yuzu-emu
/
yuzu-android
Archived
1
0
Fork 0

Merge pull request #351 from yuriks/optimize

Rasterizer Optimizations
This commit is contained in:
Tony Wasserka 2014-12-30 00:13:48 +01:00
commit b7e0b16354
7 changed files with 103 additions and 79 deletions

View File

@ -41,11 +41,11 @@ else()
message(STATUS "libpng not found. Some debugging features have been disabled.") message(STATUS "libpng not found. Some debugging features have been disabled.")
endif() endif()
find_package(Boost) find_package(Boost 1.57.0)
if (Boost_FOUND) if (Boost_FOUND)
include_directories(${Boost_INCLUDE_DIRS}) include_directories(${Boost_INCLUDE_DIRS})
else() else()
message(STATUS "Boost not found, falling back to externals") message(STATUS "Boost 1.57.0 or newer not found, falling back to externals")
include_directories(externals/boost) include_directories(externals/boost)
endif() endif()

2
externals/boost vendored

@ -1 +1 @@
Subproject commit b060148c08ae87a3a5809c4f48cb26ac667487ab Subproject commit 97052c28acb141dbf3c5e14114af99045344b695

View File

@ -2,7 +2,7 @@
// Licensed under GPLv2 or any later version // Licensed under GPLv2 or any later version
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <vector> #include <boost/container/static_vector.hpp>
#include "clipper.h" #include "clipper.h"
#include "pica.h" #include "pica.h"
@ -91,25 +91,31 @@ static void InitScreenCoordinates(OutputVertex& vtx)
viewport.zscale = float24::FromRawFloat24(registers.viewport_depth_range); viewport.zscale = float24::FromRawFloat24(registers.viewport_depth_range);
viewport.offset_z = float24::FromRawFloat24(registers.viewport_depth_far_plane); viewport.offset_z = float24::FromRawFloat24(registers.viewport_depth_far_plane);
float24 inv_w = float24::FromFloat32(1.f) / vtx.pos.w;
vtx.color *= inv_w;
vtx.tc0 *= inv_w;
vtx.tc1 *= inv_w;
vtx.tc2 *= inv_w;
vtx.pos.w = inv_w;
// TODO: Not sure why the viewport width needs to be divided by 2 but the viewport height does not // TODO: Not sure why the viewport width needs to be divided by 2 but the viewport height does not
vtx.screenpos[0] = (vtx.pos.x / vtx.pos.w + float24::FromFloat32(1.0)) * viewport.halfsize_x + viewport.offset_x; vtx.screenpos[0] = (vtx.pos.x * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_x + viewport.offset_x;
vtx.screenpos[1] = (vtx.pos.y / vtx.pos.w + float24::FromFloat32(1.0)) * viewport.halfsize_y + viewport.offset_y; vtx.screenpos[1] = (vtx.pos.y * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_y + viewport.offset_y;
vtx.screenpos[2] = viewport.offset_z - vtx.pos.z / vtx.pos.w * viewport.zscale; vtx.screenpos[2] = viewport.offset_z - vtx.pos.z * inv_w * viewport.zscale;
} }
void ProcessTriangle(OutputVertex &v0, OutputVertex &v1, OutputVertex &v2) { void ProcessTriangle(OutputVertex &v0, OutputVertex &v1, OutputVertex &v2) {
using boost::container::static_vector;
// TODO (neobrain): // Clipping a planar n-gon against a plane will remove at least 1 vertex and introduces 2 at
// The list of output vertices has some fixed maximum size, // the new edge (or less in degenerate cases). As such, we can say that each clipping plane
// however I haven't taken the time to figure out what it is exactly. // introduces at most 1 new vertex to the polygon. Since we start with a triangle and have a
// For now, we hence just assume a maximal size of 1000 vertices. // fixed 6 clipping planes, the maximum number of vertices of the clipped polygon is 3 + 6 = 9.
const size_t max_vertices = 1000; static const size_t MAX_VERTICES = 9;
std::vector<OutputVertex> buffer_vertices; static_vector<OutputVertex, MAX_VERTICES> buffer_a = { v0, v1, v2 };
std::vector<OutputVertex*> output_list{ &v0, &v1, &v2 }; static_vector<OutputVertex, MAX_VERTICES> buffer_b;
auto* output_list = &buffer_a;
// Make sure to reserve space for all vertices. auto* input_list = &buffer_b;
// Without this, buffer reallocation would invalidate references.
buffer_vertices.reserve(max_vertices);
// Simple implementation of the Sutherland-Hodgman clipping algorithm. // Simple implementation of the Sutherland-Hodgman clipping algorithm.
// TODO: Make this less inefficient (currently lots of useless buffering overhead happens here) // TODO: Make this less inefficient (currently lots of useless buffering overhead happens here)
@ -120,48 +126,45 @@ void ProcessTriangle(OutputVertex &v0, OutputVertex &v1, OutputVertex &v2) {
ClippingEdge(ClippingEdge::POS_Z, float24::FromFloat32(+1.0)), ClippingEdge(ClippingEdge::POS_Z, float24::FromFloat32(+1.0)),
ClippingEdge(ClippingEdge::NEG_Z, float24::FromFloat32(-1.0)) }) { ClippingEdge(ClippingEdge::NEG_Z, float24::FromFloat32(-1.0)) }) {
const std::vector<OutputVertex*> input_list = output_list; std::swap(input_list, output_list);
output_list.clear(); output_list->clear();
const OutputVertex* reference_vertex = input_list.back(); const OutputVertex* reference_vertex = &input_list->back();
for (const auto& vertex : input_list) { for (const auto& vertex : *input_list) {
// NOTE: This algorithm changes vertex order in some cases! // NOTE: This algorithm changes vertex order in some cases!
if (edge.IsInside(*vertex)) { if (edge.IsInside(vertex)) {
if (edge.IsOutSide(*reference_vertex)) { if (edge.IsOutSide(*reference_vertex)) {
buffer_vertices.push_back(edge.GetIntersection(*vertex, *reference_vertex)); output_list->push_back(edge.GetIntersection(vertex, *reference_vertex));
output_list.push_back(&(buffer_vertices.back()));
} }
output_list.push_back(vertex); output_list->push_back(vertex);
} else if (edge.IsInside(*reference_vertex)) { } else if (edge.IsInside(*reference_vertex)) {
buffer_vertices.push_back(edge.GetIntersection(*vertex, *reference_vertex)); output_list->push_back(edge.GetIntersection(vertex, *reference_vertex));
output_list.push_back(&(buffer_vertices.back()));
} }
reference_vertex = &vertex;
reference_vertex = vertex;
} }
// Need to have at least a full triangle to continue... // Need to have at least a full triangle to continue...
if (output_list.size() < 3) if (output_list->size() < 3)
return; return;
} }
InitScreenCoordinates(*(output_list[0])); InitScreenCoordinates((*output_list)[0]);
InitScreenCoordinates(*(output_list[1])); InitScreenCoordinates((*output_list)[1]);
for (size_t i = 0; i < output_list.size() - 2; i ++) { for (size_t i = 0; i < output_list->size() - 2; i ++) {
OutputVertex& vtx0 = *(output_list[0]); OutputVertex& vtx0 = (*output_list)[0];
OutputVertex& vtx1 = *(output_list[i+1]); OutputVertex& vtx1 = (*output_list)[i+1];
OutputVertex& vtx2 = *(output_list[i+2]); OutputVertex& vtx2 = (*output_list)[i+2];
InitScreenCoordinates(vtx2); InitScreenCoordinates(vtx2);
LOG_TRACE(Render_Software, LOG_TRACE(Render_Software,
"Triangle %lu/%lu (%lu buffer vertices) at position (%.3f, %.3f, %.3f, %.3f), " "Triangle %lu/%lu at position (%.3f, %.3f, %.3f, %.3f), "
"(%.3f, %.3f, %.3f, %.3f), (%.3f, %.3f, %.3f, %.3f) and " "(%.3f, %.3f, %.3f, %.3f), (%.3f, %.3f, %.3f, %.3f) and "
"screen position (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f)", "screen position (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f)",
i,output_list.size(), buffer_vertices.size(), i, output_list->size(),
vtx0.pos.x.ToFloat32(), vtx0.pos.y.ToFloat32(), vtx0.pos.z.ToFloat32(), vtx0.pos.w.ToFloat32(), vtx0.pos.x.ToFloat32(), vtx0.pos.y.ToFloat32(), vtx0.pos.z.ToFloat32(), vtx0.pos.w.ToFloat32(),
vtx1.pos.x.ToFloat32(), vtx1.pos.y.ToFloat32(), vtx1.pos.z.ToFloat32(), vtx1.pos.w.ToFloat32(), vtx1.pos.x.ToFloat32(), vtx1.pos.y.ToFloat32(), vtx1.pos.z.ToFloat32(), vtx1.pos.w.ToFloat32(),
vtx2.pos.x.ToFloat32(), vtx2.pos.y.ToFloat32(), vtx2.pos.z.ToFloat32(), vtx2.pos.w.ToFloat32(), vtx2.pos.x.ToFloat32(), vtx2.pos.y.ToFloat32(), vtx2.pos.z.ToFloat32(), vtx2.pos.w.ToFloat32(),

View File

@ -304,7 +304,6 @@ std::unique_ptr<PicaTrace> FinishPicaTracing()
} }
const Math::Vec4<u8> LookupTexture(const u8* source, int x, int y, const TextureInfo& info, bool disable_alpha) { const Math::Vec4<u8> LookupTexture(const u8* source, int x, int y, const TextureInfo& info, bool disable_alpha) {
// Images are split into 8x8 tiles. Each tile is composed of four 4x4 subtiles each // Images are split into 8x8 tiles. Each tile is composed of four 4x4 subtiles each
// of which is composed of four 2x2 subtiles each of which is composed of four texels. // of which is composed of four 2x2 subtiles each of which is composed of four texels.
// Each structure is embedded into the next-bigger one in a diagonal pattern, e.g. // Each structure is embedded into the next-bigger one in a diagonal pattern, e.g.
@ -323,41 +322,39 @@ const Math::Vec4<u8> LookupTexture(const u8* source, int x, int y, const Texture
// 02 03 06 07 18 19 22 23 // 02 03 06 07 18 19 22 23
// 00 01 04 05 16 17 20 21 // 00 01 04 05 16 17 20 21
// TODO(neobrain): Not sure if this swizzling pattern is used for all textures. const unsigned int block_width = 8;
// To be flexible in case different but similar patterns are used, we keep this const unsigned int block_height = 8;
// somewhat inefficient code around for now.
int texel_index_within_tile = 0;
for (int block_size_index = 0; block_size_index < 3; ++block_size_index) {
int sub_tile_width = 1 << block_size_index;
int sub_tile_height = 1 << block_size_index;
int sub_tile_index = (x & sub_tile_width) << block_size_index; const unsigned int coarse_x = x & ~7;
sub_tile_index += 2 * ((y & sub_tile_height) << block_size_index); const unsigned int coarse_y = y & ~7;
texel_index_within_tile += sub_tile_index;
}
const int block_width = 8; // Interleave the lower 3 bits of each coordinate to get the intra-block offsets, which are
const int block_height = 8; // arranged in a Z-order curve. More details on the bit manipulation at:
// https://fgiesen.wordpress.com/2009/12/13/decoding-morton-codes/
unsigned int i = (x | (y << 8)) & 0x0707; // ---- -210
i = (i ^ (i << 2)) & 0x1313; // ---2 --10
i = (i ^ (i << 1)) & 0x1515; // ---2 -1-0
i = (i | (i >> 7)) & 0x3F;
int coarse_x = (x / block_width) * block_width; source += coarse_y * info.stride;
int coarse_y = (y / block_height) * block_height; const unsigned int offset = coarse_x * block_height + i;
switch (info.format) { switch (info.format) {
case Regs::TextureFormat::RGBA8: case Regs::TextureFormat::RGBA8:
{ {
const u8* source_ptr = source + coarse_x * block_height * 4 + coarse_y * info.stride + texel_index_within_tile * 4; const u8* source_ptr = source + offset * 4;
return { source_ptr[3], source_ptr[2], source_ptr[1], disable_alpha ? (u8)255 : source_ptr[0] }; return { source_ptr[3], source_ptr[2], source_ptr[1], disable_alpha ? (u8)255 : source_ptr[0] };
} }
case Regs::TextureFormat::RGB8: case Regs::TextureFormat::RGB8:
{ {
const u8* source_ptr = source + coarse_x * block_height * 3 + coarse_y * info.stride + texel_index_within_tile * 3; const u8* source_ptr = source + offset * 3;
return { source_ptr[2], source_ptr[1], source_ptr[0], 255 }; return { source_ptr[2], source_ptr[1], source_ptr[0], 255 };
} }
case Regs::TextureFormat::RGBA5551: case Regs::TextureFormat::RGBA5551:
{ {
const u16 source_ptr = *(const u16*)(source + coarse_x * block_height * 2 + coarse_y * info.stride + texel_index_within_tile * 2); const u16 source_ptr = *(const u16*)(source + offset * 2);
u8 r = (source_ptr >> 11) & 0x1F; u8 r = (source_ptr >> 11) & 0x1F;
u8 g = ((source_ptr) >> 6) & 0x1F; u8 g = ((source_ptr) >> 6) & 0x1F;
u8 b = (source_ptr >> 1) & 0x1F; u8 b = (source_ptr >> 1) & 0x1F;
@ -367,7 +364,7 @@ const Math::Vec4<u8> LookupTexture(const u8* source, int x, int y, const Texture
case Regs::TextureFormat::RGB565: case Regs::TextureFormat::RGB565:
{ {
const u16 source_ptr = *(const u16*)(source + coarse_x * block_height * 2 + coarse_y * info.stride + texel_index_within_tile * 2); const u16 source_ptr = *(const u16*)(source + offset * 2);
u8 r = (source_ptr >> 11) & 0x1F; u8 r = (source_ptr >> 11) & 0x1F;
u8 g = ((source_ptr) >> 5) & 0x3F; u8 g = ((source_ptr) >> 5) & 0x3F;
u8 b = (source_ptr) & 0x1F; u8 b = (source_ptr) & 0x1F;
@ -376,7 +373,7 @@ const Math::Vec4<u8> LookupTexture(const u8* source, int x, int y, const Texture
case Regs::TextureFormat::RGBA4: case Regs::TextureFormat::RGBA4:
{ {
const u8* source_ptr = source + coarse_x * block_height * 2 + coarse_y * info.stride + texel_index_within_tile * 2; const u8* source_ptr = source + offset * 2;
u8 r = source_ptr[1] >> 4; u8 r = source_ptr[1] >> 4;
u8 g = source_ptr[1] & 0xFF; u8 g = source_ptr[1] & 0xFF;
u8 b = source_ptr[0] >> 4; u8 b = source_ptr[0] >> 4;
@ -390,7 +387,7 @@ const Math::Vec4<u8> LookupTexture(const u8* source, int x, int y, const Texture
case Regs::TextureFormat::IA8: case Regs::TextureFormat::IA8:
{ {
const u8* source_ptr = source + coarse_x * block_height * 2 + coarse_y * info.stride + texel_index_within_tile * 2; const u8* source_ptr = source + offset * 2;
// TODO: component order not verified // TODO: component order not verified
@ -404,13 +401,13 @@ const Math::Vec4<u8> LookupTexture(const u8* source, int x, int y, const Texture
case Regs::TextureFormat::I8: case Regs::TextureFormat::I8:
{ {
const u8* source_ptr = source + coarse_x * block_height + coarse_y * info.stride + texel_index_within_tile; const u8* source_ptr = source + offset;
return { *source_ptr, *source_ptr, *source_ptr, 255 }; return { *source_ptr, *source_ptr, *source_ptr, 255 };
} }
case Regs::TextureFormat::A8: case Regs::TextureFormat::A8:
{ {
const u8* source_ptr = source + coarse_x * block_height + coarse_y * info.stride + texel_index_within_tile; const u8* source_ptr = source + offset;
if (disable_alpha) { if (disable_alpha) {
return { *source_ptr, *source_ptr, *source_ptr, 255 }; return { *source_ptr, *source_ptr, *source_ptr, 255 };
@ -421,7 +418,7 @@ const Math::Vec4<u8> LookupTexture(const u8* source, int x, int y, const Texture
case Regs::TextureFormat::IA4: case Regs::TextureFormat::IA4:
{ {
const u8* source_ptr = source + coarse_x * block_height / 2 + coarse_y * info.stride + texel_index_within_tile / 2; const u8* source_ptr = source + offset / 2;
// TODO: component order not verified // TODO: component order not verified
@ -440,7 +437,7 @@ const Math::Vec4<u8> LookupTexture(const u8* source, int x, int y, const Texture
case Regs::TextureFormat::A4: case Regs::TextureFormat::A4:
{ {
const u8* source_ptr = source + coarse_x * block_height / 2 + coarse_y * info.stride + texel_index_within_tile / 2; const u8* source_ptr = source + offset / 2;
// TODO: component order not verified // TODO: component order not verified

View File

@ -757,6 +757,26 @@ struct float24 {
return float24::FromFloat32(ToFloat32() - flt.ToFloat32()); return float24::FromFloat32(ToFloat32() - flt.ToFloat32());
} }
float24& operator *= (const float24& flt) {
value *= flt.ToFloat32();
return *this;
}
float24& operator /= (const float24& flt) {
value /= flt.ToFloat32();
return *this;
}
float24& operator += (const float24& flt) {
value += flt.ToFloat32();
return *this;
}
float24& operator -= (const float24& flt) {
value -= flt.ToFloat32();
return *this;
}
float24 operator - () const { float24 operator - () const {
return float24::FromFloat32(-ToFloat32()); return float24::FromFloat32(-ToFloat32());
} }

View File

@ -106,6 +106,11 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0; int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0; int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w);
auto textures = registers.GetTextures();
auto tev_stages = registers.GetTevStages();
// TODO: Not sure if looping through x first might be faster // TODO: Not sure if looping through x first might be faster
for (u16 y = min_y; y < max_y; y += 0x10) { for (u16 y = min_y; y < max_y; y += 0x10) {
for (u16 x = min_x; x < max_x; x += 0x10) { for (u16 x = min_x; x < max_x; x += 0x10) {
@ -129,6 +134,11 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
if (w0 < 0 || w1 < 0 || w2 < 0) if (w0 < 0 || w1 < 0 || w2 < 0)
continue; continue;
auto baricentric_coordinates = Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)),
float24::FromFloat32(static_cast<float>(w1)),
float24::FromFloat32(static_cast<float>(w2)));
float24 interpolated_w_inverse = float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates);
// Perspective correct attribute interpolation: // Perspective correct attribute interpolation:
// Attribute values cannot be calculated by simple linear interpolation since // Attribute values cannot be calculated by simple linear interpolation since
// they are not linear in screen space. For example, when interpolating a // they are not linear in screen space. For example, when interpolating a
@ -145,19 +155,9 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
// //
// The generalization to three vertices is straightforward in baricentric coordinates. // The generalization to three vertices is straightforward in baricentric coordinates.
auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) { auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) {
auto attr_over_w = Math::MakeVec(attr0 / v0.pos.w, auto attr_over_w = Math::MakeVec(attr0, attr1, attr2);
attr1 / v1.pos.w,
attr2 / v2.pos.w);
auto w_inverse = Math::MakeVec(float24::FromFloat32(1.f) / v0.pos.w,
float24::FromFloat32(1.f) / v1.pos.w,
float24::FromFloat32(1.f) / v2.pos.w);
auto baricentric_coordinates = Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)),
float24::FromFloat32(static_cast<float>(w1)),
float24::FromFloat32(static_cast<float>(w2)));
float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates); float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates);
float24 interpolated_w_inverse = Math::Dot(w_inverse, baricentric_coordinates); return interpolated_attr_over_w * interpolated_w_inverse;
return interpolated_attr_over_w / interpolated_w_inverse;
}; };
Math::Vec4<u8> primary_color{ Math::Vec4<u8> primary_color{
@ -177,7 +177,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
Math::Vec4<u8> texture_color[3]{}; Math::Vec4<u8> texture_color[3]{};
for (int i = 0; i < 3; ++i) { for (int i = 0; i < 3; ++i) {
auto texture = registers.GetTextures()[i]; const auto& texture = textures[i];
if (!texture.enabled) if (!texture.enabled)
continue; continue;
@ -219,7 +219,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
// with some basic arithmetic. Alpha combiners can be configured separately but work // with some basic arithmetic. Alpha combiners can be configured separately but work
// analogously. // analogously.
Math::Vec4<u8> combiner_output; Math::Vec4<u8> combiner_output;
for (auto tev_stage : registers.GetTevStages()) { for (const auto& tev_stage : tev_stages) {
using Source = Regs::TevStageConfig::Source; using Source = Regs::TevStageConfig::Source;
using ColorModifier = Regs::TevStageConfig::ColorModifier; using ColorModifier = Regs::TevStageConfig::ColorModifier;
using AlphaModifier = Regs::TevStageConfig::AlphaModifier; using AlphaModifier = Regs::TevStageConfig::AlphaModifier;

View File

@ -469,6 +469,10 @@ OutputVertex RunShader(const InputVertex& input, int num_attributes)
// Setup output register table // Setup output register table
OutputVertex ret; OutputVertex ret;
// Zero output so that attributes which aren't output won't have denormals in them, which will
// slow us down later.
memset(&ret, 0, sizeof(ret));
for (int i = 0; i < 7; ++i) { for (int i = 0; i < 7; ++i) {
const auto& output_register_map = registers.vs_output_attributes[i]; const auto& output_register_map = registers.vs_output_attributes[i];