yuzu-emu
/
yuzu-android
Archived
1
0
Fork 0

hle: kernel: Add initial impl. of KAutoObject.

This commit is contained in:
bunnei 2021-03-31 14:43:39 -07:00
parent d9205f82b3
commit b8751630e2
3 changed files with 306 additions and 0 deletions

View File

@ -161,6 +161,8 @@ add_library(core STATIC
hle/kernel/k_address_arbiter.h
hle/kernel/k_address_space_info.cpp
hle/kernel/k_address_space_info.h
hle/kernel/k_auto_object.cpp
hle/kernel/k_auto_object.h
hle/kernel/k_affinity_mask.h
hle/kernel/k_condition_variable.cpp
hle/kernel/k_condition_variable.h

View File

@ -0,0 +1,14 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "core/hle/kernel/k_auto_object.h"
namespace Kernel {
KAutoObject* KAutoObject::Create(KAutoObject* obj) {
obj->m_ref_count = 1;
return obj;
}
} // namespace Kernel

View File

@ -0,0 +1,290 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <atomic>
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/intrusive_red_black_tree.h"
#include "core/hle/kernel/k_class_token.h"
namespace Kernel {
class Process;
#define KERNEL_AUTOOBJECT_TRAITS(CLASS, BASE_CLASS) \
NON_COPYABLE(CLASS); \
NON_MOVEABLE(CLASS); \
\
private: \
friend class ::Kernel::KClassTokenGenerator; \
static constexpr inline auto ObjectType = ::Kernel::KClassTokenGenerator::ObjectType::CLASS; \
static constexpr inline const char* const TypeName = #CLASS; \
static constexpr inline ClassTokenType ClassToken() { \
return ::Kernel::ClassToken<CLASS>; \
} \
\
public: \
using BaseClass = BASE_CLASS; \
static constexpr TypeObj GetStaticTypeObj() { \
constexpr ClassTokenType Token = ClassToken(); \
return TypeObj(TypeName, Token); \
} \
static constexpr const char* GetStaticTypeName() { \
return TypeName; \
} \
virtual TypeObj GetTypeObj() const { \
return GetStaticTypeObj(); \
} \
virtual const char* GetTypeName() { \
return GetStaticTypeName(); \
} \
\
private:
class KAutoObject {
protected:
class TypeObj {
private:
const char* m_name;
ClassTokenType m_class_token;
public:
constexpr explicit TypeObj(const char* n, ClassTokenType tok)
: m_name(n), m_class_token(tok) { // ...
}
constexpr const char* GetName() const {
return m_name;
}
constexpr ClassTokenType GetClassToken() const {
return m_class_token;
}
constexpr bool operator==(const TypeObj& rhs) {
return this->GetClassToken() == rhs.GetClassToken();
}
constexpr bool operator!=(const TypeObj& rhs) {
return this->GetClassToken() != rhs.GetClassToken();
}
constexpr bool IsDerivedFrom(const TypeObj& rhs) {
return (this->GetClassToken() | rhs.GetClassToken()) == this->GetClassToken();
}
};
private:
KERNEL_AUTOOBJECT_TRAITS(KAutoObject, KAutoObject);
private:
std::atomic<u32> m_ref_count;
public:
static KAutoObject* Create(KAutoObject* ptr);
public:
constexpr explicit KAutoObject() : m_ref_count(0) {}
virtual ~KAutoObject() {}
// Destroy is responsible for destroying the auto object's resources when ref_count hits zero.
virtual void Destroy() {
UNIMPLEMENTED();
}
// Finalize is responsible for cleaning up resource, but does not destroy the object.
virtual void Finalize() {
UNIMPLEMENTED();
}
virtual Process* GetOwner() const {
return nullptr;
}
u32 GetReferenceCount() const {
return m_ref_count.load();
}
bool IsDerivedFrom(const TypeObj& rhs) const {
return this->GetTypeObj().IsDerivedFrom(rhs);
}
bool IsDerivedFrom(const KAutoObject& rhs) const {
return this->IsDerivedFrom(rhs.GetTypeObj());
}
template <typename Derived>
Derived DynamicCast() {
static_assert(std::is_pointer<Derived>::value);
using DerivedType = typename std::remove_pointer<Derived>::type;
if (this->IsDerivedFrom(DerivedType::GetStaticTypeObj())) {
return static_cast<Derived>(this);
} else {
return nullptr;
}
}
template <typename Derived>
const Derived DynamicCast() const {
static_assert(std::is_pointer<Derived>::value);
using DerivedType = typename std::remove_pointer<Derived>::type;
if (this->IsDerivedFrom(DerivedType::GetStaticTypeObj())) {
return static_cast<Derived>(this);
} else {
return nullptr;
}
}
bool Open() {
// Atomically increment the reference count, only if it's positive.
u32 cur_ref_count = m_ref_count.load(std::memory_order_acquire);
do {
if (cur_ref_count == 0) {
return false;
}
ASSERT(cur_ref_count < cur_ref_count + 1);
} while (!m_ref_count.compare_exchange_weak(cur_ref_count, cur_ref_count + 1,
std::memory_order_relaxed));
return true;
}
void Close() {
// Atomically decrement the reference count, not allowing it to become negative.
u32 cur_ref_count = m_ref_count.load(std::memory_order_acquire);
do {
ASSERT(cur_ref_count > 0);
} while (!m_ref_count.compare_exchange_weak(cur_ref_count, cur_ref_count - 1,
std::memory_order_relaxed));
// If ref count hits zero, destroy the object.
if (cur_ref_count - 1 == 0) {
this->Destroy();
}
}
};
class KAutoObjectWithListContainer;
class KAutoObjectWithList : public KAutoObject {
private:
friend class KAutoObjectWithListContainer;
private:
Common::IntrusiveRedBlackTreeNode list_node;
public:
static int Compare(const KAutoObjectWithList& lhs, const KAutoObjectWithList& rhs) {
const u64 lid = lhs.GetId();
const u64 rid = rhs.GetId();
if (lid < rid) {
return -1;
} else if (lid > rid) {
return 1;
} else {
return 0;
}
}
public:
virtual u64 GetId() const {
return reinterpret_cast<u64>(this);
}
};
template <typename T>
class KScopedAutoObject {
NON_COPYABLE(KScopedAutoObject);
private:
template <typename U>
friend class KScopedAutoObject;
private:
T* m_obj;
private:
constexpr void Swap(KScopedAutoObject& rhs) {
std::swap(m_obj, rhs.m_obj);
}
public:
constexpr KScopedAutoObject() : m_obj(nullptr) { // ...
}
constexpr KScopedAutoObject(T* o) : m_obj(o) {
if (m_obj != nullptr) {
m_obj->Open();
}
}
~KScopedAutoObject() {
if (m_obj != nullptr) {
m_obj->Close();
}
m_obj = nullptr;
}
template <typename U>
requires(std::derived_from<T, U> ||
std::derived_from<U, T>) constexpr KScopedAutoObject(KScopedAutoObject<U>&& rhs) {
if constexpr (std::derived_from<U, T>) {
// Upcast.
m_obj = rhs.m_obj;
rhs.m_obj = nullptr;
} else {
// Downcast.
T* derived = nullptr;
if (rhs.m_obj != nullptr) {
derived = rhs.m_obj->template DynamicCast<T*>();
if (derived == nullptr) {
rhs.m_obj->Close();
}
}
m_obj = derived;
rhs.m_obj = nullptr;
}
}
constexpr KScopedAutoObject<T>& operator=(KScopedAutoObject<T>&& rhs) {
rhs.Swap(*this);
return *this;
}
constexpr T* operator->() {
return m_obj;
}
constexpr T& operator*() {
return *m_obj;
}
constexpr void Reset(T* o) {
KScopedAutoObject(o).Swap(*this);
}
constexpr T* GetPointerUnsafe() {
return m_obj;
}
constexpr T* ReleasePointerUnsafe() {
T* ret = m_obj;
m_obj = nullptr;
return ret;
}
constexpr bool IsNull() const {
return m_obj == nullptr;
}
constexpr bool IsNotNull() const {
return m_obj != nullptr;
}
};
} // namespace Kernel