yuzu-emu
/
yuzu-android
Archived
1
0
Fork 0

Merge pull request #241 from linkmauve/better-loader

Improve the loader a bit
This commit is contained in:
bunnei 2015-01-20 12:55:28 -05:00
commit 205170fa62
8 changed files with 364 additions and 372 deletions

View File

@ -13,11 +13,9 @@
#include "3dsx.h"
namespace Loader {
/**
/**
* File layout:
* - File header
* - Code, rodata and data relocation table headers
@ -46,7 +44,6 @@ enum THREEDSX_Error {
static const u32 RELOCBUFSIZE = 512;
// File header
static const u32 THREEDSX_MAGIC = 0x58534433; // '3DSX'
#pragma pack(1)
struct THREEDSX_Header
{
@ -64,9 +61,9 @@ struct THREEDSX_Header
struct THREEDSX_RelocHdr
{
// # of absolute relocations (that is, fix address to post-relocation memory layout)
u32 cross_segment_absolute;
u32 cross_segment_absolute;
// # of cross-segment relative relocations (that is, 32bit signed offsets that need to be patched)
u32 cross_segment_relative;
u32 cross_segment_relative;
// more?
// Relocations are written in this order:
@ -88,12 +85,7 @@ struct THREEloadinfo
u32 seg_sizes[3];
};
class THREEDSXReader {
public:
static int Load3DSXFile(const std::string& filename, u32 base_addr);
};
static u32 TranslateAddr(u32 addr, THREEloadinfo *loadinfo, u32* offsets)
static u32 TranslateAddr(u32 addr, const THREEloadinfo *loadinfo, u32* offsets)
{
if (addr < offsets[0])
return loadinfo->seg_addrs[0] + addr;
@ -102,12 +94,14 @@ static u32 TranslateAddr(u32 addr, THREEloadinfo *loadinfo, u32* offsets)
return loadinfo->seg_addrs[2] + addr - offsets[1];
}
int THREEDSXReader::Load3DSXFile(const std::string& filename, u32 base_addr)
static THREEDSX_Error Load3DSXFile(FileUtil::IOFile& file, u32 base_addr)
{
FileUtil::IOFile file(filename, "rb");
if (!file.IsOpen()) {
if (!file.IsOpen())
return ERROR_FILE;
}
// Reset read pointer in case this file has been read before.
file.Seek(0, SEEK_SET);
THREEDSX_Header hdr;
if (file.ReadBytes(&hdr, sizeof(hdr)) != sizeof(hdr))
return ERROR_READ;
@ -136,8 +130,9 @@ int THREEDSXReader::Load3DSXFile(const std::string& filename, u32 base_addr)
// Read the relocation headers
u32* relocs = (u32*)(loadinfo.seg_ptrs[2] + hdr.data_seg_size);
for (u32 current_segment = 0; current_segment < 3; current_segment++) {
if (file.ReadBytes(&relocs[current_segment*n_reloc_tables], n_reloc_tables * 4) != n_reloc_tables * 4)
for (unsigned current_segment : {0, 1, 2}) {
size_t size = n_reloc_tables * 4;
if (file.ReadBytes(&relocs[current_segment * n_reloc_tables], size) != size)
return ERROR_READ;
}
@ -153,9 +148,9 @@ int THREEDSXReader::Load3DSXFile(const std::string& filename, u32 base_addr)
memset((char*)loadinfo.seg_ptrs[2] + hdr.data_seg_size - hdr.bss_size, 0, hdr.bss_size);
// Relocate the segments
for (u32 current_segment = 0; current_segment < 3; current_segment++) {
for (u32 current_segment_reloc_table = 0; current_segment_reloc_table < n_reloc_tables; current_segment_reloc_table++) {
u32 n_relocs = relocs[current_segment*n_reloc_tables + current_segment_reloc_table];
for (unsigned current_segment : {0, 1, 2}) {
for (unsigned current_segment_reloc_table = 0; current_segment_reloc_table < n_reloc_tables; current_segment_reloc_table++) {
u32 n_relocs = relocs[current_segment * n_reloc_tables + current_segment_reloc_table];
if (current_segment_reloc_table >= 2) {
// We are not using this table - ignore it because we don't know what it dose
file.Seek(n_relocs*sizeof(THREEDSX_Reloc), SEEK_CUR);
@ -164,29 +159,35 @@ int THREEDSXReader::Load3DSXFile(const std::string& filename, u32 base_addr)
static THREEDSX_Reloc reloc_table[RELOCBUFSIZE];
u32* pos = (u32*)loadinfo.seg_ptrs[current_segment];
u32* end_pos = pos + (loadinfo.seg_sizes[current_segment] / 4);
const u32* end_pos = pos + (loadinfo.seg_sizes[current_segment] / 4);
while (n_relocs) {
u32 remaining = std::min(RELOCBUFSIZE, n_relocs);
n_relocs -= remaining;
if (file.ReadBytes(reloc_table, remaining*sizeof(THREEDSX_Reloc)) != remaining*sizeof(THREEDSX_Reloc))
if (file.ReadBytes(reloc_table, remaining * sizeof(THREEDSX_Reloc)) != remaining * sizeof(THREEDSX_Reloc))
return ERROR_READ;
for (u32 current_inprogress = 0; current_inprogress < remaining && pos < end_pos; current_inprogress++) {
LOG_TRACE(Loader, "(t=%d,skip=%u,patch=%u)\n",
current_segment_reloc_table, (u32)reloc_table[current_inprogress].skip, (u32)reloc_table[current_inprogress].patch);
pos += reloc_table[current_inprogress].skip;
s32 num_patches = reloc_table[current_inprogress].patch;
for (unsigned current_inprogress = 0; current_inprogress < remaining && pos < end_pos; current_inprogress++) {
const auto& table = reloc_table[current_inprogress];
LOG_TRACE(Loader, "(t=%d,skip=%u,patch=%u)\n", current_segment_reloc_table,
(u32)table.skip, (u32)table.patch);
pos += table.skip;
s32 num_patches = table.patch;
while (0 < num_patches && pos < end_pos) {
u32 in_addr = (char*)pos - (char*)&all_mem[0];
u32 addr = TranslateAddr(*pos, &loadinfo, offsets);
LOG_TRACE(Loader, "Patching %08X <-- rel(%08X,%d) (%08X)\n",
base_addr + in_addr, addr, current_segment_reloc_table, *pos);
base_addr + in_addr, addr, current_segment_reloc_table, *pos);
switch (current_segment_reloc_table) {
case 0: *pos = (addr); break;
case 1: *pos = (addr - in_addr); break;
default: break; //this should never happen
case 0:
*pos = (addr);
break;
case 1:
*pos = (addr - in_addr);
break;
default:
break; //this should never happen
}
pos++;
num_patches--;
@ -207,28 +208,30 @@ int THREEDSXReader::Load3DSXFile(const std::string& filename, u32 base_addr)
return ERROR_NONE;
}
/// AppLoader_DSX constructor
AppLoader_THREEDSX::AppLoader_THREEDSX(const std::string& filename) : filename(filename) {
}
FileType AppLoader_THREEDSX::IdentifyType(FileUtil::IOFile& file) {
u32 magic;
file.Seek(0, SEEK_SET);
if (1 != file.ReadArray<u32>(&magic, 1))
return FileType::Error;
/// AppLoader_DSX destructor
AppLoader_THREEDSX::~AppLoader_THREEDSX() {
}
if (MakeMagic('3', 'D', 'S', 'X') == magic)
return FileType::THREEDSX;
/**
* Loads a 3DSX file
* @return Success on success, otherwise Error
*/
ResultStatus AppLoader_THREEDSX::Load() {
LOG_INFO(Loader, "Loading 3DSX file %s...", filename.c_str());
FileUtil::IOFile file(filename, "rb");
if (file.IsOpen()) {
THREEDSXReader::Load3DSXFile(filename, 0x00100000);
Kernel::LoadExec(0x00100000);
} else {
return ResultStatus::Error;
}
return ResultStatus::Success;
}
return FileType::Error;
}
ResultStatus AppLoader_THREEDSX::Load() {
if (is_loaded)
return ResultStatus::ErrorAlreadyLoaded;
if (!file->IsOpen())
return ResultStatus::Error;
Load3DSXFile(*file, 0x00100000);
Kernel::LoadExec(0x00100000);
is_loaded = true;
return ResultStatus::Success;
}
} // namespace Loader

View File

@ -15,18 +15,20 @@ namespace Loader {
/// Loads an 3DSX file
class AppLoader_THREEDSX final : public AppLoader {
public:
AppLoader_THREEDSX(const std::string& filename);
~AppLoader_THREEDSX() override;
AppLoader_THREEDSX(std::unique_ptr<FileUtil::IOFile>&& file) : AppLoader(std::move(file)) { }
/**
* Returns the type of the file
* @param file FileUtil::IOFile open file
* @return FileType found, or FileType::Error if this loader doesn't know it
*/
static FileType IdentifyType(FileUtil::IOFile& file);
/**
* Load the bootable file
* @return ResultStatus result of function
*/
ResultStatus Load() override;
private:
std::string filename;
bool is_loaded;
};
} // namespace Loader

View File

@ -18,25 +18,25 @@
// File type
enum ElfType {
ET_NONE = 0,
ET_REL = 1,
ET_EXEC = 2,
ET_DYN = 3,
ET_CORE = 4,
ET_NONE = 0,
ET_REL = 1,
ET_EXEC = 2,
ET_DYN = 3,
ET_CORE = 4,
ET_LOPROC = 0xFF00,
ET_HIPROC = 0xFFFF,
};
// Machine/Architecture
enum ElfMachine {
EM_NONE = 0,
EM_M32 = 1,
EM_NONE = 0,
EM_M32 = 1,
EM_SPARC = 2,
EM_386 = 3,
EM_68K = 4,
EM_88K = 5,
EM_860 = 7,
EM_MIPS = 8
EM_386 = 3,
EM_68K = 4,
EM_88K = 5,
EM_860 = 7,
EM_MIPS = 8
};
// File version
@ -54,12 +54,6 @@ enum ElfMachine {
#define EI_PAD 7
#define EI_NIDENT 16
// Magic number
#define ELFMAG0 0x7F
#define ELFMAG1 'E'
#define ELFMAG2 'L'
#define ELFMAG3 'F'
// Sections constants
// Section types
@ -83,10 +77,10 @@ enum ElfMachine {
// Section flags
enum ElfSectionFlags
{
SHF_WRITE = 0x1,
SHF_ALLOC = 0x2,
SHF_WRITE = 0x1,
SHF_ALLOC = 0x2,
SHF_EXECINSTR = 0x4,
SHF_MASKPROC = 0xF0000000,
SHF_MASKPROC = 0xF0000000,
};
// Segment types
@ -100,11 +94,11 @@ enum ElfSectionFlags
#define PT_LOPROC 0x70000000
#define PT_HIPROC 0x7FFFFFFF
typedef unsigned int Elf32_Addr;
typedef unsigned int Elf32_Addr;
typedef unsigned short Elf32_Half;
typedef unsigned int Elf32_Off;
typedef signed int Elf32_Sword;
typedef unsigned int Elf32_Word;
typedef unsigned int Elf32_Off;
typedef signed int Elf32_Sword;
typedef unsigned int Elf32_Word;
////////////////////////////////////////////////////////////////////////////////////////////////////
// ELF file header
@ -188,7 +182,6 @@ private:
public:
ElfReader(void *ptr);
~ElfReader() { }
u32 Read32(int off) const { return base32[off >> 2]; }
@ -197,7 +190,7 @@ public:
ElfMachine GetMachine() const { return (ElfMachine)(header->e_machine); }
u32 GetEntryPoint() const { return entryPoint; }
u32 GetFlags() const { return (u32)(header->e_flags); }
bool LoadInto(u32 vaddr);
void LoadInto(u32 vaddr);
bool LoadSymbols();
int GetNumSegments() const { return (int)(header->e_phnum); }
@ -229,11 +222,11 @@ public:
ElfReader::ElfReader(void *ptr) {
base = (char*)ptr;
base32 = (u32 *)ptr;
base32 = (u32*)ptr;
header = (Elf32_Ehdr*)ptr;
segments = (Elf32_Phdr *)(base + header->e_phoff);
sections = (Elf32_Shdr *)(base + header->e_shoff);
segments = (Elf32_Phdr*)(base + header->e_phoff);
sections = (Elf32_Shdr*)(base + header->e_shoff);
entryPoint = header->e_entry;
@ -245,7 +238,7 @@ const char *ElfReader::GetSectionName(int section) const {
return nullptr;
int name_offset = sections[section].sh_name;
char *ptr = (char*)GetSectionDataPtr(header->e_shstrndx);
const char* ptr = (char*)GetSectionDataPtr(header->e_shstrndx);
if (ptr)
return ptr + name_offset;
@ -253,7 +246,7 @@ const char *ElfReader::GetSectionName(int section) const {
return nullptr;
}
bool ElfReader::LoadInto(u32 vaddr) {
void ElfReader::LoadInto(u32 vaddr) {
LOG_DEBUG(Loader, "String section: %i", header->e_shstrndx);
// Should we relocate?
@ -271,20 +264,19 @@ bool ElfReader::LoadInto(u32 vaddr) {
u32 segment_addr[32];
u32 base_addr = relocate ? vaddr : 0;
for (int i = 0; i < header->e_phnum; i++) {
Elf32_Phdr *p = segments + i;
for (unsigned i = 0; i < header->e_phnum; i++) {
Elf32_Phdr* p = segments + i;
LOG_DEBUG(Loader, "Type: %i Vaddr: %08x Filesz: %i Memsz: %i ", p->p_type, p->p_vaddr,
p->p_filesz, p->p_memsz);
p->p_filesz, p->p_memsz);
if (p->p_type == PT_LOAD) {
segment_addr[i] = base_addr + p->p_vaddr;
memcpy(Memory::GetPointer(segment_addr[i]), GetSegmentPtr(i), p->p_filesz);
LOG_DEBUG(Loader, "Loadable Segment Copied to %08x, size %08x", segment_addr[i],
p->p_memsz);
p->p_memsz);
}
}
LOG_DEBUG(Loader, "Done loading.");
return true;
}
SectionID ElfReader::GetSectionByName(const char *name, int firstSection) const {
@ -305,9 +297,9 @@ bool ElfReader::LoadSymbols() {
const char *stringBase = (const char *)GetSectionDataPtr(stringSection);
//We have a symbol table!
Elf32_Sym *symtab = (Elf32_Sym *)(GetSectionDataPtr(sec));
Elf32_Sym* symtab = (Elf32_Sym *)(GetSectionDataPtr(sec));
int numSymbols = sections[sec].sh_size / sizeof(Elf32_Sym);
for (int sym = 0; sym < numSymbols; sym++) {
for (unsigned sym = 0; sym < numSymbols; sym++) {
int size = symtab[sym].st_size;
if (size == 0)
continue;
@ -330,40 +322,38 @@ bool ElfReader::LoadSymbols() {
namespace Loader {
/// AppLoader_ELF constructor
AppLoader_ELF::AppLoader_ELF(const std::string& filename) : is_loaded(false) {
this->filename = filename;
FileType AppLoader_ELF::IdentifyType(FileUtil::IOFile& file) {
u32 magic;
file.Seek(0, SEEK_SET);
if (1 != file.ReadArray<u32>(&magic, 1))
return FileType::Error;
if (MakeMagic('\x7f', 'E', 'L', 'F') == magic)
return FileType::ELF;
return FileType::Error;
}
/// AppLoader_NCCH destructor
AppLoader_ELF::~AppLoader_ELF() {
}
/**
* Loads an NCCH file (e.g. from a CCI, or the first NCCH in a CXI)
* @param error_string Pointer to string to put error message if an error has occurred
* @todo Move NCSD parsing out of here and create a separate function for loading these
* @return True on success, otherwise false
*/
ResultStatus AppLoader_ELF::Load() {
LOG_INFO(Loader, "Loading ELF file %s...", filename.c_str());
if (is_loaded)
return ResultStatus::ErrorAlreadyLoaded;
FileUtil::IOFile file(filename, "rb");
if (file.IsOpen()) {
u32 size = (u32)file.GetSize();
std::unique_ptr<u8[]> buffer(new u8[size]);
file.ReadBytes(&buffer[0], size);
ElfReader elf_reader(&buffer[0]);
elf_reader.LoadInto(0x00100000);
Kernel::LoadExec(elf_reader.GetEntryPoint());
} else {
if (!file->IsOpen())
return ResultStatus::Error;
}
// Reset read pointer in case this file has been read before.
file->Seek(0, SEEK_SET);
u32 size = static_cast<u32>(file->GetSize());
std::unique_ptr<u8[]> buffer(new u8[size]);
if (file->ReadBytes(&buffer[0], size) != size)
return ResultStatus::Error;
ElfReader elf_reader(&buffer[0]);
elf_reader.LoadInto(0x00100000);
Kernel::LoadExec(elf_reader.GetEntryPoint());
is_loaded = true;
return ResultStatus::Success;
}

View File

@ -15,18 +15,20 @@ namespace Loader {
/// Loads an ELF/AXF file
class AppLoader_ELF final : public AppLoader {
public:
AppLoader_ELF(const std::string& filename);
~AppLoader_ELF() override;
AppLoader_ELF(std::unique_ptr<FileUtil::IOFile>&& file) : AppLoader(std::move(file)) { }
/**
* Returns the type of the file
* @param file FileUtil::IOFile open file
* @return FileType found, or FileType::Error if this loader doesn't know it
*/
static FileType IdentifyType(FileUtil::IOFile& file);
/**
* Load the bootable file
* @return ResultStatus result of function
*/
ResultStatus Load() override;
private:
std::string filename;
bool is_loaded;
};
} // namespace Loader

View File

@ -19,11 +19,32 @@ namespace Loader {
/**
* Identifies the type of a bootable file
* @param filename String filename of bootable file
* @todo (ShizZy) this function sucks... make it actually check file contents etc.
* @param file open file
* @return FileType of file
*/
FileType IdentifyFile(const std::string &filename) {
static FileType IdentifyFile(FileUtil::IOFile& file) {
FileType type;
#define CHECK_TYPE(loader) \
type = AppLoader_##loader::IdentifyType(file); \
if (FileType::Error != type) \
return type;
CHECK_TYPE(THREEDSX)
CHECK_TYPE(ELF)
CHECK_TYPE(NCCH)
#undef CHECK_TYPE
return FileType::Unknown;
}
/**
* Guess the type of a bootable file from its extension
* @param filename String filename of bootable file
* @return FileType of file
*/
static FileType GuessFromFilename(const std::string& filename) {
if (filename.size() == 0) {
LOG_ERROR(Loader, "invalid filename %s", filename.c_str());
return FileType::Error;
@ -34,47 +55,74 @@ FileType IdentifyFile(const std::string &filename) {
return FileType::Unknown;
std::string extension = Common::ToLower(filename.substr(extension_loc));
// TODO(bunnei): Do actual filetype checking instead of naively checking the extension
if (extension == ".elf") {
if (extension == ".elf")
return FileType::ELF;
} else if (extension == ".axf") {
else if (extension == ".axf")
return FileType::ELF;
} else if (extension == ".cxi") {
else if (extension == ".cxi")
return FileType::CXI;
} else if (extension == ".cci") {
else if (extension == ".cci")
return FileType::CCI;
} else if (extension == ".bin") {
else if (extension == ".bin")
return FileType::BIN;
} else if (extension == ".3ds") {
else if (extension == ".3ds")
return FileType::CCI;
} else if (extension == ".3dsx") {
else if (extension == ".3dsx")
return FileType::THREEDSX;
}
return FileType::Unknown;
}
/**
* Identifies and loads a bootable file
* @param filename String filename of bootable file
* @return ResultStatus result of function
*/
ResultStatus LoadFile(const std::string& filename) {
LOG_INFO(Loader, "Loading file %s...", filename.c_str());
static const char* GetFileTypeString(FileType type) {
switch (type) {
case FileType::CCI:
return "NCSD";
case FileType::CXI:
return "NCCH";
case FileType::ELF:
return "ELF";
case FileType::THREEDSX:
return "3DSX";
case FileType::BIN:
return "raw";
case FileType::Error:
case FileType::Unknown:
return "unknown";
}
}
switch (IdentifyFile(filename)) {
ResultStatus LoadFile(const std::string& filename) {
std::unique_ptr<FileUtil::IOFile> file(new FileUtil::IOFile(filename, "rb"));
if (!file->IsOpen()) {
LOG_ERROR(Loader, "Failed to load file %s", filename.c_str());
return ResultStatus::Error;
}
FileType type = IdentifyFile(*file);
FileType filename_type = GuessFromFilename(filename);
if (type != filename_type) {
LOG_WARNING(Loader, "File %s has a different type than its extension.", filename.c_str());
if (FileType::Unknown == type)
type = filename_type;
}
LOG_INFO(Loader, "Loading file %s as %s...", filename.c_str(), GetFileTypeString(type));
switch (type) {
//3DSX file format...
case FileType::THREEDSX:
return AppLoader_THREEDSX(filename).Load();
return AppLoader_THREEDSX(std::move(file)).Load();
// Standard ELF file format...
case FileType::ELF:
return AppLoader_ELF(filename).Load();
return AppLoader_ELF(std::move(file)).Load();
// NCCH/NCSD container formats...
case FileType::CXI:
case FileType::CCI: {
AppLoader_NCCH app_loader(filename);
case FileType::CCI:
{
AppLoader_NCCH app_loader(std::move(file));
// Load application and RomFS
if (ResultStatus::Success == app_loader.Load()) {
@ -88,16 +136,11 @@ ResultStatus LoadFile(const std::string& filename) {
// Raw BIN file format...
case FileType::BIN:
{
LOG_INFO(Loader, "Loading BIN file %s...", filename.c_str());
FileUtil::IOFile file(filename, "rb");
if (file.IsOpen()) {
file.ReadBytes(Memory::GetPointer(Memory::EXEFS_CODE_VADDR), (size_t)file.GetSize());
Kernel::LoadExec(Memory::EXEFS_CODE_VADDR);
} else {
size_t size = (size_t)file->GetSize();
if (file->ReadBytes(Memory::GetPointer(Memory::EXEFS_CODE_VADDR), size) != size)
return ResultStatus::Error;
}
Kernel::LoadExec(Memory::EXEFS_CODE_VADDR);
return ResultStatus::Success;
}
@ -106,10 +149,11 @@ ResultStatus LoadFile(const std::string& filename) {
// IdentifyFile could know identify file type...
case FileType::Unknown:
default:
{
LOG_CRITICAL(Loader, "File %s is of unknown type.");
return ResultStatus::ErrorInvalidFormat;
}
}
return ResultStatus::Error;
}

View File

@ -7,6 +7,7 @@
#include <vector>
#include "common/common.h"
#include "common/file_util.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
// Loader namespace
@ -37,10 +38,14 @@ enum class ResultStatus {
ErrorMemoryAllocationFailed,
};
static u32 MakeMagic(char a, char b, char c, char d) {
return a | b << 8 | c << 16 | d << 24;
}
/// Interface for loading an application
class AppLoader : NonCopyable {
public:
AppLoader() { }
AppLoader(std::unique_ptr<FileUtil::IOFile>&& file) : file(std::move(file)) { }
virtual ~AppLoader() { }
/**
@ -93,14 +98,11 @@ public:
virtual ResultStatus ReadRomFS(std::vector<u8>& buffer) const {
return ResultStatus::ErrorNotImplemented;
}
};
/**
* Identifies the type of a bootable file
* @param filename String filename of bootable file
* @return FileType of file
*/
FileType IdentifyFile(const std::string &filename);
protected:
std::unique_ptr<FileUtil::IOFile> file;
bool is_loaded = false;
};
/**
* Identifies and loads a bootable file

View File

@ -4,8 +4,6 @@
#include <memory>
#include "common/file_util.h"
#include "core/loader/ncch.h"
#include "core/hle/kernel/kernel.h"
#include "core/mem_map.h"
@ -15,8 +13,8 @@
namespace Loader {
static const int kMaxSections = 8; ///< Maximum number of sections (files) in an ExeFs
static const int kBlockSize = 0x200; ///< Size of ExeFS blocks (in bytes)
static const int kMaxSections = 8; ///< Maximum number of sections (files) in an ExeFs
static const int kBlockSize = 0x200; ///< Size of ExeFS blocks (in bytes)
/**
* Get the decompressed size of an LZSS compressed ExeFS file
@ -24,7 +22,7 @@ static const int kBlockSize = 0x200; ///< Size of ExeFS blocks (in bytes)
* @param size Size of compressed buffer
* @return Size of decompressed buffer
*/
static u32 LZSS_GetDecompressedSize(u8* buffer, u32 size) {
static u32 LZSS_GetDecompressedSize(const u8* buffer, u32 size) {
u32 offset_size = *(u32*)(buffer + size - 4);
return offset_size + size;
}
@ -37,9 +35,9 @@ static u32 LZSS_GetDecompressedSize(u8* buffer, u32 size) {
* @param decompressed_size Size of decompressed buffer
* @return True on success, otherwise false
*/
static bool LZSS_Decompress(u8* compressed, u32 compressed_size, u8* decompressed, u32 decompressed_size) {
u8* footer = compressed + compressed_size - 8;
u32 buffer_top_and_bottom = *(u32*)footer;
static bool LZSS_Decompress(const u8* compressed, u32 compressed_size, u8* decompressed, u32 decompressed_size) {
const u8* footer = compressed + compressed_size - 8;
u32 buffer_top_and_bottom = *reinterpret_cast<const u32*>(footer);
u32 out = decompressed_size;
u32 index = compressed_size - ((buffer_top_and_bottom >> 24) & 0xFF);
u32 stop_index = compressed_size - (buffer_top_and_bottom & 0xFFFFFF);
@ -47,22 +45,21 @@ static bool LZSS_Decompress(u8* compressed, u32 compressed_size, u8* decompresse
memset(decompressed, 0, decompressed_size);
memcpy(decompressed, compressed, compressed_size);
while(index > stop_index) {
while (index > stop_index) {
u8 control = compressed[--index];
for(u32 i = 0; i < 8; i++) {
if(index <= stop_index)
for (unsigned i = 0; i < 8; i++) {
if (index <= stop_index)
break;
if(index <= 0)
if (index <= 0)
break;
if(out <= 0)
if (out <= 0)
break;
if(control & 0x80) {
if (control & 0x80) {
// Check if compression is out of bounds
if(index < 2) {
if (index < 2)
return false;
}
index -= 2;
u32 segment_offset = compressed[index] | (compressed[index + 1] << 8);
@ -71,23 +68,21 @@ static bool LZSS_Decompress(u8* compressed, u32 compressed_size, u8* decompresse
segment_offset += 2;
// Check if compression is out of bounds
if(out < segment_size) {
if (out < segment_size)
return false;
}
for(u32 j = 0; j < segment_size; j++) {
// Check if compression is out of bounds
if(out + segment_offset >= decompressed_size) {
return false;
}
u8 data = decompressed[out + segment_offset];
for (unsigned j = 0; j < segment_size; j++) {
// Check if compression is out of bounds
if (out + segment_offset >= decompressed_size)
return false;
u8 data = decompressed[out + segment_offset];
decompressed[--out] = data;
}
} else {
// Check if compression is out of bounds
if(out < 1) {
if (out < 1)
return false;
}
decompressed[--out] = compressed[--index];
}
control <<= 1;
@ -99,24 +94,21 @@ static bool LZSS_Decompress(u8* compressed, u32 compressed_size, u8* decompresse
////////////////////////////////////////////////////////////////////////////////////////////////////
// AppLoader_NCCH class
/// AppLoader_NCCH constructor
AppLoader_NCCH::AppLoader_NCCH(const std::string& filename) {
this->filename = filename;
is_loaded = false;
is_compressed = false;
entry_point = 0;
ncch_offset = 0;
exefs_offset = 0;
FileType AppLoader_NCCH::IdentifyType(FileUtil::IOFile& file) {
u32 magic;
file.Seek(0x100, SEEK_SET);
if (1 != file.ReadArray<u32>(&magic, 1))
return FileType::Error;
if (MakeMagic('N', 'C', 'S', 'D') == magic)
return FileType::CCI;
if (MakeMagic('N', 'C', 'C', 'H') == magic)
return FileType::CXI;
return FileType::Error;
}
/// AppLoader_NCCH destructor
AppLoader_NCCH::~AppLoader_NCCH() {
}
/**
* Loads .code section into memory for booting
* @return ResultStatus result of function
*/
ResultStatus AppLoader_NCCH::LoadExec() const {
if (!is_loaded)
return ResultStatus::ErrorNotLoaded;
@ -130,189 +122,144 @@ ResultStatus AppLoader_NCCH::LoadExec() const {
return ResultStatus::Error;
}
/**
* Reads an application ExeFS section of an NCCH file into AppLoader (e.g. .code, .logo, etc.)
* @param name Name of section to read out of NCCH file
* @param buffer Vector to read data into
* @return ResultStatus result of function
*/
ResultStatus AppLoader_NCCH::LoadSectionExeFS(const char* name, std::vector<u8>& buffer) const {
// Iterate through the ExeFs archive until we find the .code file...
FileUtil::IOFile file(filename, "rb");
if (file.IsOpen()) {
LOG_DEBUG(Loader, "%d sections:", kMaxSections);
for (int i = 0; i < kMaxSections; i++) {
// Load the specified section...
if (strcmp((const char*)exefs_header.section[i].name, name) == 0) {
LOG_DEBUG(Loader, "%d - offset: 0x%08X, size: 0x%08X, name: %s", i,
exefs_header.section[i].offset, exefs_header.section[i].size,
exefs_header.section[i].name);
s64 section_offset = (exefs_header.section[i].offset + exefs_offset +
sizeof(ExeFs_Header)+ncch_offset);
file.Seek(section_offset, 0);
// Section is compressed...
if (i == 0 && is_compressed) {
// Read compressed .code section...
std::unique_ptr<u8[]> temp_buffer;
try {
temp_buffer.reset(new u8[exefs_header.section[i].size]);
} catch (std::bad_alloc&) {
return ResultStatus::ErrorMemoryAllocationFailed;
}
file.ReadBytes(&temp_buffer[0], exefs_header.section[i].size);
// Decompress .code section...
u32 decompressed_size = LZSS_GetDecompressedSize(&temp_buffer[0],
exefs_header.section[i].size);
buffer.resize(decompressed_size);
if (!LZSS_Decompress(&temp_buffer[0], exefs_header.section[i].size, &buffer[0],
decompressed_size)) {
return ResultStatus::ErrorInvalidFormat;
}
// Section is uncompressed...
}
else {
buffer.resize(exefs_header.section[i].size);
file.ReadBytes(&buffer[0], exefs_header.section[i].size);
}
return ResultStatus::Success;
}
}
} else {
LOG_ERROR(Loader, "Unable to read file %s!", filename.c_str());
if (!file->IsOpen())
return ResultStatus::Error;
LOG_DEBUG(Loader, "%d sections:", kMaxSections);
// Iterate through the ExeFs archive until we find the .code file...
for (unsigned section_number = 0; section_number < kMaxSections; section_number++) {
const auto& section = exefs_header.section[section_number];
// Load the specified section...
if (strcmp(section.name, name) == 0) {
LOG_DEBUG(Loader, "%d - offset: 0x%08X, size: 0x%08X, name: %s", section_number,
section.offset, section.size, section.name);
s64 section_offset = (section.offset + exefs_offset + sizeof(ExeFs_Header) + ncch_offset);
file->Seek(section_offset, SEEK_SET);
if (is_compressed) {
// Section is compressed, read compressed .code section...
std::unique_ptr<u8[]> temp_buffer;
try {
temp_buffer.reset(new u8[section.size]);
} catch (std::bad_alloc&) {
return ResultStatus::ErrorMemoryAllocationFailed;
}
if (file->ReadBytes(&temp_buffer[0], section.size) != section.size)
return ResultStatus::Error;
// Decompress .code section...
u32 decompressed_size = LZSS_GetDecompressedSize(&temp_buffer[0], section.size);
buffer.resize(decompressed_size);
if (!LZSS_Decompress(&temp_buffer[0], section.size, &buffer[0], decompressed_size))
return ResultStatus::ErrorInvalidFormat;
} else {
// Section is uncompressed...
buffer.resize(section.size);
if (file->ReadBytes(&buffer[0], section.size) != section.size)
return ResultStatus::Error;
}
return ResultStatus::Success;
}
}
return ResultStatus::ErrorNotUsed;
}
/**
* Loads an NCCH file (e.g. from a CCI, or the first NCCH in a CXI)
* @param error_string Pointer to string to put error message if an error has occurred
* @todo Move NCSD parsing out of here and create a separate function for loading these
* @return True on success, otherwise false
*/
ResultStatus AppLoader_NCCH::Load() {
LOG_INFO(Loader, "Loading NCCH file %s...", filename.c_str());
if (is_loaded)
return ResultStatus::ErrorAlreadyLoaded;
FileUtil::IOFile file(filename, "rb");
if (file.IsOpen()) {
file.ReadBytes(&ncch_header, sizeof(NCCH_Header));
if (!file->IsOpen())
return ResultStatus::Error;
// Skip NCSD header and load first NCCH (NCSD is just a container of NCCH files)...
if (0 == memcmp(&ncch_header.magic, "NCSD", 4)) {
LOG_WARNING(Loader, "Only loading the first (bootable) NCCH within the NCSD file!");
ncch_offset = 0x4000;
file.Seek(ncch_offset, 0);
file.ReadBytes(&ncch_header, sizeof(NCCH_Header));
}
// Reset read pointer in case this file has been read before.
file->Seek(0, SEEK_SET);
// Verify we are loading the correct file type...
if (0 != memcmp(&ncch_header.magic, "NCCH", 4))
return ResultStatus::ErrorInvalidFormat;
if (file->ReadBytes(&ncch_header, sizeof(NCCH_Header)) != sizeof(NCCH_Header))
return ResultStatus::Error;
// Read ExHeader...
file.ReadBytes(&exheader_header, sizeof(ExHeader_Header));
is_compressed = (exheader_header.codeset_info.flags.flag & 1) == 1;
entry_point = exheader_header.codeset_info.text.address;
LOG_INFO(Loader, "Name: %s", exheader_header.codeset_info.name);
LOG_DEBUG(Loader, "Code compressed: %s", is_compressed ? "yes" : "no");
LOG_DEBUG(Loader, "Entry point: 0x%08X", entry_point);
// Read ExeFS...
exefs_offset = ncch_header.exefs_offset * kBlockSize;
u32 exefs_size = ncch_header.exefs_size * kBlockSize;
LOG_DEBUG(Loader, "ExeFS offset: 0x%08X", exefs_offset);
LOG_DEBUG(Loader, "ExeFS size: 0x%08X", exefs_size);
file.Seek(exefs_offset + ncch_offset, 0);
file.ReadBytes(&exefs_header, sizeof(ExeFs_Header));
is_loaded = true; // Set state to loaded
LoadExec(); // Load the executable into memory for booting
return ResultStatus::Success;
} else {
LOG_ERROR(Loader, "Unable to read file %s!", filename.c_str());
// Skip NCSD header and load first NCCH (NCSD is just a container of NCCH files)...
if (MakeMagic('N', 'C', 'S', 'D') == ncch_header.magic) {
LOG_WARNING(Loader, "Only loading the first (bootable) NCCH within the NCSD file!");
ncch_offset = 0x4000;
file->Seek(ncch_offset, SEEK_SET);
file->ReadBytes(&ncch_header, sizeof(NCCH_Header));
}
return ResultStatus::Error;
// Verify we are loading the correct file type...
if (MakeMagic('N', 'C', 'C', 'H') != ncch_header.magic)
return ResultStatus::ErrorInvalidFormat;
// Read ExHeader...
if (file->ReadBytes(&exheader_header, sizeof(ExHeader_Header)) != sizeof(ExHeader_Header))
return ResultStatus::Error;
is_compressed = (exheader_header.codeset_info.flags.flag & 1) == 1;
entry_point = exheader_header.codeset_info.text.address;
LOG_INFO(Loader, "Name: %s", exheader_header.codeset_info.name);
LOG_DEBUG(Loader, "Code compressed: %s", is_compressed ? "yes" : "no");
LOG_DEBUG(Loader, "Entry point: 0x%08X", entry_point);
// Read ExeFS...
exefs_offset = ncch_header.exefs_offset * kBlockSize;
u32 exefs_size = ncch_header.exefs_size * kBlockSize;
LOG_DEBUG(Loader, "ExeFS offset: 0x%08X", exefs_offset);
LOG_DEBUG(Loader, "ExeFS size: 0x%08X", exefs_size);
file->Seek(exefs_offset + ncch_offset, SEEK_SET);
if (file->ReadBytes(&exefs_header, sizeof(ExeFs_Header)) != sizeof(ExeFs_Header))
return ResultStatus::Error;
is_loaded = true; // Set state to loaded
return LoadExec(); // Load the executable into memory for booting
}
/**
* Get the code (typically .code section) of the application
* @param buffer Reference to buffer to store data
* @return ResultStatus result of function
*/
ResultStatus AppLoader_NCCH::ReadCode(std::vector<u8>& buffer) const {
return LoadSectionExeFS(".code", buffer);
}
/**
* Get the icon (typically icon section) of the application
* @param buffer Reference to buffer to store data
* @return ResultStatus result of function
*/
ResultStatus AppLoader_NCCH::ReadIcon(std::vector<u8>& buffer) const {
return LoadSectionExeFS("icon", buffer);
}
/**
* Get the banner (typically banner section) of the application
* @param buffer Reference to buffer to store data
* @return ResultStatus result of function
*/
ResultStatus AppLoader_NCCH::ReadBanner(std::vector<u8>& buffer) const {
return LoadSectionExeFS("banner", buffer);
}
/**
* Get the logo (typically logo section) of the application
* @param buffer Reference to buffer to store data
* @return ResultStatus result of function
*/
ResultStatus AppLoader_NCCH::ReadLogo(std::vector<u8>& buffer) const {
return LoadSectionExeFS("logo", buffer);
}
/**
* Get the RomFS of the application
* @param buffer Reference to buffer to store data
* @return ResultStatus result of function
*/
ResultStatus AppLoader_NCCH::ReadRomFS(std::vector<u8>& buffer) const {
FileUtil::IOFile file(filename, "rb");
if (file.IsOpen()) {
// Check if the NCCH has a RomFS...
if (ncch_header.romfs_offset != 0 && ncch_header.romfs_size != 0) {
u32 romfs_offset = ncch_offset + (ncch_header.romfs_offset * kBlockSize) + 0x1000;
u32 romfs_size = (ncch_header.romfs_size * kBlockSize) - 0x1000;
if (!file->IsOpen())
return ResultStatus::Error;
LOG_DEBUG(Loader, "RomFS offset: 0x%08X", romfs_offset);
LOG_DEBUG(Loader, "RomFS size: 0x%08X", romfs_size);
// Check if the NCCH has a RomFS...
if (ncch_header.romfs_offset != 0 && ncch_header.romfs_size != 0) {
u32 romfs_offset = ncch_offset + (ncch_header.romfs_offset * kBlockSize) + 0x1000;
u32 romfs_size = (ncch_header.romfs_size * kBlockSize) - 0x1000;
buffer.resize(romfs_size);
LOG_DEBUG(Loader, "RomFS offset: 0x%08X", romfs_offset);
LOG_DEBUG(Loader, "RomFS size: 0x%08X", romfs_size);
file.Seek(romfs_offset, 0);
file.ReadBytes(&buffer[0], romfs_size);
buffer.resize(romfs_size);
return ResultStatus::Success;
}
LOG_DEBUG(Loader, "NCCH has no RomFS");
return ResultStatus::ErrorNotUsed;
} else {
LOG_ERROR(Loader, "Unable to read file %s!", filename.c_str());
file->Seek(romfs_offset, SEEK_SET);
if (file->ReadBytes(&buffer[0], romfs_size) != romfs_size)
return ResultStatus::Error;
return ResultStatus::Success;
}
return ResultStatus::Error;
LOG_DEBUG(Loader, "NCCH has no RomFS");
return ResultStatus::ErrorNotUsed;
}
u64 AppLoader_NCCH::GetProgramId() const {

View File

@ -5,7 +5,6 @@
#pragma once
#include "common/common.h"
#include "common/file_util.h"
#include "core/loader/loader.h"
@ -14,7 +13,7 @@
struct NCCH_Header {
u8 signature[0x100];
char magic[4];
u32 magic;
u32 content_size;
u8 partition_id[8];
u16 maker_code;
@ -147,8 +146,14 @@ namespace Loader {
/// Loads an NCCH file (e.g. from a CCI, or the first NCCH in a CXI)
class AppLoader_NCCH final : public AppLoader {
public:
AppLoader_NCCH(const std::string& filename);
~AppLoader_NCCH() override;
AppLoader_NCCH(std::unique_ptr<FileUtil::IOFile>&& file) : AppLoader(std::move(file)) { }
/**
* Returns the type of the file
* @param file FileUtil::IOFile open file
* @return FileType found, or FileType::Error if this loader doesn't know it
*/
static FileType IdentifyType(FileUtil::IOFile& file);
/**
* Load the application
@ -213,14 +218,11 @@ private:
*/
ResultStatus LoadExec() const;
std::string filename;
bool is_compressed = false;
bool is_loaded;
bool is_compressed;
u32 entry_point;
u32 ncch_offset; // Offset to NCCH header, can be 0 or after NCSD header
u32 exefs_offset;
u32 entry_point = 0;
u32 ncch_offset = 0; // Offset to NCCH header, can be 0 or after NCSD header
u32 exefs_offset = 0;
NCCH_Header ncch_header;
ExeFs_Header exefs_header;