citra-emu
/
citra
Archived
1
0
Fork 0

Merge pull request #4599 from wwylele/bitfield-endian

Common: make BitField endianness-aware
This commit is contained in:
Weiyi Wang 2019-02-01 10:48:56 -05:00 committed by GitHub
commit f78512d6de
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 306 additions and 157 deletions

View File

@ -126,29 +126,29 @@ struct SourceConfiguration {
union { union {
u32_le dirty_raw; u32_le dirty_raw;
BitField<0, 1, u32_le> format_dirty; BitField<0, 1, u32> format_dirty;
BitField<1, 1, u32_le> mono_or_stereo_dirty; BitField<1, 1, u32> mono_or_stereo_dirty;
BitField<2, 1, u32_le> adpcm_coefficients_dirty; BitField<2, 1, u32> adpcm_coefficients_dirty;
/// Tends to be set when a looped buffer is queued. /// Tends to be set when a looped buffer is queued.
BitField<3, 1, u32_le> partial_embedded_buffer_dirty; BitField<3, 1, u32> partial_embedded_buffer_dirty;
BitField<4, 1, u32_le> partial_reset_flag; BitField<4, 1, u32> partial_reset_flag;
BitField<16, 1, u32_le> enable_dirty; BitField<16, 1, u32> enable_dirty;
BitField<17, 1, u32_le> interpolation_dirty; BitField<17, 1, u32> interpolation_dirty;
BitField<18, 1, u32_le> rate_multiplier_dirty; BitField<18, 1, u32> rate_multiplier_dirty;
BitField<19, 1, u32_le> buffer_queue_dirty; BitField<19, 1, u32> buffer_queue_dirty;
BitField<20, 1, u32_le> loop_related_dirty; BitField<20, 1, u32> loop_related_dirty;
/// Tends to also be set when embedded buffer is updated. /// Tends to also be set when embedded buffer is updated.
BitField<21, 1, u32_le> play_position_dirty; BitField<21, 1, u32> play_position_dirty;
BitField<22, 1, u32_le> filters_enabled_dirty; BitField<22, 1, u32> filters_enabled_dirty;
BitField<23, 1, u32_le> simple_filter_dirty; BitField<23, 1, u32> simple_filter_dirty;
BitField<24, 1, u32_le> biquad_filter_dirty; BitField<24, 1, u32> biquad_filter_dirty;
BitField<25, 1, u32_le> gain_0_dirty; BitField<25, 1, u32> gain_0_dirty;
BitField<26, 1, u32_le> gain_1_dirty; BitField<26, 1, u32> gain_1_dirty;
BitField<27, 1, u32_le> gain_2_dirty; BitField<27, 1, u32> gain_2_dirty;
BitField<28, 1, u32_le> sync_dirty; BitField<28, 1, u32> sync_dirty;
BitField<29, 1, u32_le> reset_flag; BitField<29, 1, u32> reset_flag;
BitField<30, 1, u32_le> embedded_buffer_dirty; BitField<30, 1, u32> embedded_buffer_dirty;
}; };
// Gain control // Gain control
@ -206,8 +206,8 @@ struct SourceConfiguration {
union { union {
u16_le filters_enabled; u16_le filters_enabled;
BitField<0, 1, u16_le> simple_filter_enabled; BitField<0, 1, u16> simple_filter_enabled;
BitField<1, 1, u16_le> biquad_filter_enabled; BitField<1, 1, u16> biquad_filter_enabled;
}; };
SimpleFilter simple_filter; SimpleFilter simple_filter;
@ -227,8 +227,8 @@ struct SourceConfiguration {
/// ADPCM Predictor (4 bits) and Scale (4 bits) /// ADPCM Predictor (4 bits) and Scale (4 bits)
union { union {
u16_le adpcm_ps; u16_le adpcm_ps;
BitField<0, 4, u16_le> adpcm_scale; BitField<0, 4, u16> adpcm_scale;
BitField<4, 4, u16_le> adpcm_predictor; BitField<4, 4, u16> adpcm_predictor;
}; };
/// ADPCM Historical Samples (y[n-1] and y[n-2]) /// ADPCM Historical Samples (y[n-1] and y[n-2])
@ -285,14 +285,14 @@ struct SourceConfiguration {
u16_le flags1_raw; u16_le flags1_raw;
BitField<0, 2, MonoOrStereo> mono_or_stereo; BitField<0, 2, MonoOrStereo> mono_or_stereo;
BitField<2, 2, Format> format; BitField<2, 2, Format> format;
BitField<5, 1, u16_le> fade_in; BitField<5, 1, u16> fade_in;
}; };
/// ADPCM Predictor (4 bit) and Scale (4 bit) /// ADPCM Predictor (4 bit) and Scale (4 bit)
union { union {
u16_le adpcm_ps; u16_le adpcm_ps;
BitField<0, 4, u16_le> adpcm_scale; BitField<0, 4, u16> adpcm_scale;
BitField<4, 4, u16_le> adpcm_predictor; BitField<4, 4, u16> adpcm_predictor;
}; };
/// ADPCM Historical Samples (y[n-1] and y[n-2]) /// ADPCM Historical Samples (y[n-1] and y[n-2])
@ -300,8 +300,8 @@ struct SourceConfiguration {
union { union {
u16_le flags2_raw; u16_le flags2_raw;
BitField<0, 1, u16_le> adpcm_dirty; ///< Has the ADPCM info above been changed? BitField<0, 1, u16> adpcm_dirty; ///< Has the ADPCM info above been changed?
BitField<1, 1, u16_le> is_looping; ///< Is this a looping buffer? BitField<1, 1, u16> is_looping; ///< Is this a looping buffer?
}; };
/// Buffer id of embedded buffer (used as a buffer id in SourceStatus to reference this /// Buffer id of embedded buffer (used as a buffer id in SourceStatus to reference this
@ -334,20 +334,20 @@ struct DspConfiguration {
union { union {
u32_le dirty_raw; u32_le dirty_raw;
BitField<8, 1, u32_le> mixer1_enabled_dirty; BitField<8, 1, u32> mixer1_enabled_dirty;
BitField<9, 1, u32_le> mixer2_enabled_dirty; BitField<9, 1, u32> mixer2_enabled_dirty;
BitField<10, 1, u32_le> delay_effect_0_dirty; BitField<10, 1, u32> delay_effect_0_dirty;
BitField<11, 1, u32_le> delay_effect_1_dirty; BitField<11, 1, u32> delay_effect_1_dirty;
BitField<12, 1, u32_le> reverb_effect_0_dirty; BitField<12, 1, u32> reverb_effect_0_dirty;
BitField<13, 1, u32_le> reverb_effect_1_dirty; BitField<13, 1, u32> reverb_effect_1_dirty;
BitField<16, 1, u32_le> volume_0_dirty; BitField<16, 1, u32> volume_0_dirty;
BitField<24, 1, u32_le> volume_1_dirty; BitField<24, 1, u32> volume_1_dirty;
BitField<25, 1, u32_le> volume_2_dirty; BitField<25, 1, u32> volume_2_dirty;
BitField<26, 1, u32_le> output_format_dirty; BitField<26, 1, u32> output_format_dirty;
BitField<27, 1, u32_le> limiter_enabled_dirty; BitField<27, 1, u32> limiter_enabled_dirty;
BitField<28, 1, u32_le> headphones_connected_dirty; BitField<28, 1, u32> headphones_connected_dirty;
}; };
/// The DSP has three intermediate audio mixers. This controls the volume level (0.0-1.0) for /// The DSP has three intermediate audio mixers. This controls the volume level (0.0-1.0) for
@ -384,9 +384,9 @@ struct DspConfiguration {
/// The DSP clears these each audio frame. /// The DSP clears these each audio frame.
union { union {
u16_le dirty_raw; u16_le dirty_raw;
BitField<0, 1, u16_le> enable_dirty; BitField<0, 1, u16> enable_dirty;
BitField<1, 1, u16_le> work_buffer_address_dirty; BitField<1, 1, u16> work_buffer_address_dirty;
BitField<2, 1, u16_le> other_dirty; ///< Set when anything else has been changed BitField<2, 1, u16> other_dirty; ///< Set when anything else has been changed
}; };
u16_le enable; u16_le enable;

View File

@ -34,6 +34,7 @@
#include <limits> #include <limits>
#include <type_traits> #include <type_traits>
#include "common/common_funcs.h" #include "common/common_funcs.h"
#include "common/swap.h"
/* /*
* Abstract bitfield class * Abstract bitfield class
@ -108,7 +109,7 @@
* symptoms. * symptoms.
*/ */
#pragma pack(1) #pragma pack(1)
template <std::size_t Position, std::size_t Bits, typename T> template <std::size_t Position, std::size_t Bits, typename T, typename EndianTag = LETag>
struct BitField { struct BitField {
private: private:
// UnderlyingType is T for non-enum types and the underlying type of T if // UnderlyingType is T for non-enum types and the underlying type of T if
@ -121,6 +122,8 @@ private:
// We store the value as the unsigned type to avoid undefined behaviour on value shifting // We store the value as the unsigned type to avoid undefined behaviour on value shifting
using StorageType = std::make_unsigned_t<UnderlyingType>; using StorageType = std::make_unsigned_t<UnderlyingType>;
using StorageTypeWithEndian = typename AddEndian<StorageType, EndianTag>::type;
public: public:
BitField& operator=(const BitField&) = default; BitField& operator=(const BitField&) = default;
@ -168,7 +171,7 @@ public:
} }
FORCE_INLINE void Assign(const T& value) { FORCE_INLINE void Assign(const T& value) {
storage = (storage & ~mask) | FormatValue(value); storage = (static_cast<StorageType>(storage) & ~mask) | FormatValue(value);
} }
FORCE_INLINE T Value() const { FORCE_INLINE T Value() const {
@ -180,7 +183,7 @@ public:
} }
private: private:
StorageType storage; StorageTypeWithEndian storage;
static_assert(bits + position <= 8 * sizeof(T), "Bitfield out of range"); static_assert(bits + position <= 8 * sizeof(T), "Bitfield out of range");
@ -196,3 +199,6 @@ private:
static_assert(std::is_trivially_copyable<BitField<0, 1, unsigned>>::value, static_assert(std::is_trivially_copyable<BitField<0, 1, unsigned>>::value,
"BitField must be trivially copyable"); "BitField must be trivially copyable");
#endif #endif
template <std::size_t Position, std::size_t Bits, typename T>
using BitFieldBE = BitField<Position, Bits, T, BETag>;

View File

@ -172,7 +172,7 @@ struct swap_struct_t {
using swapped_t = swap_struct_t; using swapped_t = swap_struct_t;
protected: protected:
T value = T(); T value;
static T swap(T v) { static T swap(T v) {
return F::swap(v); return F::swap(v);
@ -645,64 +645,116 @@ protected:
} }
}; };
struct SwapTag {}; // Use the different endianness from the system
struct KeepTag {}; // Use the same endianness as the system
template <typename T, typename Tag>
struct AddEndian;
// KeepTag specializations
template <typename T>
struct AddEndian<T, KeepTag> {
using type = T;
};
// SwapTag specializations
template <>
struct AddEndian<u8, SwapTag> {
using type = u8;
};
template <>
struct AddEndian<u16, SwapTag> {
using type = swap_struct_t<u16, swap_16_t<u16>>;
};
template <>
struct AddEndian<u32, SwapTag> {
using type = swap_struct_t<u32, swap_32_t<u32>>;
};
template <>
struct AddEndian<u64, SwapTag> {
using type = swap_struct_t<u64, swap_64_t<u64>>;
};
template <>
struct AddEndian<s8, SwapTag> {
using type = s8;
};
template <>
struct AddEndian<s16, SwapTag> {
using type = swap_struct_t<s16, swap_16_t<s16>>;
};
template <>
struct AddEndian<s32, SwapTag> {
using type = swap_struct_t<s32, swap_32_t<s32>>;
};
template <>
struct AddEndian<s64, SwapTag> {
using type = swap_struct_t<s64, swap_64_t<s64>>;
};
template <>
struct AddEndian<float, SwapTag> {
using type = swap_struct_t<float, swap_float_t<float>>;
};
template <>
struct AddEndian<double, SwapTag> {
using type = swap_struct_t<double, swap_double_t<double>>;
};
template <typename T>
struct AddEndian<T, SwapTag> {
static_assert(std::is_enum_v<T>);
using type = swap_enum_t<T>;
};
// Alias LETag/BETag as KeepTag/SwapTag depending on the system
#if COMMON_LITTLE_ENDIAN #if COMMON_LITTLE_ENDIAN
using u16_le = u16;
using u32_le = u32;
using u64_le = u64;
using s16_le = s16; using LETag = KeepTag;
using s32_le = s32; using BETag = SwapTag;
using s64_le = s64;
template <typename T>
using enum_le = std::enable_if_t<std::is_enum_v<T>, T>;
using float_le = float;
using double_le = double;
using u64_be = swap_struct_t<u64, swap_64_t<u64>>;
using s64_be = swap_struct_t<s64, swap_64_t<s64>>;
using u32_be = swap_struct_t<u32, swap_32_t<u32>>;
using s32_be = swap_struct_t<s32, swap_32_t<s32>>;
using u16_be = swap_struct_t<u16, swap_16_t<u16>>;
using s16_be = swap_struct_t<s16, swap_16_t<s16>>;
template <typename T>
using enum_be = swap_enum_t<T>;
using float_be = swap_struct_t<float, swap_float_t<float>>;
using double_be = swap_struct_t<double, swap_double_t<double>>;
#else #else
using u64_le = swap_struct_t<u64, swap_64_t<u64>>; using BETag = KeepTag;
using s64_le = swap_struct_t<s64, swap_64_t<s64>>; using LETag = SwapTag;
using u32_le = swap_struct_t<u32, swap_32_t<u32>>;
using s32_le = swap_struct_t<s32, swap_32_t<s32>>;
using u16_le = swap_struct_t<u16, swap_16_t<u16>>;
using s16_le = swap_struct_t<s16, swap_16_t<s16>>;
template <typename T>
using enum_le = swap_enum_t<T>;
using float_le = swap_struct_t<float, swap_float_t<float>>;
using double_le = swap_struct_t<double, swap_double_t<double>>;
using u16_be = u16;
using u32_be = u32;
using u64_be = u64;
using s16_be = s16;
using s32_be = s32;
using s64_be = s64;
template <typename T>
using enum_be = std::enable_if_t<std::is_enum_v<T>, T>;
using float_be = float;
using double_be = double;
#endif #endif
// Aliases for LE types
using u16_le = AddEndian<u16, LETag>::type;
using u32_le = AddEndian<u32, LETag>::type;
using u64_le = AddEndian<u64, LETag>::type;
using s16_le = AddEndian<s16, LETag>::type;
using s32_le = AddEndian<s32, LETag>::type;
using s64_le = AddEndian<s64, LETag>::type;
template <typename T>
using enum_le = std::enable_if_t<std::is_enum_v<T>, typename AddEndian<T, LETag>::type>;
using float_le = AddEndian<float, LETag>::type;
using double_le = AddEndian<double, LETag>::type;
// Aliases for BE types
using u16_be = AddEndian<u16, BETag>::type;
using u32_be = AddEndian<u32, BETag>::type;
using u64_be = AddEndian<u64, BETag>::type;
using s16_be = AddEndian<s16, BETag>::type;
using s32_be = AddEndian<s32, BETag>::type;
using s64_be = AddEndian<s64, BETag>::type;
template <typename T>
using enum_be = std::enable_if_t<std::is_enum_v<T>, typename AddEndian<T, BETag>::type>;
using float_be = AddEndian<float, BETag>::type;
using double_be = AddEndian<double, BETag>::type;

View File

@ -129,18 +129,18 @@ struct ExHeader_StorageInfo {
u64_le ext_save_data_id; u64_le ext_save_data_id;
// When using extended savedata access // When using extended savedata access
// Prefer the ID specified in the most significant bits // Prefer the ID specified in the most significant bits
BitField<40, 20, u64_le> extdata_id3; BitField<40, 20, u64> extdata_id3;
BitField<20, 20, u64_le> extdata_id4; BitField<20, 20, u64> extdata_id4;
BitField<0, 20, u64_le> extdata_id5; BitField<0, 20, u64> extdata_id5;
}; };
u8 system_save_data_id[8]; u8 system_save_data_id[8];
union { union {
u64_le storage_accessible_unique_ids; u64_le storage_accessible_unique_ids;
// When using extended savedata access // When using extended savedata access
// Prefer the ID specified in the most significant bits // Prefer the ID specified in the most significant bits
BitField<40, 20, u64_le> extdata_id0; BitField<40, 20, u64> extdata_id0;
BitField<20, 20, u64_le> extdata_id1; BitField<20, 20, u64> extdata_id1;
BitField<0, 20, u64_le> extdata_id2; BitField<0, 20, u64> extdata_id2;
}; };
u8 access_info[7]; u8 access_info[7];
u8 other_attributes; u8 other_attributes;

View File

@ -19,9 +19,9 @@ namespace Service::IR {
struct ExtraHIDResponse { struct ExtraHIDResponse {
union { union {
BitField<0, 8, u32_le> header; BitField<0, 8, u32> header;
BitField<8, 12, u32_le> c_stick_x; BitField<8, 12, u32> c_stick_x;
BitField<20, 12, u32_le> c_stick_y; BitField<20, 12, u32> c_stick_y;
} c_stick; } c_stick;
union { union {
BitField<0, 5, u8> battery_level; BitField<0, 5, u8> battery_level;

View File

@ -27,13 +27,13 @@ namespace Service::IR {
union PadState { union PadState {
u32_le hex{}; u32_le hex{};
BitField<14, 1, u32_le> zl; BitField<14, 1, u32> zl;
BitField<15, 1, u32_le> zr; BitField<15, 1, u32> zr;
BitField<24, 1, u32_le> c_stick_right; BitField<24, 1, u32> c_stick_right;
BitField<25, 1, u32_le> c_stick_left; BitField<25, 1, u32> c_stick_left;
BitField<26, 1, u32_le> c_stick_up; BitField<26, 1, u32> c_stick_up;
BitField<27, 1, u32_le> c_stick_down; BitField<27, 1, u32> c_stick_down;
}; };
/// Interface to "ir:rst" service /// Interface to "ir:rst" service

View File

@ -231,8 +231,8 @@ private:
*/ */
union SegmentTag { union SegmentTag {
u32_le raw; u32_le raw;
BitField<0, 4, u32_le> segment_index; BitField<0, 4, u32> segment_index;
BitField<4, 28, u32_le> offset_into_segment; BitField<4, 28, u32> offset_into_segment;
SegmentTag() = default; SegmentTag() = default;
explicit SegmentTag(u32 raw_) : raw(raw_) {} explicit SegmentTag(u32 raw_) : raw(raw_) {}
@ -270,8 +270,8 @@ private:
u16_le test_bit; // bit address into the name to test u16_le test_bit; // bit address into the name to test
union Child { union Child {
u16_le raw; u16_le raw;
BitField<0, 15, u16_le> next_index; BitField<0, 15, u16> next_index;
BitField<15, 1, u16_le> is_end; BitField<15, 1, u16> is_end;
} left, right; } left, right;
u16_le export_table_index; // index of an ExportNamedSymbolEntry u16_le export_table_index; // index of an ExportNamedSymbolEntry

View File

@ -45,20 +45,20 @@ struct ControllerState {
union { union {
u16_le hex; u16_le hex;
BitField<0, 1, u16_le> a; BitField<0, 1, u16> a;
BitField<1, 1, u16_le> b; BitField<1, 1, u16> b;
BitField<2, 1, u16_le> select; BitField<2, 1, u16> select;
BitField<3, 1, u16_le> start; BitField<3, 1, u16> start;
BitField<4, 1, u16_le> right; BitField<4, 1, u16> right;
BitField<5, 1, u16_le> left; BitField<5, 1, u16> left;
BitField<6, 1, u16_le> up; BitField<6, 1, u16> up;
BitField<7, 1, u16_le> down; BitField<7, 1, u16> down;
BitField<8, 1, u16_le> r; BitField<8, 1, u16> r;
BitField<9, 1, u16_le> l; BitField<9, 1, u16> l;
BitField<10, 1, u16_le> x; BitField<10, 1, u16> x;
BitField<11, 1, u16_le> y; BitField<11, 1, u16> y;
BitField<12, 1, u16_le> debug; BitField<12, 1, u16> debug;
BitField<13, 1, u16_le> gpio14; BitField<13, 1, u16> gpio14;
// Bits 14-15 are currently unused // Bits 14-15 are currently unused
}; };
s16_le circle_pad_x; s16_le circle_pad_x;
@ -96,12 +96,12 @@ struct ControllerState {
union { union {
u32_le hex; u32_le hex;
BitField<0, 5, u32_le> battery_level; BitField<0, 5, u32> battery_level;
BitField<5, 1, u32_le> zl_not_held; BitField<5, 1, u32> zl_not_held;
BitField<6, 1, u32_le> zr_not_held; BitField<6, 1, u32> zr_not_held;
BitField<7, 1, u32_le> r_not_held; BitField<7, 1, u32> r_not_held;
BitField<8, 12, u32_le> c_stick_x; BitField<8, 12, u32> c_stick_x;
BitField<20, 12, u32_le> c_stick_y; BitField<20, 12, u32> c_stick_y;
}; };
} extra_hid_response; } extra_hid_response;
}; };

View File

@ -141,22 +141,22 @@ struct PadData {
// The following union isn't trivially copyable but we don't use this input anyway. // The following union isn't trivially copyable but we don't use this input anyway.
// union DigitalButton { // union DigitalButton {
// u16_le button; // u16_le button;
// BitField<0, 1, u16_le> button_1; // Share // BitField<0, 1, u16> button_1; // Share
// BitField<1, 1, u16_le> button_2; // L3 // BitField<1, 1, u16> button_2; // L3
// BitField<2, 1, u16_le> button_3; // R3 // BitField<2, 1, u16> button_3; // R3
// BitField<3, 1, u16_le> button_4; // Options // BitField<3, 1, u16> button_4; // Options
// BitField<4, 1, u16_le> button_5; // Up // BitField<4, 1, u16> button_5; // Up
// BitField<5, 1, u16_le> button_6; // Right // BitField<5, 1, u16> button_6; // Right
// BitField<6, 1, u16_le> button_7; // Down // BitField<6, 1, u16> button_7; // Down
// BitField<7, 1, u16_le> button_8; // Left // BitField<7, 1, u16> button_8; // Left
// BitField<8, 1, u16_le> button_9; // L2 // BitField<8, 1, u16> button_9; // L2
// BitField<9, 1, u16_le> button_10; // R2 // BitField<9, 1, u16> button_10; // R2
// BitField<10, 1, u16_le> button_11; // L1 // BitField<10, 1, u16> button_11; // L1
// BitField<11, 1, u16_le> button_12; // R1 // BitField<11, 1, u16> button_12; // R1
// BitField<12, 1, u16_le> button_13; // Triangle // BitField<12, 1, u16> button_13; // Triangle
// BitField<13, 1, u16_le> button_14; // Circle // BitField<13, 1, u16> button_14; // Circle
// BitField<14, 1, u16_le> button_15; // Cross // BitField<14, 1, u16> button_15; // Cross
// BitField<15, 1, u16_le> button_16; // Square // BitField<15, 1, u16> button_16; // Square
// } digital_button; // } digital_button;
u8 home; u8 home;

View File

@ -1,4 +1,5 @@
add_executable(tests add_executable(tests
common/bit_field.cpp
common/param_package.cpp common/param_package.cpp
core/arm/arm_test_common.cpp core/arm/arm_test_common.cpp
core/arm/arm_test_common.h core/arm/arm_test_common.h

View File

@ -0,0 +1,90 @@
// Copyright 2019 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <array>
#include <cstring>
#include <type_traits>
#include <catch2/catch.hpp>
#include "common/bit_field.h"
TEST_CASE("BitField", "[common]") {
enum class TestEnum : u32 {
A = 0b10111101,
B = 0b10101110,
C = 0b00001111,
};
union LEBitField {
u32_le raw;
BitField<0, 6, u32> a;
BitField<6, 4, s32> b;
BitField<10, 8, TestEnum> c;
BitField<18, 14, u32> d;
} le_bitfield;
union BEBitField {
u32_be raw;
BitFieldBE<0, 6, u32> a;
BitFieldBE<6, 4, s32> b;
BitFieldBE<10, 8, TestEnum> c;
BitFieldBE<18, 14, u32> d;
} be_bitfield;
static_assert(sizeof(LEBitField) == sizeof(u32));
static_assert(sizeof(BEBitField) == sizeof(u32));
static_assert(std::is_trivially_copyable_v<LEBitField>);
static_assert(std::is_trivially_copyable_v<BEBitField>);
std::array<u8, 4> raw{{
0b01101100,
0b11110110,
0b10111010,
0b11101100,
}};
std::memcpy(&le_bitfield, &raw, sizeof(raw));
std::memcpy(&be_bitfield, &raw, sizeof(raw));
// bit fields: 11101100101110'10111101'1001'101100
REQUIRE(le_bitfield.raw == 0b11101100'10111010'11110110'01101100);
REQUIRE(le_bitfield.a == 0b101100);
REQUIRE(le_bitfield.b == -7); // 1001 as two's complement
REQUIRE(le_bitfield.c == TestEnum::A);
REQUIRE(le_bitfield.d == 0b11101100101110);
le_bitfield.a.Assign(0b000111);
le_bitfield.b.Assign(-1);
le_bitfield.c.Assign(TestEnum::C);
le_bitfield.d.Assign(0b01010101010101);
std::memcpy(&raw, &le_bitfield, sizeof(raw));
// bit fields: 01010101010101'00001111'1111'000111
REQUIRE(le_bitfield.raw == 0b01010101'01010100'00111111'11000111);
REQUIRE(raw == std::array<u8, 4>{{
0b11000111,
0b00111111,
0b01010100,
0b01010101,
}});
// bit fields: 01101100111101'10101110'1011'101100
REQUIRE(be_bitfield.raw == 0b01101100'11110110'10111010'11101100);
REQUIRE(be_bitfield.a == 0b101100);
REQUIRE(be_bitfield.b == -5); // 1011 as two's complement
REQUIRE(be_bitfield.c == TestEnum::B);
REQUIRE(be_bitfield.d == 0b01101100111101);
be_bitfield.a.Assign(0b000111);
be_bitfield.b.Assign(-1);
be_bitfield.c.Assign(TestEnum::C);
be_bitfield.d.Assign(0b01010101010101);
std::memcpy(&raw, &be_bitfield, sizeof(raw));
// bit fields: 01010101010101'00001111'1111'000111
REQUIRE(be_bitfield.raw == 0b01010101'01010100'00111111'11000111);
REQUIRE(raw == std::array<u8, 4>{{
0b01010101,
0b01010100,
0b00111111,
0b11000111,
}});
}