yuzu-emu
/
yuzu-android
Archived
1
0
Fork 0

Scheduler refactor Pt. 1

* Simplifies scheduling logic, specifically regarding thread status. It should be much clearer which statuses are valid
for a thread at any given point in the system.
* Removes dead code from thread.cpp.
* Moves the implementation of resetting a ThreadContext to the corresponding core's implementation.

Other changes:
* Fixed comments in arm interfaces.
* Updated comments in thread.cpp
* Removed confusing, useless, functions like MakeReady() and ChangeStatus() from thread.cpp.
* Removed stack_size from Thread. In the CTR kernel, the thread's stack would be allocated before thread creation.
This commit is contained in:
Kevin Hartman 2015-01-25 22:56:17 -08:00
parent 848795f383
commit 5fcbfc06eb
7 changed files with 289 additions and 286 deletions

View File

@ -85,6 +85,15 @@ public:
*/ */
virtual void AddTicks(u64 ticks) = 0; virtual void AddTicks(u64 ticks) = 0;
/**
* Initializes a CPU context for use on this CPU
* @param context Thread context to reset
* @param stack_top Pointer to the top of the stack
* @param entry_point Entry point for execution
* @param arg User argument for thread
*/
virtual void ResetContext(Core::ThreadContext& context, u32 stack_top, u32 entry_point, u32 arg) = 0;
/** /**
* Saves the current CPU context * Saves the current CPU context
* @param ctx Thread context to save * @param ctx Thread context to save

View File

@ -93,6 +93,16 @@ void ARM_DynCom::ExecuteInstructions(int num_instructions) {
AddTicks(ticks_executed); AddTicks(ticks_executed);
} }
void ARM_DynCom::ResetContext(Core::ThreadContext& context, u32 stack_top, u32 entry_point, u32 arg) {
memset(&context, 0, sizeof(Core::ThreadContext));
context.cpu_registers[0] = arg;
context.pc = entry_point;
context.sp = stack_top;
context.cpsr = 0x1F; // Usermode
context.mode = 8; // Instructs dyncom CPU core to start execution as if it's "resuming" a thread.
}
void ARM_DynCom::SaveContext(Core::ThreadContext& ctx) { void ARM_DynCom::SaveContext(Core::ThreadContext& ctx) {
memcpy(ctx.cpu_registers, state->Reg, sizeof(ctx.cpu_registers)); memcpy(ctx.cpu_registers, state->Reg, sizeof(ctx.cpu_registers));
memcpy(ctx.fpu_registers, state->ExtReg, sizeof(ctx.fpu_registers)); memcpy(ctx.fpu_registers, state->ExtReg, sizeof(ctx.fpu_registers));

View File

@ -13,79 +13,24 @@
class ARM_DynCom final : virtual public ARM_Interface { class ARM_DynCom final : virtual public ARM_Interface {
public: public:
ARM_DynCom(); ARM_DynCom();
~ARM_DynCom(); ~ARM_DynCom();
/**
* Set the Program Counter to an address
* @param pc Address to set PC to
*/
void SetPC(u32 pc) override; void SetPC(u32 pc) override;
/*
* Get the current Program Counter
* @return Returns current PC
*/
u32 GetPC() const override; u32 GetPC() const override;
/**
* Get an ARM register
* @param index Register index (0-15)
* @return Returns the value in the register
*/
u32 GetReg(int index) const override; u32 GetReg(int index) const override;
/**
* Set an ARM register
* @param index Register index (0-15)
* @param value Value to set register to
*/
void SetReg(int index, u32 value) override; void SetReg(int index, u32 value) override;
/**
* Get the current CPSR register
* @return Returns the value of the CPSR register
*/
u32 GetCPSR() const override; u32 GetCPSR() const override;
/**
* Set the current CPSR register
* @param cpsr Value to set CPSR to
*/
void SetCPSR(u32 cpsr) override; void SetCPSR(u32 cpsr) override;
/**
* Returns the number of clock ticks since the last reset
* @return Returns number of clock ticks
*/
u64 GetTicks() const override; u64 GetTicks() const override;
/**
* Advance the CPU core by the specified number of ticks (e.g. to simulate CPU execution time)
* @param ticks Number of ticks to advance the CPU core
*/
void AddTicks(u64 ticks) override; void AddTicks(u64 ticks) override;
/** void ResetContext(Core::ThreadContext& context, u32 stack_top, u32 entry_point, u32 arg);
* Saves the current CPU context
* @param ctx Thread context to save
*/
void SaveContext(Core::ThreadContext& ctx) override; void SaveContext(Core::ThreadContext& ctx) override;
/**
* Loads a CPU context
* @param ctx Thread context to load
*/
void LoadContext(const Core::ThreadContext& ctx) override; void LoadContext(const Core::ThreadContext& ctx) override;
/// Prepare core for thread reschedule (if needed to correctly handle state)
void PrepareReschedule() override; void PrepareReschedule() override;
/**
* Executes the given number of instructions
* @param num_instructions Number of instructions to executes
*/
void ExecuteInstructions(int num_instructions) override; void ExecuteInstructions(int num_instructions) override;
private: private:

View File

@ -153,12 +153,8 @@ void Shutdown() {
* @return True on success, otherwise false * @return True on success, otherwise false
*/ */
bool LoadExec(u32 entry_point) { bool LoadExec(u32 entry_point) {
Core::g_app_core->SetPC(entry_point);
// 0x30 is the typical main thread priority I've seen used so far // 0x30 is the typical main thread priority I've seen used so far
g_main_thread = Kernel::SetupMainThread(0x30, Kernel::DEFAULT_STACK_SIZE); g_main_thread = Kernel::SetupMainThread(Kernel::DEFAULT_STACK_SIZE, entry_point, 0x30);
// Setup the idle thread
Kernel::SetupIdleThread();
return true; return true;
} }

View File

@ -21,8 +21,11 @@
namespace Kernel { namespace Kernel {
/// Event type for the thread wake up event
static int ThreadWakeupEventType = -1;
bool Thread::ShouldWait() { bool Thread::ShouldWait() {
return status != THREADSTATUS_DORMANT; return status != THREADSTATUS_DEAD;
} }
void Thread::Acquire() { void Thread::Acquire() {
@ -33,12 +36,20 @@ void Thread::Acquire() {
static std::vector<SharedPtr<Thread>> thread_list; static std::vector<SharedPtr<Thread>> thread_list;
// Lists only ready thread ids. // Lists only ready thread ids.
static Common::ThreadQueueList<Thread*, THREADPRIO_LOWEST+1> thread_ready_queue; static Common::ThreadQueueList<Thread*, THREADPRIO_LOWEST+1> ready_queue;
static Thread* current_thread; static Thread* current_thread;
static const u32 INITIAL_THREAD_ID = 1; ///< The first available thread id at startup // The first available thread id at startup
static u32 next_thread_id; ///< The next available thread id static u32 next_thread_id = 1;
/**
* Creates a new thread ID
* @return The new thread ID
*/
inline static u32 const NewThreadId() {
return next_thread_id++;
}
Thread::Thread() {} Thread::Thread() {}
Thread::~Thread() {} Thread::~Thread() {}
@ -47,86 +58,53 @@ Thread* GetCurrentThread() {
return current_thread; return current_thread;
} }
/// Resets a thread /**
static void ResetThread(Thread* t, u32 arg, s32 lowest_priority) { * Check if a thread is waiting on the specified wait object
memset(&t->context, 0, sizeof(Core::ThreadContext)); * @param thread The thread to test
* @param wait_object The object to test against
t->context.cpu_registers[0] = arg; * @return True if the thread is waiting, false otherwise
t->context.pc = t->entry_point; */
t->context.sp = t->stack_top;
t->context.cpsr = 0x1F; // Usermode
// TODO(bunnei): This instructs the CPU core to start the execution as if it is "resuming" a
// thread. This is somewhat Sky-Eye specific, and should be re-architected in the future to be
// agnostic of the CPU core.
t->context.mode = 8;
if (t->current_priority < lowest_priority) {
t->current_priority = t->initial_priority;
}
t->wait_objects.clear();
t->wait_address = 0;
}
/// Change a thread to "ready" state
static void ChangeReadyState(Thread* t, bool ready) {
if (t->IsReady()) {
if (!ready) {
thread_ready_queue.remove(t->current_priority, t);
}
} else if (ready) {
if (t->IsRunning()) {
thread_ready_queue.push_front(t->current_priority, t);
} else {
thread_ready_queue.push_back(t->current_priority, t);
}
t->status = THREADSTATUS_READY;
}
}
/// Check if a thread is waiting on a the specified wait object
static bool CheckWait_WaitObject(const Thread* thread, WaitObject* wait_object) { static bool CheckWait_WaitObject(const Thread* thread, WaitObject* wait_object) {
if (thread->status != THREADSTATUS_WAIT_SYNCH)
return false;
auto itr = std::find(thread->wait_objects.begin(), thread->wait_objects.end(), wait_object); auto itr = std::find(thread->wait_objects.begin(), thread->wait_objects.end(), wait_object);
return itr != thread->wait_objects.end();
if (itr != thread->wait_objects.end())
return thread->IsWaiting();
return false;
} }
/// Check if the specified thread is waiting on the specified address to be arbitrated /**
* Check if the specified thread is waiting on the specified address to be arbitrated
* @param thread The thread to test
* @param wait_address The address to test against
* @return True if the thread is waiting, false otherwise
*/
static bool CheckWait_AddressArbiter(const Thread* thread, VAddr wait_address) { static bool CheckWait_AddressArbiter(const Thread* thread, VAddr wait_address) {
return thread->IsWaiting() && thread->wait_objects.empty() && wait_address == thread->wait_address; return thread->status == THREADSTATUS_WAIT_ARB && wait_address == thread->wait_address;
} }
/// Stops the current thread void Thread::Stop() {
void Thread::Stop(const char* reason) {
// Release all the mutexes that this thread holds // Release all the mutexes that this thread holds
ReleaseThreadMutexes(this); ReleaseThreadMutexes(this);
ChangeReadyState(this, false); // Cancel any outstanding wakeup events for this thread
status = THREADSTATUS_DORMANT; CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle);
// Clean up thread from ready queue
// This is only needed when the thread is termintated forcefully (SVC TerminateProcess)
if (status == THREADSTATUS_READY){
ready_queue.remove(current_priority, this);
}
status = THREADSTATUS_DEAD;
WakeupAllWaitingThreads(); WakeupAllWaitingThreads();
// Stopped threads are never waiting. // Clean up any dangling references in objects that this thread was waiting for
for (auto& wait_object : wait_objects) { for (auto& wait_object : wait_objects) {
wait_object->RemoveWaitingThread(this); wait_object->RemoveWaitingThread(this);
} }
wait_objects.clear();
wait_address = 0;
} }
/// Changes a threads state
static void ChangeThreadState(Thread* t, ThreadStatus new_status) {
if (!t || t->status == new_status) {
return;
}
ChangeReadyState(t, (new_status & THREADSTATUS_READY) != 0);
t->status = new_status;
}
/// Arbitrate the highest priority thread that is waiting
Thread* ArbitrateHighestPriorityThread(u32 address) { Thread* ArbitrateHighestPriorityThread(u32 address) {
Thread* highest_priority_thread = nullptr; Thread* highest_priority_thread = nullptr;
s32 priority = THREADPRIO_LOWEST; s32 priority = THREADPRIO_LOWEST;
@ -153,108 +131,113 @@ Thread* ArbitrateHighestPriorityThread(u32 address) {
return highest_priority_thread; return highest_priority_thread;
} }
/// Arbitrate all threads currently waiting
void ArbitrateAllThreads(u32 address) { void ArbitrateAllThreads(u32 address) {
// Resume all threads found to be waiting on the address
// Iterate through threads, find highest priority thread that is waiting to be arbitrated...
for (auto& thread : thread_list) { for (auto& thread : thread_list) {
if (CheckWait_AddressArbiter(thread.get(), address)) if (CheckWait_AddressArbiter(thread.get(), address))
thread->ResumeFromWait(); thread->ResumeFromWait();
} }
} }
/// Calls a thread by marking it as "ready" (note: will not actually execute until current thread yields) /**
static void CallThread(Thread* t) { * Switches the CPU's active thread context to that of the specified thread
// Stop waiting * @param new_thread The thread to switch to
ChangeThreadState(t, THREADSTATUS_READY); */
} static void SwitchContext(Thread* new_thread) {
_dbg_assert_msg_(Kernel, new_thread->status == THREADSTATUS_READY, "Thread must be ready to become running.");
/// Switches CPU context to that of the specified thread Thread* previous_thread = GetCurrentThread();
static void SwitchContext(Thread* t) {
Thread* cur = GetCurrentThread();
// Save context for current thread // Save context for previous thread
if (cur) { if (previous_thread) {
Core::g_app_core->SaveContext(cur->context); Core::g_app_core->SaveContext(previous_thread->context);
if (cur->IsRunning()) { if (previous_thread->status == THREADSTATUS_RUNNING) {
ChangeReadyState(cur, true); // This is only the case when a reschedule is triggered without the current thread
// yielding execution (i.e. an event triggered, system core time-sliced, etc)
ready_queue.push_front(previous_thread->current_priority, previous_thread);
previous_thread->status = THREADSTATUS_READY;
} }
} }
// Load context of new thread // Load context of new thread
if (t) { if (new_thread) {
current_thread = t; current_thread = new_thread;
ChangeReadyState(t, false);
t->status = (t->status | THREADSTATUS_RUNNING) & ~THREADSTATUS_READY; ready_queue.remove(new_thread->current_priority, new_thread);
Core::g_app_core->LoadContext(t->context); new_thread->status = THREADSTATUS_RUNNING;
Core::g_app_core->LoadContext(new_thread->context);
} else { } else {
current_thread = nullptr; current_thread = nullptr;
} }
} }
/// Gets the next thread that is ready to be run by priority /**
static Thread* NextThread() { * Pops and returns the next thread from the thread queue
* @return A pointer to the next ready thread
*/
static Thread* PopNextReadyThread() {
Thread* next; Thread* next;
Thread* cur = GetCurrentThread(); Thread* thread = GetCurrentThread();
if (cur && cur->IsRunning()) { if (thread && thread->status == THREADSTATUS_RUNNING) {
next = thread_ready_queue.pop_first_better(cur->current_priority); // We have to do better than the current thread.
// This call returns null when that's not possible.
next = ready_queue.pop_first_better(thread->current_priority);
} else { } else {
next = thread_ready_queue.pop_first(); next = ready_queue.pop_first();
}
if (next == 0) {
return nullptr;
} }
return next; return next;
} }
void WaitCurrentThread_Sleep() { void WaitCurrentThread_Sleep() {
Thread* thread = GetCurrentThread(); Thread* thread = GetCurrentThread();
ChangeThreadState(thread, ThreadStatus(THREADSTATUS_WAIT | (thread->status & THREADSTATUS_SUSPEND))); thread->status = THREADSTATUS_WAIT_SLEEP;
} }
void WaitCurrentThread_WaitSynchronization(SharedPtr<WaitObject> wait_object, bool wait_set_output, bool wait_all) { void WaitCurrentThread_WaitSynchronization(std::vector<SharedPtr<WaitObject>> wait_objects, bool wait_set_output, bool wait_all) {
Thread* thread = GetCurrentThread(); Thread* thread = GetCurrentThread();
thread->wait_set_output = wait_set_output; thread->wait_set_output = wait_set_output;
thread->wait_all = wait_all; thread->wait_all = wait_all;
thread->wait_objects = std::move(wait_objects);
// It's possible to call WaitSynchronizationN without any objects passed in... thread->status = THREADSTATUS_WAIT_SYNCH;
if (wait_object != nullptr)
thread->wait_objects.push_back(wait_object);
ChangeThreadState(thread, ThreadStatus(THREADSTATUS_WAIT | (thread->status & THREADSTATUS_SUSPEND)));
} }
void WaitCurrentThread_ArbitrateAddress(VAddr wait_address) { void WaitCurrentThread_ArbitrateAddress(VAddr wait_address) {
Thread* thread = GetCurrentThread(); Thread* thread = GetCurrentThread();
thread->wait_address = wait_address; thread->wait_address = wait_address;
ChangeThreadState(thread, ThreadStatus(THREADSTATUS_WAIT | (thread->status & THREADSTATUS_SUSPEND))); thread->status = THREADSTATUS_WAIT_ARB;
} }
/// Event type for the thread wake up event
static int ThreadWakeupEventType = -1;
// TODO(yuriks): This can be removed if Thread objects are explicitly pooled in the future, allowing // TODO(yuriks): This can be removed if Thread objects are explicitly pooled in the future, allowing
// us to simply use a pool index or similar. // us to simply use a pool index or similar.
static Kernel::HandleTable wakeup_callback_handle_table; static Kernel::HandleTable wakeup_callback_handle_table;
/// Callback that will wake up the thread it was scheduled for /**
* Callback that will wake up the thread it was scheduled for
* @param thread_handle The handle of the thread that's been awoken
* @param cycles_late The number of CPU cycles that have passed since the desired wakeup time
*/
static void ThreadWakeupCallback(u64 thread_handle, int cycles_late) { static void ThreadWakeupCallback(u64 thread_handle, int cycles_late) {
SharedPtr<Thread> thread = wakeup_callback_handle_table.Get<Thread>((Handle)thread_handle); SharedPtr<Thread> thread = wakeup_callback_handle_table.Get<Thread>((Handle)thread_handle);
if (thread == nullptr) { if (thread == nullptr) {
LOG_CRITICAL(Kernel, "Callback fired for invalid thread %08X", thread_handle); LOG_CRITICAL(Kernel, "Callback fired for invalid thread %08X", (Handle)thread_handle);
return; return;
} }
thread->SetWaitSynchronizationResult(ResultCode(ErrorDescription::Timeout, ErrorModule::OS, if (thread->status == THREADSTATUS_WAIT_SYNCH) {
ErrorSummary::StatusChanged, ErrorLevel::Info)); thread->SetWaitSynchronizationResult(ResultCode(ErrorDescription::Timeout, ErrorModule::OS,
ErrorSummary::StatusChanged, ErrorLevel::Info));
if (thread->wait_set_output) if (thread->wait_set_output)
thread->SetWaitSynchronizationOutput(-1); thread->SetWaitSynchronizationOutput(-1);
}
thread->ResumeFromWait(); thread->ResumeFromWait();
} }
void Thread::WakeAfterDelay(s64 nanoseconds) { void Thread::WakeAfterDelay(s64 nanoseconds) {
// Don't schedule a wakeup if the thread wants to wait forever // Don't schedule a wakeup if the thread wants to wait forever
if (nanoseconds == -1) if (nanoseconds == -1)
@ -265,7 +248,7 @@ void Thread::WakeAfterDelay(s64 nanoseconds) {
} }
void Thread::ReleaseWaitObject(WaitObject* wait_object) { void Thread::ReleaseWaitObject(WaitObject* wait_object) {
if (wait_objects.empty()) { if (status != THREADSTATUS_WAIT_SYNCH || wait_objects.empty()) {
LOG_CRITICAL(Kernel, "thread is not waiting on any objects!"); LOG_CRITICAL(Kernel, "thread is not waiting on any objects!");
return; return;
} }
@ -307,34 +290,48 @@ void Thread::ReleaseWaitObject(WaitObject* wait_object) {
} }
void Thread::ResumeFromWait() { void Thread::ResumeFromWait() {
// Cancel any outstanding wakeup events // Cancel any outstanding wakeup events for this thread
CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle); CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle);
status &= ~THREADSTATUS_WAIT; switch (status) {
case THREADSTATUS_WAIT_SYNCH:
// Remove this thread from all other WaitObjects // Remove this thread from all other WaitObjects
for (auto wait_object : wait_objects) for (auto wait_object : wait_objects)
wait_object->RemoveWaitingThread(this); wait_object->RemoveWaitingThread(this);
break;
wait_objects.clear(); case THREADSTATUS_WAIT_ARB:
wait_set_output = false; case THREADSTATUS_WAIT_SLEEP:
wait_all = false; break;
wait_address = 0; case THREADSTATUS_RUNNING:
case THREADSTATUS_READY:
if (!(status & (THREADSTATUS_WAITSUSPEND | THREADSTATUS_DORMANT | THREADSTATUS_DEAD))) { LOG_ERROR(Kernel, "Thread with object id %u has already resumed.", GetObjectId());
ChangeReadyState(this, true); _dbg_assert_(Kernel, false);
return;
case THREADSTATUS_DEAD:
// This should never happen, as threads must complete before being stopped.
LOG_CRITICAL(Kernel, "Thread with object id %u cannot be resumed because it's DEAD.",
GetObjectId());
_dbg_assert_(Kernel, false);
return;
} }
ready_queue.push_back(current_priority, this);
status = THREADSTATUS_READY;
} }
/// Prints the thread queue for debugging purposes /**
* Prints the thread queue for debugging purposes
*/
static void DebugThreadQueue() { static void DebugThreadQueue() {
Thread* thread = GetCurrentThread(); Thread* thread = GetCurrentThread();
if (!thread) { if (!thread) {
return; LOG_DEBUG(Kernel, "Current: NO CURRENT THREAD");
} else {
LOG_DEBUG(Kernel, "0x%02X %u (current)", thread->current_priority, GetCurrentThread()->GetObjectId());
} }
LOG_DEBUG(Kernel, "0x%02X %u (current)", thread->current_priority, GetCurrentThread()->GetObjectId());
for (auto& t : thread_list) { for (auto& t : thread_list) {
s32 priority = thread_ready_queue.contains(t.get()); s32 priority = ready_queue.contains(t.get());
if (priority != -1) { if (priority != -1) {
LOG_DEBUG(Kernel, "0x%02X %u", priority, t->GetObjectId()); LOG_DEBUG(Kernel, "0x%02X %u", priority, t->GetObjectId());
} }
@ -342,14 +339,7 @@ static void DebugThreadQueue() {
} }
ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point, s32 priority, ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point, s32 priority,
u32 arg, s32 processor_id, VAddr stack_top, u32 stack_size) { u32 arg, s32 processor_id, VAddr stack_top) {
if (stack_size < 0x200) {
LOG_ERROR(Kernel, "(name=%s): invalid stack_size=0x%08X", name.c_str(), stack_size);
// TODO: Verify error
return ResultCode(ErrorDescription::InvalidSize, ErrorModule::Kernel,
ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
}
if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) { if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) {
s32 new_priority = CLAMP(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST); s32 new_priority = CLAMP(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST);
LOG_WARNING(Kernel_SVC, "(name=%s): invalid priority=%d, clamping to %d", LOG_WARNING(Kernel_SVC, "(name=%s): invalid priority=%d, clamping to %d",
@ -369,13 +359,12 @@ ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point,
SharedPtr<Thread> thread(new Thread); SharedPtr<Thread> thread(new Thread);
thread_list.push_back(thread); thread_list.push_back(thread);
thread_ready_queue.prepare(priority); ready_queue.prepare(priority);
thread->thread_id = next_thread_id++; thread->thread_id = NewThreadId();
thread->status = THREADSTATUS_DORMANT; thread->status = THREADSTATUS_DORMANT;
thread->entry_point = entry_point; thread->entry_point = entry_point;
thread->stack_top = stack_top; thread->stack_top = stack_top;
thread->stack_size = stack_size;
thread->initial_priority = thread->current_priority = priority; thread->initial_priority = thread->current_priority = priority;
thread->processor_id = processor_id; thread->processor_id = processor_id;
thread->wait_set_output = false; thread->wait_set_output = false;
@ -385,75 +374,74 @@ ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point,
thread->name = std::move(name); thread->name = std::move(name);
thread->callback_handle = wakeup_callback_handle_table.Create(thread).MoveFrom(); thread->callback_handle = wakeup_callback_handle_table.Create(thread).MoveFrom();
ResetThread(thread.get(), arg, 0); // TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used
CallThread(thread.get()); // to initialize the context
Core::g_app_core->ResetContext(thread->context, stack_top, entry_point, arg);
ready_queue.push_back(thread->current_priority, thread.get());
thread->status = THREADSTATUS_READY;
return MakeResult<SharedPtr<Thread>>(std::move(thread)); return MakeResult<SharedPtr<Thread>>(std::move(thread));
} }
/// Set the priority of the thread specified by handle // TODO(peachum): Remove this. Range checking should be done, and an appropriate error should be returned.
void Thread::SetPriority(s32 priority) { static void ClampPriority(const Thread* thread, s32* priority) {
// If priority is invalid, clamp to valid range if (*priority < THREADPRIO_HIGHEST || *priority > THREADPRIO_LOWEST) {
if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) { _dbg_assert_msg_(Kernel, false, "Application passed an out of range priority. An error should be returned.");
s32 new_priority = CLAMP(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST);
LOG_WARNING(Kernel_SVC, "invalid priority=%d, clamping to %d", priority, new_priority); s32 new_priority = CLAMP(*priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST);
LOG_WARNING(Kernel_SVC, "(name=%s): invalid priority=%d, clamping to %d",
thread->name.c_str(), *priority, new_priority);
// TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm // TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm
// validity of this // validity of this
priority = new_priority; *priority = new_priority;
}
}
void Thread::SetPriority(s32 priority) {
ClampPriority(this, &priority);
if (current_priority == priority) {
return;
}
if (status == THREADSTATUS_READY) {
// If thread was ready, adjust queues
ready_queue.remove(current_priority, this);
ready_queue.prepare(priority);
ready_queue.push_back(priority, this);
} }
// Change thread priority
s32 old = current_priority;
thread_ready_queue.remove(old, this);
current_priority = priority; current_priority = priority;
thread_ready_queue.prepare(current_priority);
// Change thread status to "ready" and push to ready queue
if (IsRunning()) {
status = (status & ~THREADSTATUS_RUNNING) | THREADSTATUS_READY;
}
if (IsReady()) {
thread_ready_queue.push_back(current_priority, this);
}
} }
SharedPtr<Thread> SetupIdleThread() { SharedPtr<Thread> SetupIdleThread() {
// We need to pass a few valid values to get around parameter checking in Thread::Create. // We need to pass a few valid values to get around parameter checking in Thread::Create.
auto thread = Thread::Create("idle", Memory::KERNEL_MEMORY_VADDR, THREADPRIO_LOWEST, 0, auto thread = Thread::Create("idle", Memory::KERNEL_MEMORY_VADDR, THREADPRIO_LOWEST, 0,
THREADPROCESSORID_0, 0, Kernel::DEFAULT_STACK_SIZE).MoveFrom(); THREADPROCESSORID_0, 0).MoveFrom();
thread->idle = true; thread->idle = true;
CallThread(thread.get());
return thread; return thread;
} }
SharedPtr<Thread> SetupMainThread(s32 priority, u32 stack_size) { SharedPtr<Thread> SetupMainThread(u32 stack_size, u32 entry_point, s32 priority) {
// Initialize new "main" thread _dbg_assert_(Kernel, !GetCurrentThread());
auto thread_res = Thread::Create("main", Core::g_app_core->GetPC(), priority, 0,
THREADPROCESSORID_0, Memory::SCRATCHPAD_VADDR_END, stack_size);
// TODO(yuriks): Propagate error
_dbg_assert_(Kernel, thread_res.Succeeded());
SharedPtr<Thread> thread = std::move(*thread_res);
// If running another thread already, set it to "ready" state // Initialize new "main" thread
Thread* cur = GetCurrentThread(); auto thread_res = Thread::Create("main", entry_point, priority, 0,
if (cur && cur->IsRunning()) { THREADPROCESSORID_0, Memory::SCRATCHPAD_VADDR_END);
ChangeReadyState(cur, true);
} SharedPtr<Thread> thread = thread_res.MoveFrom();
// Run new "main" thread // Run new "main" thread
current_thread = thread.get(); SwitchContext(thread.get());
thread->status = THREADSTATUS_RUNNING;
Core::g_app_core->LoadContext(thread->context);
return thread; return thread;
} }
/// Reschedules to the next available thread (call after current thread is suspended)
void Reschedule() { void Reschedule() {
Thread* prev = GetCurrentThread(); Thread* prev = GetCurrentThread();
Thread* next = NextThread(); Thread* next = PopNextReadyThread();
HLE::g_reschedule = false; HLE::g_reschedule = false;
if (next != nullptr) { if (next != nullptr) {
@ -480,8 +468,10 @@ void Thread::SetWaitSynchronizationOutput(s32 output) {
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
void ThreadingInit() { void ThreadingInit() {
next_thread_id = INITIAL_THREAD_ID;
ThreadWakeupEventType = CoreTiming::RegisterEvent("ThreadWakeupCallback", ThreadWakeupCallback); ThreadWakeupEventType = CoreTiming::RegisterEvent("ThreadWakeupCallback", ThreadWakeupCallback);
// Setup the idle thread
SetupIdleThread();
} }
void ThreadingShutdown() { void ThreadingShutdown() {

View File

@ -31,13 +31,13 @@ enum ThreadProcessorId {
}; };
enum ThreadStatus { enum ThreadStatus {
THREADSTATUS_RUNNING = 1, THREADSTATUS_RUNNING, ///< Currently running
THREADSTATUS_READY = 2, THREADSTATUS_READY, ///< Ready to run
THREADSTATUS_WAIT = 4, THREADSTATUS_WAIT_ARB, ///< Waiting on an address arbiter
THREADSTATUS_SUSPEND = 8, THREADSTATUS_WAIT_SLEEP, ///< Waiting due to a SleepThread SVC
THREADSTATUS_DORMANT = 16, THREADSTATUS_WAIT_SYNCH, ///< Waiting due to a WaitSynchronization SVC
THREADSTATUS_DEAD = 32, THREADSTATUS_DORMANT, ///< Created but not yet made ready
THREADSTATUS_WAITSUSPEND = THREADSTATUS_WAIT | THREADSTATUS_SUSPEND THREADSTATUS_DEAD ///< Run to completion, or forcefully terminated
}; };
namespace Kernel { namespace Kernel {
@ -46,8 +46,19 @@ class Mutex;
class Thread final : public WaitObject { class Thread final : public WaitObject {
public: public:
/**
* Creates and returns a new thread. The new thread is immediately scheduled
* @param name The friendly name desired for the thread
* @param entry_point The address at which the thread should start execution
* @param priority The thread's priority
* @param arg User data to pass to the thread
* @param processor_id The ID(s) of the processors on which the thread is desired to be run
* @param stack_top The address of the thread's stack top
* @param stack_size The size of the thread's stack
* @return A shared pointer to the newly created thread
*/
static ResultVal<SharedPtr<Thread>> Create(std::string name, VAddr entry_point, s32 priority, static ResultVal<SharedPtr<Thread>> Create(std::string name, VAddr entry_point, s32 priority,
u32 arg, s32 processor_id, VAddr stack_top, u32 stack_size); u32 arg, s32 processor_id, VAddr stack_top);
std::string GetName() const override { return name; } std::string GetName() const override { return name; }
std::string GetTypeName() const override { return "Thread"; } std::string GetTypeName() const override { return "Thread"; }
@ -55,35 +66,47 @@ public:
static const HandleType HANDLE_TYPE = HandleType::Thread; static const HandleType HANDLE_TYPE = HandleType::Thread;
HandleType GetHandleType() const override { return HANDLE_TYPE; } HandleType GetHandleType() const override { return HANDLE_TYPE; }
inline bool IsRunning() const { return (status & THREADSTATUS_RUNNING) != 0; }
inline bool IsStopped() const { return (status & THREADSTATUS_DORMANT) != 0; }
inline bool IsReady() const { return (status & THREADSTATUS_READY) != 0; }
inline bool IsWaiting() const { return (status & THREADSTATUS_WAIT) != 0; }
inline bool IsSuspended() const { return (status & THREADSTATUS_SUSPEND) != 0; }
inline bool IsIdle() const { return idle; }
bool ShouldWait() override; bool ShouldWait() override;
void Acquire() override; void Acquire() override;
/**
* Checks if the thread is an idle (stub) thread
* @return True if the thread is an idle (stub) thread, false otherwise
*/
inline bool IsIdle() const { return idle; }
/**
* Gets the thread's current priority
* @return The current thread's priority
*/
s32 GetPriority() const { return current_priority; } s32 GetPriority() const { return current_priority; }
/**
* Sets the thread's current priority
* @param priority The new priority
*/
void SetPriority(s32 priority); void SetPriority(s32 priority);
/**
* Gets the thread's thread ID
* @return The thread's ID
*/
u32 GetThreadId() const { return thread_id; } u32 GetThreadId() const { return thread_id; }
void Stop(const char* reason);
/** /**
* Release an acquired wait object * Release an acquired wait object
* @param wait_object WaitObject to release * @param wait_object WaitObject to release
*/ */
void ReleaseWaitObject(WaitObject* wait_object); void ReleaseWaitObject(WaitObject* wait_object);
/// Resumes a thread from waiting by marking it as "ready" /**
* Resumes a thread from waiting
*/
void ResumeFromWait(); void ResumeFromWait();
/** /**
* Schedules an event to wake up the specified thread after the specified delay. * Schedules an event to wake up the specified thread after the specified delay
* @param nanoseconds The time this thread will be allowed to sleep for. * @param nanoseconds The time this thread will be allowed to sleep for
*/ */
void WakeAfterDelay(s64 nanoseconds); void WakeAfterDelay(s64 nanoseconds);
@ -99,6 +122,11 @@ public:
*/ */
void SetWaitSynchronizationOutput(s32 output); void SetWaitSynchronizationOutput(s32 output);
/**
* Stops a thread, invalidating it from further use
*/
void Stop();
Core::ThreadContext context; Core::ThreadContext context;
u32 thread_id; u32 thread_id;
@ -106,7 +134,6 @@ public:
u32 status; u32 status;
u32 entry_point; u32 entry_point;
u32 stack_top; u32 stack_top;
u32 stack_size;
s32 initial_priority; s32 initial_priority;
s32 current_priority; s32 current_priority;
@ -136,31 +163,49 @@ private:
extern SharedPtr<Thread> g_main_thread; extern SharedPtr<Thread> g_main_thread;
/// Sets up the primary application thread /**
SharedPtr<Thread> SetupMainThread(s32 priority, u32 stack_size); * Sets up the primary application thread
* @param stack_size The size of the thread's stack
* @param entry_point The address at which the thread should start execution
* @param priority The priority to give the main thread
* @return A shared pointer to the main thread
*/
SharedPtr<Thread> SetupMainThread(u32 stack_size, u32 entry_point, s32 priority);
/// Reschedules to the next available thread (call after current thread is suspended) /**
* Reschedules to the next available thread (call after current thread is suspended)
*/
void Reschedule(); void Reschedule();
/// Arbitrate the highest priority thread that is waiting /**
* Arbitrate the highest priority thread that is waiting
* @param address The address for which waiting threads should be arbitrated
*/
Thread* ArbitrateHighestPriorityThread(u32 address); Thread* ArbitrateHighestPriorityThread(u32 address);
/// Arbitrate all threads currently waiting... /**
* Arbitrate all threads currently waiting.
* @param address The address for which waiting threads should be arbitrated
*/
void ArbitrateAllThreads(u32 address); void ArbitrateAllThreads(u32 address);
/// Gets the current thread /**
* Gets the current thread
*/
Thread* GetCurrentThread(); Thread* GetCurrentThread();
/// Waits the current thread on a sleep /**
* Waits the current thread on a sleep
*/
void WaitCurrentThread_Sleep(); void WaitCurrentThread_Sleep();
/** /**
* Waits the current thread from a WaitSynchronization call * Waits the current thread from a WaitSynchronization call
* @param wait_object Kernel object that we are waiting on * @param wait_objects Kernel objects that we are waiting on
* @param wait_set_output If true, set the output parameter on thread wakeup (for WaitSynchronizationN only) * @param wait_set_output If true, set the output parameter on thread wakeup (for WaitSynchronizationN only)
* @param wait_all If true, wait on all objects before resuming (for WaitSynchronizationN only) * @param wait_all If true, wait on all objects before resuming (for WaitSynchronizationN only)
*/ */
void WaitCurrentThread_WaitSynchronization(SharedPtr<WaitObject> wait_object, bool wait_set_output, bool wait_all); void WaitCurrentThread_WaitSynchronization(std::vector<SharedPtr<WaitObject>> wait_objects, bool wait_set_output, bool wait_all);
/** /**
* Waits the current thread from an ArbitrateAddress call * Waits the current thread from an ArbitrateAddress call
@ -172,14 +217,18 @@ void WaitCurrentThread_ArbitrateAddress(VAddr wait_address);
* Sets up the idle thread, this is a thread that is intended to never execute instructions, * Sets up the idle thread, this is a thread that is intended to never execute instructions,
* only to advance the timing. It is scheduled when there are no other ready threads in the thread queue * only to advance the timing. It is scheduled when there are no other ready threads in the thread queue
* and will try to yield on every call. * and will try to yield on every call.
* @returns The handle of the idle thread * @return The handle of the idle thread
*/ */
SharedPtr<Thread> SetupIdleThread(); SharedPtr<Thread> SetupIdleThread();
/// Initialize threading /**
* Initialize threading
*/
void ThreadingInit(); void ThreadingInit();
/// Shutdown threading /**
* Shutdown threading
*/
void ThreadingShutdown(); void ThreadingShutdown();
} // namespace } // namespace

View File

@ -150,7 +150,7 @@ static ResultCode WaitSynchronization1(Handle handle, s64 nano_seconds) {
if (object->ShouldWait()) { if (object->ShouldWait()) {
object->AddWaitingThread(Kernel::GetCurrentThread()); object->AddWaitingThread(Kernel::GetCurrentThread());
Kernel::WaitCurrentThread_WaitSynchronization(object, false, false); Kernel::WaitCurrentThread_WaitSynchronization({ object }, false, false);
// Create an event to wake the thread up after the specified nanosecond delay has passed // Create an event to wake the thread up after the specified nanosecond delay has passed
Kernel::GetCurrentThread()->WakeAfterDelay(nano_seconds); Kernel::GetCurrentThread()->WakeAfterDelay(nano_seconds);
@ -212,7 +212,6 @@ static ResultCode WaitSynchronizationN(s32* out, Handle* handles, s32 handle_cou
// NOTE: This should deadlock the current thread if no timeout was specified // NOTE: This should deadlock the current thread if no timeout was specified
if (!wait_all) { if (!wait_all) {
wait_thread = true; wait_thread = true;
Kernel::WaitCurrentThread_WaitSynchronization(nullptr, true, wait_all);
} }
} }
@ -222,12 +221,17 @@ static ResultCode WaitSynchronizationN(s32* out, Handle* handles, s32 handle_cou
if (wait_thread) { if (wait_thread) {
// Actually wait the current thread on each object if we decided to wait... // Actually wait the current thread on each object if we decided to wait...
std::vector<SharedPtr<Kernel::WaitObject>> wait_objects;
wait_objects.reserve(handle_count);
for (int i = 0; i < handle_count; ++i) { for (int i = 0; i < handle_count; ++i) {
auto object = Kernel::g_handle_table.GetWaitObject(handles[i]); auto object = Kernel::g_handle_table.GetWaitObject(handles[i]);
object->AddWaitingThread(Kernel::GetCurrentThread()); object->AddWaitingThread(Kernel::GetCurrentThread());
Kernel::WaitCurrentThread_WaitSynchronization(object, true, wait_all); wait_objects.push_back(object);
} }
Kernel::WaitCurrentThread_WaitSynchronization(std::move(wait_objects), true, wait_all);
// Create an event to wake the thread up after the specified nanosecond delay has passed // Create an event to wake the thread up after the specified nanosecond delay has passed
Kernel::GetCurrentThread()->WakeAfterDelay(nano_seconds); Kernel::GetCurrentThread()->WakeAfterDelay(nano_seconds);
@ -319,7 +323,7 @@ static ResultCode CreateThread(u32* out_handle, u32 priority, u32 entry_point, u
} }
CASCADE_RESULT(SharedPtr<Thread> thread, Kernel::Thread::Create( CASCADE_RESULT(SharedPtr<Thread> thread, Kernel::Thread::Create(
name, entry_point, priority, arg, processor_id, stack_top, Kernel::DEFAULT_STACK_SIZE)); name, entry_point, priority, arg, processor_id, stack_top));
CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(thread))); CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(thread)));
LOG_TRACE(Kernel_SVC, "called entrypoint=0x%08X (%s), arg=0x%08X, stacktop=0x%08X, " LOG_TRACE(Kernel_SVC, "called entrypoint=0x%08X (%s), arg=0x%08X, stacktop=0x%08X, "
@ -338,7 +342,7 @@ static ResultCode CreateThread(u32* out_handle, u32 priority, u32 entry_point, u
static void ExitThread() { static void ExitThread() {
LOG_TRACE(Kernel_SVC, "called, pc=0x%08X", Core::g_app_core->GetPC()); LOG_TRACE(Kernel_SVC, "called, pc=0x%08X", Core::g_app_core->GetPC());
Kernel::GetCurrentThread()->Stop(__func__); Kernel::GetCurrentThread()->Stop();
HLE::Reschedule(__func__); HLE::Reschedule(__func__);
} }