >= Regs::NumIds() || !std::is_same<T, u32>::value) {
LOG_ERROR(HW_GPU, "unknown Read%lu @ 0x%08X", sizeof(var) * 8, addr); LOG_ERROR(HW_GPU, "unknown Read%lu @ 0x%08X", sizeof(var) * 8, addr);
return; return;
} }
@ -48,7 +46,7 @@ inline void Write(u32 addr, const T data) {
u32 index = addr / 4; u32 index = addr / 4;
// Writes other than u32 are untested, so I'd rather have them abort than silently fail // Writes other than u32 are untested, so I'd rather have them abort than silently fail
if (index >= Regs::NumIds() || !std::is_same<T,u32>::value) { if (index >= Regs::NumIds() || !std::is_same<T, u32>::value) {
LOG_ERROR(HW_GPU, "unknown Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, addr); LOG_ERROR(HW_GPU, "unknown Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, addr);
return; return;
} }
@ -179,7 +177,6 @@ template void Write<u8>(u32 addr, const u8 data);
/// Update hardware /// Update hardware
void Update() { void Update() {
auto& framebuffer_top = g_regs.framebuffer_config[0]; auto& framebuffer_top = g_regs.framebuffer_config[0];
u64 current_ticks = Core::g_app_core->GetTicks();
// Update the frame after a certain number of CPU ticks have elapsed. This assumes that the // Update the frame after a certain number of CPU ticks have elapsed. This assumes that the
// active frame in memory is always complete to render. There also may be issues with this // active frame in memory is always complete to render. There also may be issues with this
@ -189,9 +186,9 @@ void Update() {
// primitive homebrew relies on a vertical blank interrupt to happen inevitably (regardless of a // primitive homebrew relies on a vertical blank interrupt to happen inevitably (regardless of a
// threading reschedule). // threading reschedule).
if ((current_ticks - g_last_frame_ticks) > GPU::kFrameTicks) { if ((Core::g_app_core->GetTicks() - last_frame_ticks) > (GPU::frame_ticks)) {
VideoCore::g_renderer->SwapBuffers(); VideoCore::g_renderer->SwapBuffers();
g_last_frame_ticks = current_ticks; last_frame_ticks = Core::g_app_core->GetTicks();
} }
// Synchronize GPU on a thread reschedule: Because we cannot accurately predict a vertical // Synchronize GPU on a thread reschedule: Because we cannot accurately predict a vertical
@ -199,17 +196,20 @@ void Update() {
// accurately when this is signalled between thread switches. // accurately when this is signalled between thread switches.
if (HLE::g_reschedule) { if (HLE::g_reschedule) {
u64 current_ticks = Core::g_app_core->GetTicks();
u64 line_ticks = (GPU::frame_ticks / framebuffer_top.height) * 16;
// Synchronize line... //// Synchronize line...
if ((current_ticks - g_last_line_ticks) >= GPU::kFrameTicks / framebuffer_top.height) { if ((current_ticks - last_update_tick) >= line_ticks) {
GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PDC0); GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PDC0);
g_cur_line++; cur_line++;
g_last_line_ticks = current_ticks; last_update_tick += line_ticks;
} }
// Synchronize frame... // Synchronize frame...
if (g_cur_line >= framebuffer_top.height) { if (cur_line >= framebuffer_top.height) {
g_cur_line = 0; cur_line = 0;
VideoCore::g_renderer->SwapBuffers();
GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PDC1); GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PDC1);
} }
} }
@ -217,11 +217,9 @@ void Update() {
/// Initialize hardware /// Initialize hardware
void Init() { void Init() {
kFrameCycles = 268123480 / Settings::values.gpu_refresh_rate; frame_ticks = 268123480 / Settings::values.gpu_refresh_rate;
kFrameTicks = kFrameCycles / 3; cur_line = 0;
last_update_tick = last_frame_ticks = Core::g_app_core->GetTicks();
g_cur_line = 0;
g_last_frame_ticks = g_last_line_ticks = Core::g_app_core->GetTicks();
auto& framebuffer_top = g_regs.framebuffer_config[0]; auto& framebuffer_top = g_regs.framebuffer_config[0];
auto& framebuffer_sub = g_regs.framebuffer_config[1]; auto& framebuffer_sub = g_regs.framebuffer_config[1];