yuzu-emu
/
yuzu-android
Archived
1
0
Fork 0

Merge pull request #8261 from liamwhite/jit-cleanup

service: jit: document and clean up
This commit is contained in:
Mai M 2022-04-24 22:03:39 -04:00 committed by GitHub
commit 8304b14a90
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 225 additions and 132 deletions

View File

@ -21,9 +21,10 @@ struct CodeRange {
class IJitEnvironment final : public ServiceFramework<IJitEnvironment> { class IJitEnvironment final : public ServiceFramework<IJitEnvironment> {
public: public:
explicit IJitEnvironment(Core::System& system_, CodeRange user_rx, CodeRange user_ro) explicit IJitEnvironment(Core::System& system_, Kernel::KProcess& process_, CodeRange user_rx,
CodeRange user_ro)
: ServiceFramework{system_, "IJitEnvironment", ServiceThreadType::CreateNew}, : ServiceFramework{system_, "IJitEnvironment", ServiceThreadType::CreateNew},
context{system_.Memory()} { process{&process_}, context{system_.Memory()} {
// clang-format off // clang-format off
static const FunctionInfo functions[] = { static const FunctionInfo functions[] = {
{0, &IJitEnvironment::GenerateCode, "GenerateCode"}, {0, &IJitEnvironment::GenerateCode, "GenerateCode"},
@ -43,54 +44,80 @@ public:
} }
void GenerateCode(Kernel::HLERequestContext& ctx) { void GenerateCode(Kernel::HLERequestContext& ctx) {
struct Parameters { LOG_DEBUG(Service_JIT, "called");
struct InputParameters {
u32 data_size; u32 data_size;
u64 command; u64 command;
CodeRange cr1; std::array<CodeRange, 2> ranges;
CodeRange cr2;
Struct32 data; Struct32 data;
}; };
struct OutputParameters {
s32 return_value;
std::array<CodeRange, 2> ranges;
};
IPC::RequestParser rp{ctx}; IPC::RequestParser rp{ctx};
const auto parameters{rp.PopRaw<Parameters>()}; const auto parameters{rp.PopRaw<InputParameters>()};
// Optional input/output buffers
std::vector<u8> input_buffer{ctx.CanReadBuffer() ? ctx.ReadBuffer() : std::vector<u8>()}; std::vector<u8> input_buffer{ctx.CanReadBuffer() ? ctx.ReadBuffer() : std::vector<u8>()};
std::vector<u8> output_buffer(ctx.CanWriteBuffer() ? ctx.GetWriteBufferSize() : 0); std::vector<u8> output_buffer(ctx.CanWriteBuffer() ? ctx.GetWriteBufferSize() : 0);
const VAddr return_ptr{context.AddHeap(0u)}; // Function call prototype:
const VAddr cr1_in_ptr{context.AddHeap(parameters.cr1)}; // void GenerateCode(s32* ret, CodeRange* c0_out, CodeRange* c1_out, JITConfiguration* cfg,
const VAddr cr2_in_ptr{context.AddHeap(parameters.cr2)}; // u64 cmd, u8* input_buf, size_t input_size, CodeRange* c0_in,
const VAddr cr1_out_ptr{ // CodeRange* c1_in, Struct32* data, size_t data_size, u8* output_buf,
context.AddHeap(CodeRange{.offset = parameters.cr1.offset, .size = 0})}; // size_t output_size);
const VAddr cr2_out_ptr{ //
context.AddHeap(CodeRange{.offset = parameters.cr2.offset, .size = 0})}; // The command argument is used to control the behavior of the plugin during code
// generation. The configuration allows the plugin to access the output code ranges, and the
// other arguments are used to transfer state between the game and the plugin.
const VAddr ret_ptr{context.AddHeap(0u)};
const VAddr c0_in_ptr{context.AddHeap(parameters.ranges[0])};
const VAddr c1_in_ptr{context.AddHeap(parameters.ranges[1])};
const VAddr c0_out_ptr{context.AddHeap(ClearSize(parameters.ranges[0]))};
const VAddr c1_out_ptr{context.AddHeap(ClearSize(parameters.ranges[1]))};
const VAddr input_ptr{context.AddHeap(input_buffer.data(), input_buffer.size())}; const VAddr input_ptr{context.AddHeap(input_buffer.data(), input_buffer.size())};
const VAddr output_ptr{context.AddHeap(output_buffer.data(), output_buffer.size())}; const VAddr output_ptr{context.AddHeap(output_buffer.data(), output_buffer.size())};
const VAddr data_ptr{context.AddHeap(parameters.data)}; const VAddr data_ptr{context.AddHeap(parameters.data)};
const VAddr configuration_ptr{context.AddHeap(configuration)}; const VAddr configuration_ptr{context.AddHeap(configuration)};
context.CallFunction(callbacks.GenerateCode, return_ptr, cr1_out_ptr, cr2_out_ptr, // The callback does not directly return a value, it only writes to the output pointer
context.CallFunction(callbacks.GenerateCode, ret_ptr, c0_out_ptr, c1_out_ptr,
configuration_ptr, parameters.command, input_ptr, input_buffer.size(), configuration_ptr, parameters.command, input_ptr, input_buffer.size(),
cr1_in_ptr, cr2_in_ptr, data_ptr, parameters.data_size, output_ptr, c0_in_ptr, c1_in_ptr, data_ptr, parameters.data_size, output_ptr,
output_buffer.size()); output_buffer.size());
const s32 return_value{context.GetHeap<s32>(return_ptr)}; const s32 return_value{context.GetHeap<s32>(ret_ptr)};
if (return_value == 0) { if (return_value == 0) {
// The callback has written to the output executable code range,
// requiring an instruction cache invalidation
system.InvalidateCpuInstructionCacheRange(configuration.user_rx_memory.offset, system.InvalidateCpuInstructionCacheRange(configuration.user_rx_memory.offset,
configuration.user_rx_memory.size); configuration.user_rx_memory.size);
// Write back to the IPC output buffer, if provided
if (ctx.CanWriteBuffer()) { if (ctx.CanWriteBuffer()) {
context.GetHeap(output_ptr, output_buffer.data(), output_buffer.size()); context.GetHeap(output_ptr, output_buffer.data(), output_buffer.size());
ctx.WriteBuffer(output_buffer.data(), output_buffer.size()); ctx.WriteBuffer(output_buffer.data(), output_buffer.size());
} }
const auto cr1_out{context.GetHeap<CodeRange>(cr1_out_ptr)};
const auto cr2_out{context.GetHeap<CodeRange>(cr2_out_ptr)}; const OutputParameters out{
.return_value = return_value,
.ranges =
{
context.GetHeap<CodeRange>(c0_out_ptr),
context.GetHeap<CodeRange>(c1_out_ptr),
},
};
IPC::ResponseBuilder rb{ctx, 8}; IPC::ResponseBuilder rb{ctx, 8};
rb.Push(ResultSuccess); rb.Push(ResultSuccess);
rb.Push<u64>(return_value); rb.PushRaw(out);
rb.PushRaw(cr1_out);
rb.PushRaw(cr2_out);
} else { } else {
LOG_WARNING(Service_JIT, "plugin GenerateCode callback failed"); LOG_WARNING(Service_JIT, "plugin GenerateCode callback failed");
IPC::ResponseBuilder rb{ctx, 2}; IPC::ResponseBuilder rb{ctx, 2};
@ -99,25 +126,40 @@ public:
}; };
void Control(Kernel::HLERequestContext& ctx) { void Control(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_JIT, "called");
IPC::RequestParser rp{ctx}; IPC::RequestParser rp{ctx};
const auto command{rp.PopRaw<u64>()}; const auto command{rp.PopRaw<u64>()};
const auto input_buffer{ctx.ReadBuffer()};
// Optional input/output buffers
std::vector<u8> input_buffer{ctx.CanReadBuffer() ? ctx.ReadBuffer() : std::vector<u8>()};
std::vector<u8> output_buffer(ctx.CanWriteBuffer() ? ctx.GetWriteBufferSize() : 0); std::vector<u8> output_buffer(ctx.CanWriteBuffer() ? ctx.GetWriteBufferSize() : 0);
const VAddr return_ptr{context.AddHeap(0u)}; // Function call prototype:
// u64 Control(s32* ret, JITConfiguration* cfg, u64 cmd, u8* input_buf, size_t input_size,
// u8* output_buf, size_t output_size);
//
// This function is used to set up the state of the plugin before code generation, generally
// passing objects like pointers to VM state from the game. It is usually called once.
const VAddr ret_ptr{context.AddHeap(0u)};
const VAddr configuration_ptr{context.AddHeap(configuration)}; const VAddr configuration_ptr{context.AddHeap(configuration)};
const VAddr input_ptr{context.AddHeap(input_buffer.data(), input_buffer.size())}; const VAddr input_ptr{context.AddHeap(input_buffer.data(), input_buffer.size())};
const VAddr output_ptr{context.AddHeap(output_buffer.data(), output_buffer.size())}; const VAddr output_ptr{context.AddHeap(output_buffer.data(), output_buffer.size())};
const u64 wrapper_value{
context.CallFunction(callbacks.Control, return_ptr, configuration_ptr, command, const u64 wrapper_value{context.CallFunction(callbacks.Control, ret_ptr, configuration_ptr,
input_ptr, input_buffer.size(), output_ptr, output_buffer.size())}; command, input_ptr, input_buffer.size(),
const s32 return_value{context.GetHeap<s32>(return_ptr)}; output_ptr, output_buffer.size())};
const s32 return_value{context.GetHeap<s32>(ret_ptr)};
if (wrapper_value == 0 && return_value == 0) { if (wrapper_value == 0 && return_value == 0) {
// Write back to the IPC output buffer, if provided
if (ctx.CanWriteBuffer()) { if (ctx.CanWriteBuffer()) {
context.GetHeap(output_ptr, output_buffer.data(), output_buffer.size()); context.GetHeap(output_ptr, output_buffer.data(), output_buffer.size());
ctx.WriteBuffer(output_buffer.data(), output_buffer.size()); ctx.WriteBuffer(output_buffer.data(), output_buffer.size());
} }
IPC::ResponseBuilder rb{ctx, 3}; IPC::ResponseBuilder rb{ctx, 3};
rb.Push(ResultSuccess); rb.Push(ResultSuccess);
rb.Push(return_value); rb.Push(return_value);
@ -129,8 +171,13 @@ public:
} }
void LoadPlugin(Kernel::HLERequestContext& ctx) { void LoadPlugin(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_JIT, "called");
IPC::RequestParser rp{ctx}; IPC::RequestParser rp{ctx};
const auto tmem_size{rp.PopRaw<u64>()}; const auto tmem_size{rp.PopRaw<u64>()};
const auto tmem_handle{ctx.GetCopyHandle(0)};
const auto nro_plugin{ctx.ReadBuffer(1)};
if (tmem_size == 0) { if (tmem_size == 0) {
LOG_ERROR(Service_JIT, "attempted to load plugin with empty transfer memory"); LOG_ERROR(Service_JIT, "attempted to load plugin with empty transfer memory");
IPC::ResponseBuilder rb{ctx, 2}; IPC::ResponseBuilder rb{ctx, 2};
@ -138,9 +185,7 @@ public:
return; return;
} }
const auto tmem_handle{ctx.GetCopyHandle(0)}; auto tmem{process->GetHandleTable().GetObject<Kernel::KTransferMemory>(tmem_handle)};
auto tmem{system.CurrentProcess()->GetHandleTable().GetObject<Kernel::KTransferMemory>(
tmem_handle)};
if (tmem.IsNull()) { if (tmem.IsNull()) {
LOG_ERROR(Service_JIT, "attempted to load plugin with invalid transfer memory handle"); LOG_ERROR(Service_JIT, "attempted to load plugin with invalid transfer memory handle");
IPC::ResponseBuilder rb{ctx, 2}; IPC::ResponseBuilder rb{ctx, 2};
@ -148,24 +193,24 @@ public:
return; return;
} }
configuration.work_memory.offset = tmem->GetSourceAddress(); // Set up the configuration with the required TransferMemory address
configuration.work_memory.size = tmem_size; configuration.transfer_memory.offset = tmem->GetSourceAddress();
configuration.transfer_memory.size = tmem_size;
const auto nro_plugin{ctx.ReadBuffer(1)}; // Gather up all the callbacks from the loaded plugin
auto symbols{Core::Symbols::GetSymbols(nro_plugin, true)}; auto symbols{Core::Symbols::GetSymbols(nro_plugin, true)};
const auto GetSymbol{[&](std::string name) { return symbols[name].first; }}; const auto GetSymbol{[&](const std::string& name) { return symbols[name].first; }};
callbacks = callbacks.rtld_fini = GetSymbol("_fini");
GuestCallbacks{.rtld_fini = GetSymbol("_fini"), callbacks.rtld_init = GetSymbol("_init");
.rtld_init = GetSymbol("_init"), callbacks.Control = GetSymbol("nnjitpluginControl");
.Control = GetSymbol("nnjitpluginControl"), callbacks.ResolveBasicSymbols = GetSymbol("nnjitpluginResolveBasicSymbols");
.ResolveBasicSymbols = GetSymbol("nnjitpluginResolveBasicSymbols"), callbacks.SetupDiagnostics = GetSymbol("nnjitpluginSetupDiagnostics");
.SetupDiagnostics = GetSymbol("nnjitpluginSetupDiagnostics"), callbacks.Configure = GetSymbol("nnjitpluginConfigure");
.Configure = GetSymbol("nnjitpluginConfigure"), callbacks.GenerateCode = GetSymbol("nnjitpluginGenerateCode");
.GenerateCode = GetSymbol("nnjitpluginGenerateCode"), callbacks.GetVersion = GetSymbol("nnjitpluginGetVersion");
.GetVersion = GetSymbol("nnjitpluginGetVersion"), callbacks.OnPrepared = GetSymbol("nnjitpluginOnPrepared");
.Keeper = GetSymbol("nnjitpluginKeeper"), callbacks.Keeper = GetSymbol("nnjitpluginKeeper");
.OnPrepared = GetSymbol("nnjitpluginOnPrepared")};
if (callbacks.GetVersion == 0 || callbacks.Configure == 0 || callbacks.GenerateCode == 0 || if (callbacks.GetVersion == 0 || callbacks.Configure == 0 || callbacks.GenerateCode == 0 ||
callbacks.OnPrepared == 0) { callbacks.OnPrepared == 0) {
@ -186,12 +231,16 @@ public:
configuration.sys_ro_memory.size); configuration.sys_ro_memory.size);
context.MapProcessMemory(configuration.sys_rx_memory.offset, context.MapProcessMemory(configuration.sys_rx_memory.offset,
configuration.sys_rx_memory.size); configuration.sys_rx_memory.size);
context.MapProcessMemory(configuration.work_memory.offset, configuration.work_memory.size); context.MapProcessMemory(configuration.transfer_memory.offset,
configuration.transfer_memory.size);
// Run ELF constructors, if needed
if (callbacks.rtld_init != 0) { if (callbacks.rtld_init != 0) {
context.CallFunction(callbacks.rtld_init); context.CallFunction(callbacks.rtld_init);
} }
// Function prototype:
// u64 GetVersion();
const auto version{context.CallFunction(callbacks.GetVersion)}; const auto version{context.CallFunction(callbacks.GetVersion)};
if (version != 1) { if (version != 1) {
LOG_ERROR(Service_JIT, "unknown plugin version {}", version); LOG_ERROR(Service_JIT, "unknown plugin version {}", version);
@ -200,16 +249,26 @@ public:
return; return;
} }
// Function prototype:
// void ResolveBasicSymbols(void (*resolver)(const char* name));
const auto resolve{context.GetHelper("_resolve")}; const auto resolve{context.GetHelper("_resolve")};
if (callbacks.ResolveBasicSymbols != 0) { if (callbacks.ResolveBasicSymbols != 0) {
context.CallFunction(callbacks.ResolveBasicSymbols, resolve); context.CallFunction(callbacks.ResolveBasicSymbols, resolve);
} }
// Function prototype:
// void SetupDiagnostics(u32 enabled, void (**resolver)(const char* name));
const auto resolve_ptr{context.AddHeap(resolve)}; const auto resolve_ptr{context.AddHeap(resolve)};
if (callbacks.SetupDiagnostics != 0) { if (callbacks.SetupDiagnostics != 0) {
context.CallFunction(callbacks.SetupDiagnostics, 0u, resolve_ptr); context.CallFunction(callbacks.SetupDiagnostics, 0u, resolve_ptr);
} }
context.CallFunction(callbacks.Configure, 0u); // Function prototype:
// void Configure(u32* memory_flags);
context.CallFunction(callbacks.Configure, 0ull);
// Function prototype:
// void OnPrepared(JITConfiguration* cfg);
const auto configuration_ptr{context.AddHeap(configuration)}; const auto configuration_ptr{context.AddHeap(configuration)};
context.CallFunction(callbacks.OnPrepared, configuration_ptr); context.CallFunction(callbacks.OnPrepared, configuration_ptr);
@ -218,6 +277,8 @@ public:
} }
void GetCodeAddress(Kernel::HLERequestContext& ctx) { void GetCodeAddress(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_JIT, "called");
IPC::ResponseBuilder rb{ctx, 6}; IPC::ResponseBuilder rb{ctx, 6};
rb.Push(ResultSuccess); rb.Push(ResultSuccess);
rb.Push(configuration.user_rx_memory.offset); rb.Push(configuration.user_rx_memory.offset);
@ -243,11 +304,17 @@ private:
struct JITConfiguration { struct JITConfiguration {
CodeRange user_rx_memory; CodeRange user_rx_memory;
CodeRange user_ro_memory; CodeRange user_ro_memory;
CodeRange work_memory; CodeRange transfer_memory;
CodeRange sys_rx_memory; CodeRange sys_rx_memory;
CodeRange sys_ro_memory; CodeRange sys_ro_memory;
}; };
static CodeRange ClearSize(CodeRange in) {
in.size = 0;
return in;
}
Kernel::KScopedAutoObject<Kernel::KProcess> process;
GuestCallbacks callbacks; GuestCallbacks callbacks;
JITConfiguration configuration; JITConfiguration configuration;
JITContext context; JITContext context;
@ -275,8 +342,9 @@ public:
IPC::RequestParser rp{ctx}; IPC::RequestParser rp{ctx};
const auto parameters{rp.PopRaw<Parameters>()}; const auto parameters{rp.PopRaw<Parameters>()};
const auto executable_mem_handle{ctx.GetCopyHandle(1)}; const auto process_handle{ctx.GetCopyHandle(0)};
const auto readable_mem_handle{ctx.GetCopyHandle(2)}; const auto rx_mem_handle{ctx.GetCopyHandle(1)};
const auto ro_mem_handle{ctx.GetCopyHandle(2)};
if (parameters.rx_size == 0 || parameters.ro_size == 0) { if (parameters.rx_size == 0 || parameters.ro_size == 0) {
LOG_ERROR(Service_JIT, "attempted to init with empty code regions"); LOG_ERROR(Service_JIT, "attempted to init with empty code regions");
@ -285,42 +353,47 @@ public:
return; return;
} }
// The copy handle at index 0 is the process handle, but handle tables are // Fetch using the handle table for the current process here,
// per-process, so there is no point reading it here until we are multiprocess // since we are not multiprocess yet.
const auto& process{*system.CurrentProcess()}; const auto& handle_table{system.CurrentProcess()->GetHandleTable()};
auto executable_mem{ auto process{handle_table.GetObject<Kernel::KProcess>(process_handle)};
process.GetHandleTable().GetObject<Kernel::KCodeMemory>(executable_mem_handle)}; if (process.IsNull()) {
if (executable_mem.IsNull()) { LOG_ERROR(Service_JIT, "process is null for handle=0x{:08X}", process_handle);
LOG_ERROR(Service_JIT, "executable_mem is null for handle=0x{:08X}",
executable_mem_handle);
IPC::ResponseBuilder rb{ctx, 2}; IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultUnknown); rb.Push(ResultUnknown);
return; return;
} }
auto readable_mem{ auto rx_mem{handle_table.GetObject<Kernel::KCodeMemory>(rx_mem_handle)};
process.GetHandleTable().GetObject<Kernel::KCodeMemory>(readable_mem_handle)}; if (rx_mem.IsNull()) {
if (readable_mem.IsNull()) { LOG_ERROR(Service_JIT, "rx_mem is null for handle=0x{:08X}", rx_mem_handle);
LOG_ERROR(Service_JIT, "readable_mem is null for handle=0x{:08X}", readable_mem_handle); IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultUnknown);
return;
}
auto ro_mem{handle_table.GetObject<Kernel::KCodeMemory>(ro_mem_handle)};
if (ro_mem.IsNull()) {
LOG_ERROR(Service_JIT, "ro_mem is null for handle=0x{:08X}", ro_mem_handle);
IPC::ResponseBuilder rb{ctx, 2}; IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultUnknown); rb.Push(ResultUnknown);
return; return;
} }
const CodeRange user_rx{ const CodeRange user_rx{
.offset = executable_mem->GetSourceAddress(), .offset = rx_mem->GetSourceAddress(),
.size = parameters.rx_size, .size = parameters.rx_size,
}; };
const CodeRange user_ro{ const CodeRange user_ro{
.offset = readable_mem->GetSourceAddress(), .offset = ro_mem->GetSourceAddress(),
.size = parameters.ro_size, .size = parameters.ro_size,
}; };
IPC::ResponseBuilder rb{ctx, 2, 0, 1}; IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(ResultSuccess); rb.Push(ResultSuccess);
rb.PushIpcInterface<IJitEnvironment>(system, user_rx, user_ro); rb.PushIpcInterface<IJitEnvironment>(system, *process, user_rx, user_ro);
} }
}; };

View File

@ -17,61 +17,15 @@
namespace Service::JIT { namespace Service::JIT {
constexpr std::array<u8, 4> STOP_ARM64 = { constexpr std::array<u8, 8> SVC0_ARM64 = {
0x01, 0x00, 0x00, 0xd4, // svc #0 0x01, 0x00, 0x00, 0xd4, // svc #0
};
constexpr std::array<u8, 8> RESOLVE_ARM64 = {
0x21, 0x00, 0x00, 0xd4, // svc #1
0xc0, 0x03, 0x5f, 0xd6, // ret 0xc0, 0x03, 0x5f, 0xd6, // ret
}; };
constexpr std::array<u8, 4> PANIC_ARM64 = { constexpr std::array HELPER_FUNCTIONS{
0x41, 0x00, 0x00, 0xd4, // svc #2 "_stop", "_resolve", "_panic", "memcpy", "memmove", "memset",
}; };
constexpr std::array<u8, 60> MEMMOVE_ARM64 = {
0x1f, 0x00, 0x01, 0xeb, // cmp x0, x1
0x83, 0x01, 0x00, 0x54, // b.lo #+34
0x42, 0x04, 0x00, 0xd1, // sub x2, x2, 1
0x22, 0x01, 0xf8, 0xb7, // tbnz x2, #63, #+36
0x23, 0x68, 0x62, 0x38, // ldrb w3, [x1, x2]
0x03, 0x68, 0x22, 0x38, // strb w3, [x0, x2]
0xfc, 0xff, 0xff, 0x17, // b #-16
0x24, 0x68, 0x63, 0x38, // ldrb w4, [x1, x3]
0x04, 0x68, 0x23, 0x38, // strb w4, [x0, x3]
0x63, 0x04, 0x00, 0x91, // add x3, x3, 1
0x7f, 0x00, 0x02, 0xeb, // cmp x3, x2
0x8b, 0xff, 0xff, 0x54, // b.lt #-16
0xc0, 0x03, 0x5f, 0xd6, // ret
0x03, 0x00, 0x80, 0xd2, // mov x3, 0
0xfc, 0xff, 0xff, 0x17, // b #-16
};
constexpr std::array<u8, 28> MEMSET_ARM64 = {
0x03, 0x00, 0x80, 0xd2, // mov x3, 0
0x7f, 0x00, 0x02, 0xeb, // cmp x3, x2
0x4b, 0x00, 0x00, 0x54, // b.lt #+8
0xc0, 0x03, 0x5f, 0xd6, // ret
0x01, 0x68, 0x23, 0x38, // strb w1, [x0, x3]
0x63, 0x04, 0x00, 0x91, // add x3, x3, 1
0xfb, 0xff, 0xff, 0x17, // b #-20
};
struct HelperFunction {
const char* name;
const std::span<const u8> data;
};
constexpr std::array<HelperFunction, 6> HELPER_FUNCTIONS{{
{"_stop", STOP_ARM64},
{"_resolve", RESOLVE_ARM64},
{"_panic", PANIC_ARM64},
{"memcpy", MEMMOVE_ARM64},
{"memmove", MEMMOVE_ARM64},
{"memset", MEMSET_ARM64},
}};
struct Elf64_Dyn { struct Elf64_Dyn {
u64 d_tag; u64 d_tag;
u64 d_un; u64 d_un;
@ -224,17 +178,24 @@ public:
InsertHelperFunctions(); InsertHelperFunctions();
InsertStack(); InsertStack();
return true; return true;
} else {
return false;
} }
return false;
} }
bool FixupRelocations() { bool FixupRelocations() {
// The loaded NRO file has ELF relocations that must be processed before it can run.
// Normally this would be processed by RTLD, but in HLE context, we don't have
// the linker available, so we have to do it ourselves.
const VAddr mod_offset{callbacks->MemoryRead32(4)}; const VAddr mod_offset{callbacks->MemoryRead32(4)};
if (callbacks->MemoryRead32(mod_offset) != Common::MakeMagic('M', 'O', 'D', '0')) { if (callbacks->MemoryRead32(mod_offset) != Common::MakeMagic('M', 'O', 'D', '0')) {
return false; return false;
} }
// For more info about dynamic entries, see the ELF ABI specification:
// https://refspecs.linuxbase.org/elf/gabi4+/ch5.dynamic.html
// https://refspecs.linuxbase.org/elf/gabi4+/ch4.reloc.html
VAddr dynamic_offset{mod_offset + callbacks->MemoryRead32(mod_offset + 4)}; VAddr dynamic_offset{mod_offset + callbacks->MemoryRead32(mod_offset + 4)};
VAddr rela_dyn = 0; VAddr rela_dyn = 0;
size_t num_rela = 0; size_t num_rela = 0;
@ -266,13 +227,15 @@ public:
} }
void InsertHelperFunctions() { void InsertHelperFunctions() {
for (const auto& [name, contents] : HELPER_FUNCTIONS) { for (const auto& name : HELPER_FUNCTIONS) {
helpers[name] = local_memory.size(); helpers[name] = local_memory.size();
local_memory.insert(local_memory.end(), contents.begin(), contents.end()); local_memory.insert(local_memory.end(), SVC0_ARM64.begin(), SVC0_ARM64.end());
} }
} }
void InsertStack() { void InsertStack() {
// Allocate enough space to avoid any reasonable risk of
// overflowing the stack during plugin execution
const u64 pad_amount{Common::AlignUp(local_memory.size(), STACK_ALIGN) - const u64 pad_amount{Common::AlignUp(local_memory.size(), STACK_ALIGN) -
local_memory.size()}; local_memory.size()};
local_memory.insert(local_memory.end(), 0x10000 + pad_amount, 0); local_memory.insert(local_memory.end(), 0x10000 + pad_amount, 0);
@ -292,9 +255,21 @@ public:
} }
void SetupArguments() { void SetupArguments() {
// The first 8 integer registers are used for the first 8 integer
// arguments. Floating-point arguments are not handled at this time.
//
// If a function takes more than 8 arguments, then stack space is reserved
// for the remaining arguments, and the remaining arguments are inserted in
// ascending memory order, each argument aligned to an 8-byte boundary. The
// stack pointer must remain aligned to 16 bytes.
//
// For more info, see the AArch64 ABI PCS:
// https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst
for (size_t i = 0; i < 8 && i < argument_stack.size(); i++) { for (size_t i = 0; i < 8 && i < argument_stack.size(); i++) {
jit->SetRegister(i, argument_stack[i]); jit->SetRegister(i, argument_stack[i]);
} }
if (argument_stack.size() > 8) { if (argument_stack.size() > 8) {
const VAddr new_sp = Common::AlignDown( const VAddr new_sp = Common::AlignDown(
top_of_stack - (argument_stack.size() - 8) * sizeof(u64), STACK_ALIGN); top_of_stack - (argument_stack.size() - 8) * sizeof(u64), STACK_ALIGN);
@ -303,6 +278,8 @@ public:
} }
jit->SetSP(new_sp); jit->SetSP(new_sp);
} }
// Reset the call state for the next invocation
argument_stack.clear(); argument_stack.clear();
heap_pointer = top_of_stack; heap_pointer = top_of_stack;
} }
@ -322,11 +299,16 @@ public:
} }
VAddr AddHeap(const void* data, size_t size) { VAddr AddHeap(const void* data, size_t size) {
// Require all heap data types to have the same alignment as the
// stack pointer, for compatibility
const size_t num_bytes{Common::AlignUp(size, STACK_ALIGN)}; const size_t num_bytes{Common::AlignUp(size, STACK_ALIGN)};
// Make additional memory space if required
if (heap_pointer + num_bytes > local_memory.size()) { if (heap_pointer + num_bytes > local_memory.size()) {
local_memory.insert(local_memory.end(), local_memory.insert(local_memory.end(),
(heap_pointer + num_bytes) - local_memory.size(), 0); (heap_pointer + num_bytes) - local_memory.size(), 0);
} }
const VAddr location{heap_pointer}; const VAddr location{heap_pointer};
std::memcpy(local_memory.data() + location, data, size); std::memcpy(local_memory.data() + location, data, size);
heap_pointer += num_bytes; heap_pointer += num_bytes;
@ -350,30 +332,67 @@ public:
}; };
void DynarmicCallbacks64::CallSVC(u32 swi) { void DynarmicCallbacks64::CallSVC(u32 swi) {
switch (swi) { // Service calls are used to implement helper functionality.
case 0: //
parent.jit->HaltExecution(); // The most important of these is the _stop helper, which transfers control
break; // from the plugin back to HLE context to return a value. However, a few more
// are also implemented to reduce the need for direct ARM implementations of
// basic functionality, like memory operations.
//
// When we receive a helper request, the swi number will be zero, and the call
// will have originated from an address we know is a helper function. Otherwise,
// the plugin may be trying to issue a service call, which we shouldn't handle.
case 1: { if (swi != 0) {
LOG_CRITICAL(Service_JIT, "plugin issued unknown service call {}", swi);
parent.jit->HaltExecution();
return;
}
u64 pc{parent.jit->GetPC() - 4};
auto& helpers{parent.helpers};
if (pc == helpers["memcpy"] || pc == helpers["memmove"]) {
const VAddr dest{parent.jit->GetRegister(0)};
const VAddr src{parent.jit->GetRegister(1)};
const size_t n{parent.jit->GetRegister(2)};
if (dest < src) {
for (size_t i = 0; i < n; i++) {
MemoryWrite8(dest + i, MemoryRead8(src + i));
}
} else {
for (size_t i = n; i > 0; i--) {
MemoryWrite8(dest + i - 1, MemoryRead8(src + i - 1));
}
}
} else if (pc == helpers["memset"]) {
const VAddr dest{parent.jit->GetRegister(0)};
const u64 c{parent.jit->GetRegister(1)};
const size_t n{parent.jit->GetRegister(2)};
for (size_t i = 0; i < n; i++) {
MemoryWrite8(dest + i, static_cast<u8>(c));
}
} else if (pc == helpers["_resolve"]) {
// X0 contains a char* for a symbol to resolve // X0 contains a char* for a symbol to resolve
std::string name{MemoryReadCString(parent.jit->GetRegister(0))}; const auto name{MemoryReadCString(parent.jit->GetRegister(0))};
const auto helper{parent.helpers[name]}; const auto helper{helpers[name]};
if (helper != 0) { if (helper != 0) {
parent.jit->SetRegister(0, helper); parent.jit->SetRegister(0, helper);
} else { } else {
LOG_WARNING(Service_JIT, "plugin requested unknown function {}", name); LOG_WARNING(Service_JIT, "plugin requested unknown function {}", name);
parent.jit->SetRegister(0, parent.helpers["_panic"]); parent.jit->SetRegister(0, helpers["_panic"]);
} }
break; } else if (pc == helpers["_stop"]) {
} parent.jit->HaltExecution();
} else if (pc == helpers["_panic"]) {
case 2:
default:
LOG_CRITICAL(Service_JIT, "plugin panicked!"); LOG_CRITICAL(Service_JIT, "plugin panicked!");
parent.jit->HaltExecution(); parent.jit->HaltExecution();
break; } else {
LOG_CRITICAL(Service_JIT, "plugin issued syscall at unknown address 0x{:x}", pc);
parent.jit->HaltExecution();
} }
} }

View File

@ -28,6 +28,7 @@ public:
template <typename T, typename... Ts> template <typename T, typename... Ts>
u64 CallFunction(VAddr func, T argument, Ts... rest) { u64 CallFunction(VAddr func, T argument, Ts... rest) {
static_assert(std::is_trivially_copyable_v<T>); static_assert(std::is_trivially_copyable_v<T>);
static_assert(!std::is_floating_point_v<T>);
PushArgument(&argument, sizeof(argument)); PushArgument(&argument, sizeof(argument));
if constexpr (sizeof...(rest) > 0) { if constexpr (sizeof...(rest) > 0) {