yuzu-emu
/
yuzu-android
Archived
1
0
Fork 0

Merge pull request #12869 from FernandoS27/smmu-fixes

SMMU: A set of different fixes.
This commit is contained in:
liamwhite 2024-01-31 11:22:29 -05:00 committed by GitHub
commit 22492b68b7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 190 additions and 80 deletions

View File

@ -106,6 +106,7 @@ add_library(common STATIC
precompiled_headers.h precompiled_headers.h
quaternion.h quaternion.h
range_map.h range_map.h
range_mutex.h
reader_writer_queue.h reader_writer_queue.h
ring_buffer.h ring_buffer.h
${CMAKE_CURRENT_BINARY_DIR}/scm_rev.cpp ${CMAKE_CURRENT_BINARY_DIR}/scm_rev.cpp

93
src/common/range_mutex.h Normal file
View File

@ -0,0 +1,93 @@
// SPDX-FileCopyrightText: 2024 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <condition_variable>
#include <mutex>
#include "common/intrusive_list.h"
namespace Common {
class ScopedRangeLock;
class RangeMutex {
public:
explicit RangeMutex() = default;
~RangeMutex() = default;
private:
friend class ScopedRangeLock;
void Lock(ScopedRangeLock& l);
void Unlock(ScopedRangeLock& l);
bool HasIntersectionLocked(ScopedRangeLock& l);
private:
std::mutex m_mutex;
std::condition_variable m_cv;
using LockList = Common::IntrusiveListBaseTraits<ScopedRangeLock>::ListType;
LockList m_list;
};
class ScopedRangeLock : public Common::IntrusiveListBaseNode<ScopedRangeLock> {
public:
explicit ScopedRangeLock(RangeMutex& mutex, u64 address, u64 size)
: m_mutex(mutex), m_address(address), m_size(size) {
if (m_size > 0) {
m_mutex.Lock(*this);
}
}
~ScopedRangeLock() {
if (m_size > 0) {
m_mutex.Unlock(*this);
}
}
u64 GetAddress() const {
return m_address;
}
u64 GetSize() const {
return m_size;
}
private:
RangeMutex& m_mutex;
const u64 m_address{};
const u64 m_size{};
};
inline void RangeMutex::Lock(ScopedRangeLock& l) {
std::unique_lock lk{m_mutex};
m_cv.wait(lk, [&] { return !HasIntersectionLocked(l); });
m_list.push_back(l);
}
inline void RangeMutex::Unlock(ScopedRangeLock& l) {
{
std::scoped_lock lk{m_mutex};
m_list.erase(m_list.iterator_to(l));
}
m_cv.notify_all();
}
inline bool RangeMutex::HasIntersectionLocked(ScopedRangeLock& l) {
const auto cur_begin = l.GetAddress();
const auto cur_last = l.GetAddress() + l.GetSize() - 1;
for (const auto& other : m_list) {
const auto other_begin = other.GetAddress();
const auto other_last = other.GetAddress() + other.GetSize() - 1;
if (cur_begin <= other_last && other_begin <= cur_last) {
return true;
}
}
return false;
}
} // namespace Common

View File

@ -5,11 +5,13 @@
#include <array> #include <array>
#include <atomic> #include <atomic>
#include <bit>
#include <deque> #include <deque>
#include <memory> #include <memory>
#include <mutex> #include <mutex>
#include "common/common_types.h" #include "common/common_types.h"
#include "common/range_mutex.h"
#include "common/scratch_buffer.h" #include "common/scratch_buffer.h"
#include "common/virtual_buffer.h" #include "common/virtual_buffer.h"
@ -180,31 +182,35 @@ private:
} }
Common::VirtualBuffer<VAddr> cpu_backing_address; Common::VirtualBuffer<VAddr> cpu_backing_address;
static constexpr size_t subentries = 8 / sizeof(u8); using CounterType = u8;
using CounterAtomicType = std::atomic_uint8_t;
static constexpr size_t subentries = 8 / sizeof(CounterType);
static constexpr size_t subentries_mask = subentries - 1; static constexpr size_t subentries_mask = subentries - 1;
static constexpr size_t subentries_shift =
std::countr_zero(sizeof(u64)) - std::countr_zero(sizeof(CounterType));
class CounterEntry final { class CounterEntry final {
public: public:
CounterEntry() = default; CounterEntry() = default;
std::atomic_uint8_t& Count(std::size_t page) { CounterAtomicType& Count(std::size_t page) {
return values[page & subentries_mask]; return values[page & subentries_mask];
} }
const std::atomic_uint8_t& Count(std::size_t page) const { const CounterAtomicType& Count(std::size_t page) const {
return values[page & subentries_mask]; return values[page & subentries_mask];
} }
private: private:
std::array<std::atomic_uint8_t, subentries> values{}; std::array<CounterAtomicType, subentries> values{};
}; };
static_assert(sizeof(CounterEntry) == subentries * sizeof(u8), static_assert(sizeof(CounterEntry) == subentries * sizeof(CounterType),
"CounterEntry should be 8 bytes!"); "CounterEntry should be 8 bytes!");
static constexpr size_t num_counter_entries = static constexpr size_t num_counter_entries =
(1ULL << (device_virtual_bits - page_bits)) / subentries; (1ULL << (device_virtual_bits - page_bits)) / subentries;
using CachedPages = std::array<CounterEntry, num_counter_entries>; using CachedPages = std::array<CounterEntry, num_counter_entries>;
std::unique_ptr<CachedPages> cached_pages; std::unique_ptr<CachedPages> cached_pages;
std::mutex counter_guard; Common::RangeMutex counter_guard;
std::mutex mapping_guard; std::mutex mapping_guard;
}; };

View File

@ -213,8 +213,8 @@ void DeviceMemoryManager<Traits>::Free(DAddr start, size_t size) {
} }
template <typename Traits> template <typename Traits>
void DeviceMemoryManager<Traits>::Map(DAddr address, VAddr virtual_address, size_t size, void DeviceMemoryManager<Traits>::Map(DAddr address, VAddr virtual_address, size_t size, Asid asid,
Asid asid, bool track) { bool track) {
Core::Memory::Memory* process_memory = registered_processes[asid.id]; Core::Memory::Memory* process_memory = registered_processes[asid.id];
size_t start_page_d = address >> Memory::YUZU_PAGEBITS; size_t start_page_d = address >> Memory::YUZU_PAGEBITS;
size_t num_pages = Common::AlignUp(size, Memory::YUZU_PAGESIZE) >> Memory::YUZU_PAGEBITS; size_t num_pages = Common::AlignUp(size, Memory::YUZU_PAGESIZE) >> Memory::YUZU_PAGEBITS;
@ -508,12 +508,7 @@ void DeviceMemoryManager<Traits>::UnregisterProcess(Asid asid) {
template <typename Traits> template <typename Traits>
void DeviceMemoryManager<Traits>::UpdatePagesCachedCount(DAddr addr, size_t size, s32 delta) { void DeviceMemoryManager<Traits>::UpdatePagesCachedCount(DAddr addr, size_t size, s32 delta) {
std::unique_lock<std::mutex> lk(counter_guard, std::defer_lock); Common::ScopedRangeLock lk(counter_guard, addr, size);
const auto Lock = [&] {
if (!lk) {
lk.lock();
}
};
u64 uncache_begin = 0; u64 uncache_begin = 0;
u64 cache_begin = 0; u64 cache_begin = 0;
u64 uncache_bytes = 0; u64 uncache_bytes = 0;
@ -524,22 +519,36 @@ void DeviceMemoryManager<Traits>::UpdatePagesCachedCount(DAddr addr, size_t size
const size_t page_end = Common::DivCeil(addr + size, Memory::YUZU_PAGESIZE); const size_t page_end = Common::DivCeil(addr + size, Memory::YUZU_PAGESIZE);
size_t page = addr >> Memory::YUZU_PAGEBITS; size_t page = addr >> Memory::YUZU_PAGEBITS;
auto [asid, base_vaddress] = ExtractCPUBacking(page); auto [asid, base_vaddress] = ExtractCPUBacking(page);
size_t vpage = base_vaddress >> Memory::YUZU_PAGEBITS;
auto* memory_device_inter = registered_processes[asid.id]; auto* memory_device_inter = registered_processes[asid.id];
const auto release_pending = [&] {
if (uncache_bytes > 0) {
MarkRegionCaching(memory_device_inter, uncache_begin << Memory::YUZU_PAGEBITS,
uncache_bytes, false);
uncache_bytes = 0;
}
if (cache_bytes > 0) {
MarkRegionCaching(memory_device_inter, cache_begin << Memory::YUZU_PAGEBITS,
cache_bytes, true);
cache_bytes = 0;
}
};
for (; page != page_end; ++page) { for (; page != page_end; ++page) {
std::atomic_uint8_t& count = cached_pages->at(page >> 3).Count(page); CounterAtomicType& count = cached_pages->at(page >> subentries_shift).Count(page);
auto [asid_2, vpage] = ExtractCPUBacking(page);
vpage >>= Memory::YUZU_PAGEBITS;
if (delta > 0) { if (vpage == 0) [[unlikely]] {
ASSERT_MSG(count.load(std::memory_order::relaxed) < std::numeric_limits<u8>::max(), release_pending();
"Count may overflow!"); continue;
} else if (delta < 0) { }
ASSERT_MSG(count.load(std::memory_order::relaxed) > 0, "Count may underflow!");
} else { if (asid.id != asid_2.id) [[unlikely]] {
ASSERT_MSG(false, "Delta must be non-zero!"); release_pending();
memory_device_inter = registered_processes[asid_2.id];
} }
// Adds or subtracts 1, as count is a unsigned 8-bit value // Adds or subtracts 1, as count is a unsigned 8-bit value
count.fetch_add(static_cast<u8>(delta), std::memory_order_release); count.fetch_add(static_cast<CounterType>(delta), std::memory_order_release);
// Assume delta is either -1 or 1 // Assume delta is either -1 or 1
if (count.load(std::memory_order::relaxed) == 0) { if (count.load(std::memory_order::relaxed) == 0) {
@ -548,7 +557,6 @@ void DeviceMemoryManager<Traits>::UpdatePagesCachedCount(DAddr addr, size_t size
} }
uncache_bytes += Memory::YUZU_PAGESIZE; uncache_bytes += Memory::YUZU_PAGESIZE;
} else if (uncache_bytes > 0) { } else if (uncache_bytes > 0) {
Lock();
MarkRegionCaching(memory_device_inter, uncache_begin << Memory::YUZU_PAGEBITS, MarkRegionCaching(memory_device_inter, uncache_begin << Memory::YUZU_PAGEBITS,
uncache_bytes, false); uncache_bytes, false);
uncache_bytes = 0; uncache_bytes = 0;
@ -559,23 +567,12 @@ void DeviceMemoryManager<Traits>::UpdatePagesCachedCount(DAddr addr, size_t size
} }
cache_bytes += Memory::YUZU_PAGESIZE; cache_bytes += Memory::YUZU_PAGESIZE;
} else if (cache_bytes > 0) { } else if (cache_bytes > 0) {
Lock(); MarkRegionCaching(memory_device_inter, cache_begin << Memory::YUZU_PAGEBITS,
MarkRegionCaching(memory_device_inter, cache_begin << Memory::YUZU_PAGEBITS, cache_bytes, cache_bytes, true);
true);
cache_bytes = 0; cache_bytes = 0;
} }
vpage++;
}
if (uncache_bytes > 0) {
Lock();
MarkRegionCaching(memory_device_inter, uncache_begin << Memory::YUZU_PAGEBITS, uncache_bytes,
false);
}
if (cache_bytes > 0) {
Lock();
MarkRegionCaching(memory_device_inter, cache_begin << Memory::YUZU_PAGEBITS, cache_bytes,
true);
} }
release_pending();
} }
} // namespace Core } // namespace Core

View File

@ -83,7 +83,9 @@ SessionId Container::OpenSession(Kernel::KProcess* process) {
// Check if this memory block is heap. // Check if this memory block is heap.
if (svc_mem_info.state == Kernel::Svc::MemoryState::Normal) { if (svc_mem_info.state == Kernel::Svc::MemoryState::Normal) {
if (svc_mem_info.size > region_size) { if (region_start + region_size == svc_mem_info.base_address) {
region_size += svc_mem_info.size;
} else if (svc_mem_info.size > region_size) {
region_size = svc_mem_info.size; region_size = svc_mem_info.size;
region_start = svc_mem_info.base_address; region_start = svc_mem_info.base_address;
} }

View File

@ -1431,7 +1431,8 @@ ImageId TextureCache<P>::JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, DA
} }
} }
}; };
ForEachSparseImageInRegion(gpu_addr, size_bytes, region_check_gpu); ForEachSparseImageInRegion(channel_state->gpu_memory.GetID(), gpu_addr, size_bytes,
region_check_gpu);
bool can_rescale = info.rescaleable; bool can_rescale = info.rescaleable;
bool any_rescaled = false; bool any_rescaled = false;
@ -1842,7 +1843,7 @@ void TextureCache<P>::ForEachImageInRegionGPU(size_t as_id, GPUVAddr gpu_addr, s
if (!storage_id) { if (!storage_id) {
return; return;
} }
auto& gpu_page_table = gpu_page_table_storage[*storage_id]; auto& gpu_page_table = gpu_page_table_storage[*storage_id * 2];
ForEachGPUPage(gpu_addr, size, ForEachGPUPage(gpu_addr, size,
[this, &gpu_page_table, &images, gpu_addr, size, func](u64 page) { [this, &gpu_page_table, &images, gpu_addr, size, func](u64 page) {
const auto it = gpu_page_table.find(page); const auto it = gpu_page_table.find(page);
@ -1882,41 +1883,48 @@ void TextureCache<P>::ForEachImageInRegionGPU(size_t as_id, GPUVAddr gpu_addr, s
template <class P> template <class P>
template <typename Func> template <typename Func>
void TextureCache<P>::ForEachSparseImageInRegion(GPUVAddr gpu_addr, size_t size, Func&& func) { void TextureCache<P>::ForEachSparseImageInRegion(size_t as_id, GPUVAddr gpu_addr, size_t size,
Func&& func) {
using FuncReturn = typename std::invoke_result<Func, ImageId, Image&>::type; using FuncReturn = typename std::invoke_result<Func, ImageId, Image&>::type;
static constexpr bool BOOL_BREAK = std::is_same_v<FuncReturn, bool>; static constexpr bool BOOL_BREAK = std::is_same_v<FuncReturn, bool>;
boost::container::small_vector<ImageId, 8> images; boost::container::small_vector<ImageId, 8> images;
ForEachGPUPage(gpu_addr, size, [this, &images, gpu_addr, size, func](u64 page) { auto storage_id = getStorageID(as_id);
const auto it = sparse_page_table.find(page); if (!storage_id) {
if (it == sparse_page_table.end()) { return;
if constexpr (BOOL_BREAK) { }
return false; auto& sparse_page_table = gpu_page_table_storage[*storage_id * 2 + 1];
} else { ForEachGPUPage(gpu_addr, size,
return; [this, &sparse_page_table, &images, gpu_addr, size, func](u64 page) {
} const auto it = sparse_page_table.find(page);
} if (it == sparse_page_table.end()) {
for (const ImageId image_id : it->second) { if constexpr (BOOL_BREAK) {
Image& image = slot_images[image_id]; return false;
if (True(image.flags & ImageFlagBits::Picked)) { } else {
continue; return;
} }
if (!image.OverlapsGPU(gpu_addr, size)) { }
continue; for (const ImageId image_id : it->second) {
} Image& image = slot_images[image_id];
image.flags |= ImageFlagBits::Picked; if (True(image.flags & ImageFlagBits::Picked)) {
images.push_back(image_id); continue;
if constexpr (BOOL_BREAK) { }
if (func(image_id, image)) { if (!image.OverlapsGPU(gpu_addr, size)) {
return true; continue;
} }
} else { image.flags |= ImageFlagBits::Picked;
func(image_id, image); images.push_back(image_id);
} if constexpr (BOOL_BREAK) {
} if (func(image_id, image)) {
if constexpr (BOOL_BREAK) { return true;
return false; }
} } else {
}); func(image_id, image);
}
}
if constexpr (BOOL_BREAK) {
return false;
}
});
for (const ImageId image_id : images) { for (const ImageId image_id : images) {
slot_images[image_id].flags &= ~ImageFlagBits::Picked; slot_images[image_id].flags &= ~ImageFlagBits::Picked;
} }
@ -1988,8 +1996,9 @@ void TextureCache<P>::RegisterImage(ImageId image_id) {
sparse_maps.push_back(map_id); sparse_maps.push_back(map_id);
}); });
sparse_views.emplace(image_id, std::move(sparse_maps)); sparse_views.emplace(image_id, std::move(sparse_maps));
ForEachGPUPage(image.gpu_addr, image.guest_size_bytes, ForEachGPUPage(image.gpu_addr, image.guest_size_bytes, [this, image_id](u64 page) {
[this, image_id](u64 page) { sparse_page_table[page].push_back(image_id); }); (*channel_state->sparse_page_table)[page].push_back(image_id);
});
} }
template <class P> template <class P>
@ -2042,7 +2051,7 @@ void TextureCache<P>::UnregisterImage(ImageId image_id) {
return; return;
} }
ForEachGPUPage(image.gpu_addr, image.guest_size_bytes, [this, &clear_page_table](u64 page) { ForEachGPUPage(image.gpu_addr, image.guest_size_bytes, [this, &clear_page_table](u64 page) {
clear_page_table(page, sparse_page_table); clear_page_table(page, (*channel_state->sparse_page_table));
}); });
auto it = sparse_views.find(image_id); auto it = sparse_views.find(image_id);
ASSERT(it != sparse_views.end()); ASSERT(it != sparse_views.end());
@ -2496,13 +2505,15 @@ void TextureCache<P>::CreateChannel(struct Tegra::Control::ChannelState& channel
const auto it = channel_map.find(channel.bind_id); const auto it = channel_map.find(channel.bind_id);
auto* this_state = &channel_storage[it->second]; auto* this_state = &channel_storage[it->second];
const auto& this_as_ref = address_spaces[channel.memory_manager->GetID()]; const auto& this_as_ref = address_spaces[channel.memory_manager->GetID()];
this_state->gpu_page_table = &gpu_page_table_storage[this_as_ref.storage_id]; this_state->gpu_page_table = &gpu_page_table_storage[this_as_ref.storage_id * 2];
this_state->sparse_page_table = &gpu_page_table_storage[this_as_ref.storage_id * 2 + 1];
} }
/// Bind a channel for execution. /// Bind a channel for execution.
template <class P> template <class P>
void TextureCache<P>::OnGPUASRegister([[maybe_unused]] size_t map_id) { void TextureCache<P>::OnGPUASRegister([[maybe_unused]] size_t map_id) {
gpu_page_table_storage.emplace_back(); gpu_page_table_storage.emplace_back();
gpu_page_table_storage.emplace_back();
} }
} // namespace VideoCommon } // namespace VideoCommon

View File

@ -86,6 +86,7 @@ public:
std::unordered_map<TSCEntry, SamplerId> samplers; std::unordered_map<TSCEntry, SamplerId> samplers;
TextureCacheGPUMap* gpu_page_table; TextureCacheGPUMap* gpu_page_table;
TextureCacheGPUMap* sparse_page_table;
}; };
template <class P> template <class P>
@ -357,7 +358,7 @@ private:
void ForEachImageInRegionGPU(size_t as_id, GPUVAddr gpu_addr, size_t size, Func&& func); void ForEachImageInRegionGPU(size_t as_id, GPUVAddr gpu_addr, size_t size, Func&& func);
template <typename Func> template <typename Func>
void ForEachSparseImageInRegion(GPUVAddr gpu_addr, size_t size, Func&& func); void ForEachSparseImageInRegion(size_t as_id, GPUVAddr gpu_addr, size_t size, Func&& func);
/// Iterates over all the images in a region calling func /// Iterates over all the images in a region calling func
template <typename Func> template <typename Func>
@ -431,7 +432,6 @@ private:
std::unordered_map<RenderTargets, FramebufferId> framebuffers; std::unordered_map<RenderTargets, FramebufferId> framebuffers;
std::unordered_map<u64, std::vector<ImageMapId>, Common::IdentityHash<u64>> page_table; std::unordered_map<u64, std::vector<ImageMapId>, Common::IdentityHash<u64>> page_table;
std::unordered_map<u64, std::vector<ImageId>, Common::IdentityHash<u64>> sparse_page_table;
std::unordered_map<ImageId, boost::container::small_vector<ImageViewId, 16>> sparse_views; std::unordered_map<ImageId, boost::container::small_vector<ImageViewId, 16>> sparse_views;
DAddr virtual_invalid_space{}; DAddr virtual_invalid_space{};