yuzu-emu
/
yuzu-android
Archived
1
0
Fork 0

Merge pull request #2609 from FernandoS27/new-scan

Implement a New Shader Scanner, Decompile Flow Stack and implement BRX BRA.CC
This commit is contained in:
bunnei 2019-07-11 17:36:23 -04:00 committed by GitHub
commit bb67091c77
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 778 additions and 124 deletions

View File

@ -82,6 +82,8 @@ set(HASH_FILES
"${VIDEO_CORE}/shader/decode/shift.cpp"
"${VIDEO_CORE}/shader/decode/video.cpp"
"${VIDEO_CORE}/shader/decode/xmad.cpp"
"${VIDEO_CORE}/shader/control_flow.cpp"
"${VIDEO_CORE}/shader/control_flow.h"
"${VIDEO_CORE}/shader/decode.cpp"
"${VIDEO_CORE}/shader/node.h"
"${VIDEO_CORE}/shader/node_helper.cpp"

View File

@ -56,6 +56,8 @@ add_custom_command(OUTPUT scm_rev.cpp
"${VIDEO_CORE}/shader/decode/shift.cpp"
"${VIDEO_CORE}/shader/decode/video.cpp"
"${VIDEO_CORE}/shader/decode/xmad.cpp"
"${VIDEO_CORE}/shader/control_flow.cpp"
"${VIDEO_CORE}/shader/control_flow.h"
"${VIDEO_CORE}/shader/decode.cpp"
"${VIDEO_CORE}/shader/node.h"
"${VIDEO_CORE}/shader/node_helper.cpp"

View File

@ -103,6 +103,8 @@ add_library(video_core STATIC
shader/decode/video.cpp
shader/decode/xmad.cpp
shader/decode/other.cpp
shader/control_flow.cpp
shader/control_flow.h
shader/decode.cpp
shader/node_helper.cpp
shader/node_helper.h

View File

@ -1367,6 +1367,20 @@ union Instruction {
}
} bra;
union {
BitField<20, 24, u64> target;
BitField<5, 1, u64> constant_buffer;
s32 GetBranchExtend() const {
// Sign extend the branch target offset
u32 mask = 1U << (24 - 1);
u32 value = static_cast<u32>(target);
// The branch offset is relative to the next instruction and is stored in bytes, so
// divide it by the size of an instruction and add 1 to it.
return static_cast<s32>((value ^ mask) - mask) / sizeof(Instruction) + 1;
}
} brx;
union {
BitField<39, 1, u64> emit; // EmitVertex
BitField<40, 1, u64> cut; // EndPrimitive
@ -1464,6 +1478,7 @@ public:
BFE_IMM,
BFI_IMM_R,
BRA,
BRX,
PBK,
LD_A,
LD_L,
@ -1738,6 +1753,7 @@ private:
INST("111000101001----", Id::SSY, Type::Flow, "SSY"),
INST("111000101010----", Id::PBK, Type::Flow, "PBK"),
INST("111000100100----", Id::BRA, Type::Flow, "BRA"),
INST("111000100101----", Id::BRX, Type::Flow, "BRX"),
INST("1111000011111---", Id::SYNC, Type::Flow, "SYNC"),
INST("111000110100---", Id::BRK, Type::Flow, "BRK"),
INST("111000110000----", Id::EXIT, Type::Flow, "EXIT"),

View File

@ -129,9 +129,11 @@ std::size_t CalculateProgramSize(const GLShader::ProgramCode& program) {
/// Hashes one (or two) program streams
u64 GetUniqueIdentifier(Maxwell::ShaderProgram program_type, const ProgramCode& code,
const ProgramCode& code_b) {
u64 unique_identifier =
Common::CityHash64(reinterpret_cast<const char*>(code.data()), CalculateProgramSize(code));
const ProgramCode& code_b, std::size_t size_a = 0, std::size_t size_b = 0) {
if (size_a == 0) {
size_a = CalculateProgramSize(code);
}
u64 unique_identifier = Common::CityHash64(reinterpret_cast<const char*>(code.data()), size_a);
if (program_type != Maxwell::ShaderProgram::VertexA) {
return unique_identifier;
}
@ -140,8 +142,11 @@ u64 GetUniqueIdentifier(Maxwell::ShaderProgram program_type, const ProgramCode&
std::size_t seed = 0;
boost::hash_combine(seed, unique_identifier);
const u64 identifier_b = Common::CityHash64(reinterpret_cast<const char*>(code_b.data()),
CalculateProgramSize(code_b));
if (size_b == 0) {
size_b = CalculateProgramSize(code_b);
}
const u64 identifier_b =
Common::CityHash64(reinterpret_cast<const char*>(code_b.data()), size_b);
boost::hash_combine(seed, identifier_b);
return static_cast<u64>(seed);
}
@ -150,14 +155,17 @@ u64 GetUniqueIdentifier(Maxwell::ShaderProgram program_type, const ProgramCode&
GLShader::ProgramResult CreateProgram(const Device& device, Maxwell::ShaderProgram program_type,
ProgramCode program_code, ProgramCode program_code_b) {
GLShader::ShaderSetup setup(program_code);
setup.program.size_a = CalculateProgramSize(program_code);
setup.program.size_b = 0;
if (program_type == Maxwell::ShaderProgram::VertexA) {
// VertexB is always enabled, so when VertexA is enabled, we have two vertex shaders.
// Conventional HW does not support this, so we combine VertexA and VertexB into one
// stage here.
setup.SetProgramB(program_code_b);
setup.program.size_b = CalculateProgramSize(program_code_b);
}
setup.program.unique_identifier =
GetUniqueIdentifier(program_type, program_code, program_code_b);
setup.program.unique_identifier = GetUniqueIdentifier(
program_type, program_code, program_code_b, setup.program.size_a, setup.program.size_b);
switch (program_type) {
case Maxwell::ShaderProgram::VertexA:

View File

@ -191,10 +191,12 @@ public:
// TODO(Subv): Figure out the actual depth of the flow stack, for now it seems
// unlikely that shaders will use 20 nested SSYs and PBKs.
constexpr u32 FLOW_STACK_SIZE = 20;
for (const auto stack : std::array{MetaStackClass::Ssy, MetaStackClass::Pbk}) {
code.AddLine("uint {}[{}];", FlowStackName(stack), FLOW_STACK_SIZE);
code.AddLine("uint {} = 0u;", FlowStackTopName(stack));
if (!ir.IsFlowStackDisabled()) {
constexpr u32 FLOW_STACK_SIZE = 20;
for (const auto stack : std::array{MetaStackClass::Ssy, MetaStackClass::Pbk}) {
code.AddLine("uint {}[{}];", FlowStackName(stack), FLOW_STACK_SIZE);
code.AddLine("uint {} = 0u;", FlowStackTopName(stack));
}
}
code.AddLine("while (true) {{");
@ -1555,6 +1557,14 @@ private:
return {};
}
std::string BranchIndirect(Operation operation) {
const std::string op_a = VisitOperand(operation, 0, Type::Uint);
code.AddLine("jmp_to = {};", op_a);
code.AddLine("break;");
return {};
}
std::string PushFlowStack(Operation operation) {
const auto stack = std::get<MetaStackClass>(operation.GetMeta());
const auto target = std::get_if<ImmediateNode>(&*operation[0]);
@ -1789,6 +1799,7 @@ private:
&GLSLDecompiler::ImageStore,
&GLSLDecompiler::Branch,
&GLSLDecompiler::BranchIndirect,
&GLSLDecompiler::PushFlowStack,
&GLSLDecompiler::PopFlowStack,
&GLSLDecompiler::Exit,

View File

@ -29,14 +29,14 @@ layout (std140, binding = EMULATION_UBO_BINDING) uniform vs_config {
};
)";
const ShaderIR program_ir(setup.program.code, PROGRAM_OFFSET);
const ShaderIR program_ir(setup.program.code, PROGRAM_OFFSET, setup.program.size_a);
ProgramResult program =
Decompile(device, program_ir, Maxwell3D::Regs::ShaderStage::Vertex, "vertex");
out += program.first;
if (setup.IsDualProgram()) {
const ShaderIR program_ir_b(setup.program.code_b, PROGRAM_OFFSET);
const ShaderIR program_ir_b(setup.program.code_b, PROGRAM_OFFSET, setup.program.size_b);
ProgramResult program_b =
Decompile(device, program_ir_b, Maxwell3D::Regs::ShaderStage::Vertex, "vertex_b");
@ -80,7 +80,7 @@ layout (std140, binding = EMULATION_UBO_BINDING) uniform gs_config {
};
)";
const ShaderIR program_ir(setup.program.code, PROGRAM_OFFSET);
const ShaderIR program_ir(setup.program.code, PROGRAM_OFFSET, setup.program.size_a);
ProgramResult program =
Decompile(device, program_ir, Maxwell3D::Regs::ShaderStage::Geometry, "geometry");
out += program.first;
@ -115,7 +115,7 @@ layout (std140, binding = EMULATION_UBO_BINDING) uniform fs_config {
};
)";
const ShaderIR program_ir(setup.program.code, PROGRAM_OFFSET);
const ShaderIR program_ir(setup.program.code, PROGRAM_OFFSET, setup.program.size_a);
ProgramResult program =
Decompile(device, program_ir, Maxwell3D::Regs::ShaderStage::Fragment, "fragment");

View File

@ -27,6 +27,8 @@ struct ShaderSetup {
ProgramCode code;
ProgramCode code_b; // Used for dual vertex shaders
u64 unique_identifier;
std::size_t size_a;
std::size_t size_b;
} program;
/// Used in scenarios where we have a dual vertex shaders

View File

@ -949,6 +949,14 @@ private:
return {};
}
Id BranchIndirect(Operation operation) {
const Id op_a = VisitOperand<Type::Uint>(operation, 0);
Emit(OpStore(jmp_to, op_a));
BranchingOp([&]() { Emit(OpBranch(continue_label)); });
return {};
}
Id PushFlowStack(Operation operation) {
const auto target = std::get_if<ImmediateNode>(&*operation[0]);
ASSERT(target);
@ -1334,6 +1342,7 @@ private:
&SPIRVDecompiler::ImageStore,
&SPIRVDecompiler::Branch,
&SPIRVDecompiler::BranchIndirect,
&SPIRVDecompiler::PushFlowStack,
&SPIRVDecompiler::PopFlowStack,
&SPIRVDecompiler::Exit,

View File

@ -0,0 +1,476 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <list>
#include <map>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "common/assert.h"
#include "common/common_types.h"
#include "video_core/shader/control_flow.h"
#include "video_core/shader/shader_ir.h"
namespace VideoCommon::Shader {
using Tegra::Shader::Instruction;
using Tegra::Shader::OpCode;
constexpr s32 unassigned_branch = -2;
struct Query {
u32 address{};
std::stack<u32> ssy_stack{};
std::stack<u32> pbk_stack{};
};
struct BlockStack {
BlockStack() = default;
BlockStack(const BlockStack& b) = default;
BlockStack(const Query& q) : ssy_stack{q.ssy_stack}, pbk_stack{q.pbk_stack} {}
std::stack<u32> ssy_stack{};
std::stack<u32> pbk_stack{};
};
struct BlockBranchInfo {
Condition condition{};
s32 address{exit_branch};
bool kill{};
bool is_sync{};
bool is_brk{};
bool ignore{};
};
struct BlockInfo {
u32 start{};
u32 end{};
bool visited{};
BlockBranchInfo branch{};
bool IsInside(const u32 address) const {
return start <= address && address <= end;
}
};
struct CFGRebuildState {
explicit CFGRebuildState(const ProgramCode& program_code, const std::size_t program_size,
const u32 start)
: program_code{program_code}, program_size{program_size}, start{start} {}
u32 start{};
std::vector<BlockInfo> block_info{};
std::list<u32> inspect_queries{};
std::list<Query> queries{};
std::unordered_map<u32, u32> registered{};
std::unordered_set<u32> labels{};
std::map<u32, u32> ssy_labels{};
std::map<u32, u32> pbk_labels{};
std::unordered_map<u32, BlockStack> stacks{};
const ProgramCode& program_code;
const std::size_t program_size;
};
enum class BlockCollision : u32 { None, Found, Inside };
std::pair<BlockCollision, u32> TryGetBlock(CFGRebuildState& state, u32 address) {
const auto& blocks = state.block_info;
for (u32 index = 0; index < blocks.size(); index++) {
if (blocks[index].start == address) {
return {BlockCollision::Found, index};
}
if (blocks[index].IsInside(address)) {
return {BlockCollision::Inside, index};
}
}
return {BlockCollision::None, -1};
}
struct ParseInfo {
BlockBranchInfo branch_info{};
u32 end_address{};
};
BlockInfo& CreateBlockInfo(CFGRebuildState& state, u32 start, u32 end) {
auto& it = state.block_info.emplace_back();
it.start = start;
it.end = end;
const u32 index = static_cast<u32>(state.block_info.size() - 1);
state.registered.insert({start, index});
return it;
}
Pred GetPredicate(u32 index, bool negated) {
return static_cast<Pred>(index + (negated ? 8 : 0));
}
/**
* Returns whether the instruction at the specified offset is a 'sched' instruction.
* Sched instructions always appear before a sequence of 3 instructions.
*/
constexpr bool IsSchedInstruction(u32 offset, u32 main_offset) {
constexpr u32 SchedPeriod = 4;
u32 absolute_offset = offset - main_offset;
return (absolute_offset % SchedPeriod) == 0;
}
enum class ParseResult : u32 {
ControlCaught,
BlockEnd,
AbnormalFlow,
};
std::pair<ParseResult, ParseInfo> ParseCode(CFGRebuildState& state, u32 address) {
u32 offset = static_cast<u32>(address);
const u32 end_address = static_cast<u32>(state.program_size / sizeof(Instruction));
ParseInfo parse_info{};
const auto insert_label = [](CFGRebuildState& state, u32 address) {
const auto pair = state.labels.emplace(address);
if (pair.second) {
state.inspect_queries.push_back(address);
}
};
while (true) {
if (offset >= end_address) {
// ASSERT_OR_EXECUTE can't be used, as it ignores the break
ASSERT_MSG(false, "Shader passed the current limit!");
parse_info.branch_info.address = exit_branch;
parse_info.branch_info.ignore = false;
break;
}
if (state.registered.count(offset) != 0) {
parse_info.branch_info.address = offset;
parse_info.branch_info.ignore = true;
break;
}
if (IsSchedInstruction(offset, state.start)) {
offset++;
continue;
}
const Instruction instr = {state.program_code[offset]};
const auto opcode = OpCode::Decode(instr);
if (!opcode || opcode->get().GetType() != OpCode::Type::Flow) {
offset++;
continue;
}
switch (opcode->get().GetId()) {
case OpCode::Id::EXIT: {
const auto pred_index = static_cast<u32>(instr.pred.pred_index);
parse_info.branch_info.condition.predicate =
GetPredicate(pred_index, instr.negate_pred != 0);
if (parse_info.branch_info.condition.predicate == Pred::NeverExecute) {
offset++;
continue;
}
const ConditionCode cc = instr.flow_condition_code;
parse_info.branch_info.condition.cc = cc;
if (cc == ConditionCode::F) {
offset++;
continue;
}
parse_info.branch_info.address = exit_branch;
parse_info.branch_info.kill = false;
parse_info.branch_info.is_sync = false;
parse_info.branch_info.is_brk = false;
parse_info.branch_info.ignore = false;
parse_info.end_address = offset;
return {ParseResult::ControlCaught, parse_info};
}
case OpCode::Id::BRA: {
if (instr.bra.constant_buffer != 0) {
return {ParseResult::AbnormalFlow, parse_info};
}
const auto pred_index = static_cast<u32>(instr.pred.pred_index);
parse_info.branch_info.condition.predicate =
GetPredicate(pred_index, instr.negate_pred != 0);
if (parse_info.branch_info.condition.predicate == Pred::NeverExecute) {
offset++;
continue;
}
const ConditionCode cc = instr.flow_condition_code;
parse_info.branch_info.condition.cc = cc;
if (cc == ConditionCode::F) {
offset++;
continue;
}
const u32 branch_offset = offset + instr.bra.GetBranchTarget();
if (branch_offset == 0) {
parse_info.branch_info.address = exit_branch;
} else {
parse_info.branch_info.address = branch_offset;
}
insert_label(state, branch_offset);
parse_info.branch_info.kill = false;
parse_info.branch_info.is_sync = false;
parse_info.branch_info.is_brk = false;
parse_info.branch_info.ignore = false;
parse_info.end_address = offset;
return {ParseResult::ControlCaught, parse_info};
}
case OpCode::Id::SYNC: {
const auto pred_index = static_cast<u32>(instr.pred.pred_index);
parse_info.branch_info.condition.predicate =
GetPredicate(pred_index, instr.negate_pred != 0);
if (parse_info.branch_info.condition.predicate == Pred::NeverExecute) {
offset++;
continue;
}
const ConditionCode cc = instr.flow_condition_code;
parse_info.branch_info.condition.cc = cc;
if (cc == ConditionCode::F) {
offset++;
continue;
}
parse_info.branch_info.address = unassigned_branch;
parse_info.branch_info.kill = false;
parse_info.branch_info.is_sync = true;
parse_info.branch_info.is_brk = false;
parse_info.branch_info.ignore = false;
parse_info.end_address = offset;
return {ParseResult::ControlCaught, parse_info};
}
case OpCode::Id::BRK: {
const auto pred_index = static_cast<u32>(instr.pred.pred_index);
parse_info.branch_info.condition.predicate =
GetPredicate(pred_index, instr.negate_pred != 0);
if (parse_info.branch_info.condition.predicate == Pred::NeverExecute) {
offset++;
continue;
}
const ConditionCode cc = instr.flow_condition_code;
parse_info.branch_info.condition.cc = cc;
if (cc == ConditionCode::F) {
offset++;
continue;
}
parse_info.branch_info.address = unassigned_branch;
parse_info.branch_info.kill = false;
parse_info.branch_info.is_sync = false;
parse_info.branch_info.is_brk = true;
parse_info.branch_info.ignore = false;
parse_info.end_address = offset;
return {ParseResult::ControlCaught, parse_info};
}
case OpCode::Id::KIL: {
const auto pred_index = static_cast<u32>(instr.pred.pred_index);
parse_info.branch_info.condition.predicate =
GetPredicate(pred_index, instr.negate_pred != 0);
if (parse_info.branch_info.condition.predicate == Pred::NeverExecute) {
offset++;
continue;
}
const ConditionCode cc = instr.flow_condition_code;
parse_info.branch_info.condition.cc = cc;
if (cc == ConditionCode::F) {
offset++;
continue;
}
parse_info.branch_info.address = exit_branch;
parse_info.branch_info.kill = true;
parse_info.branch_info.is_sync = false;
parse_info.branch_info.is_brk = false;
parse_info.branch_info.ignore = false;
parse_info.end_address = offset;
return {ParseResult::ControlCaught, parse_info};
}
case OpCode::Id::SSY: {
const u32 target = offset + instr.bra.GetBranchTarget();
insert_label(state, target);
state.ssy_labels.emplace(offset, target);
break;
}
case OpCode::Id::PBK: {
const u32 target = offset + instr.bra.GetBranchTarget();
insert_label(state, target);
state.pbk_labels.emplace(offset, target);
break;
}
case OpCode::Id::BRX: {
return {ParseResult::AbnormalFlow, parse_info};
}
default:
break;
}
offset++;
}
parse_info.branch_info.kill = false;
parse_info.branch_info.is_sync = false;
parse_info.branch_info.is_brk = false;
parse_info.end_address = offset - 1;
return {ParseResult::BlockEnd, parse_info};
}
bool TryInspectAddress(CFGRebuildState& state) {
if (state.inspect_queries.empty()) {
return false;
}
const u32 address = state.inspect_queries.front();
state.inspect_queries.pop_front();
const auto [result, block_index] = TryGetBlock(state, address);
switch (result) {
case BlockCollision::Found: {
return true;
}
case BlockCollision::Inside: {
// This case is the tricky one:
// We need to Split the block in 2 sepparate blocks
const u32 end = state.block_info[block_index].end;
BlockInfo& new_block = CreateBlockInfo(state, address, end);
BlockInfo& current_block = state.block_info[block_index];
current_block.end = address - 1;
new_block.branch = current_block.branch;
BlockBranchInfo forward_branch{};
forward_branch.address = address;
forward_branch.ignore = true;
current_block.branch = forward_branch;
return true;
}
default:
break;
}
const auto [parse_result, parse_info] = ParseCode(state, address);
if (parse_result == ParseResult::AbnormalFlow) {
// if it's AbnormalFlow, we end it as false, ending the CFG reconstruction
return false;
}
BlockInfo& block_info = CreateBlockInfo(state, address, parse_info.end_address);
block_info.branch = parse_info.branch_info;
if (parse_info.branch_info.condition.IsUnconditional()) {
return true;
}
const u32 fallthrough_address = parse_info.end_address + 1;
state.inspect_queries.push_front(fallthrough_address);
return true;
}
bool TryQuery(CFGRebuildState& state) {
const auto gather_labels = [](std::stack<u32>& cc, std::map<u32, u32>& labels,
BlockInfo& block) {
auto gather_start = labels.lower_bound(block.start);
const auto gather_end = labels.upper_bound(block.end);
while (gather_start != gather_end) {
cc.push(gather_start->second);
gather_start++;
}
};
if (state.queries.empty()) {
return false;
}
Query& q = state.queries.front();
const u32 block_index = state.registered[q.address];
BlockInfo& block = state.block_info[block_index];
// If the block is visted, check if the stacks match, else gather the ssy/pbk
// labels into the current stack and look if the branch at the end of the block
// consumes a label. Schedule new queries accordingly
if (block.visited) {
BlockStack& stack = state.stacks[q.address];
const bool all_okay = (stack.ssy_stack.size() == 0 || q.ssy_stack == stack.ssy_stack) &&
(stack.pbk_stack.size() == 0 || q.pbk_stack == stack.pbk_stack);
state.queries.pop_front();
return all_okay;
}
block.visited = true;
state.stacks[q.address] = BlockStack{q};
Query q2(q);
state.queries.pop_front();
gather_labels(q2.ssy_stack, state.ssy_labels, block);
gather_labels(q2.pbk_stack, state.pbk_labels, block);
if (!block.branch.condition.IsUnconditional()) {
q2.address = block.end + 1;
state.queries.push_back(q2);
}
Query conditional_query{q2};
if (block.branch.is_sync) {
if (block.branch.address == unassigned_branch) {
block.branch.address = conditional_query.ssy_stack.top();
}
conditional_query.ssy_stack.pop();
}
if (block.branch.is_brk) {
if (block.branch.address == unassigned_branch) {
block.branch.address = conditional_query.pbk_stack.top();
}
conditional_query.pbk_stack.pop();
}
conditional_query.address = block.branch.address;
state.queries.push_back(conditional_query);
return true;
}
std::optional<ShaderCharacteristics> ScanFlow(const ProgramCode& program_code, u32 program_size,
u32 start_address) {
CFGRebuildState state{program_code, program_size, start_address};
// Inspect Code and generate blocks
state.labels.clear();
state.labels.emplace(start_address);
state.inspect_queries.push_back(state.start);
while (!state.inspect_queries.empty()) {
if (!TryInspectAddress(state)) {
return {};
}
}
// Decompile Stacks
Query start_query{};
start_query.address = state.start;
state.queries.push_back(start_query);
bool decompiled = true;
while (!state.queries.empty()) {
if (!TryQuery(state)) {
decompiled = false;
break;
}
}
// Sort and organize results
std::sort(state.block_info.begin(), state.block_info.end(),
[](const BlockInfo& a, const BlockInfo& b) -> bool { return a.start < b.start; });
ShaderCharacteristics result_out{};
result_out.decompilable = decompiled;
result_out.start = start_address;
result_out.end = start_address;
for (auto& block : state.block_info) {
ShaderBlock new_block{};
new_block.start = block.start;
new_block.end = block.end;
new_block.ignore_branch = block.branch.ignore;
if (!new_block.ignore_branch) {
new_block.branch.cond = block.branch.condition;
new_block.branch.kills = block.branch.kill;
new_block.branch.address = block.branch.address;
}
result_out.end = std::max(result_out.end, block.end);
result_out.blocks.push_back(new_block);
}
if (result_out.decompilable) {
result_out.labels = std::move(state.labels);
return {result_out};
}
// If it's not decompilable, merge the unlabelled blocks together
auto back = result_out.blocks.begin();
auto next = std::next(back);
while (next != result_out.blocks.end()) {
if (state.labels.count(next->start) == 0 && next->start == back->end + 1) {
back->end = next->end;
next = result_out.blocks.erase(next);
continue;
}
back = next;
next++;
}
return {result_out};
}
} // namespace VideoCommon::Shader

View File

@ -0,0 +1,63 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <cstring>
#include <list>
#include <optional>
#include <unordered_set>
#include "video_core/engines/shader_bytecode.h"
#include "video_core/shader/shader_ir.h"
namespace VideoCommon::Shader {
using Tegra::Shader::ConditionCode;
using Tegra::Shader::Pred;
constexpr s32 exit_branch = -1;
struct Condition {
Pred predicate{Pred::UnusedIndex};
ConditionCode cc{ConditionCode::T};
bool IsUnconditional() const {
return predicate == Pred::UnusedIndex && cc == ConditionCode::T;
}
bool operator==(const Condition& other) const {
return std::tie(predicate, cc) == std::tie(other.predicate, other.cc);
}
};
struct ShaderBlock {
u32 start{};
u32 end{};
bool ignore_branch{};
struct Branch {
Condition cond{};
bool kills{};
s32 address{};
bool operator==(const Branch& b) const {
return std::tie(cond, kills, address) == std::tie(b.cond, b.kills, b.address);
}
} branch{};
bool operator==(const ShaderBlock& sb) const {
return std::tie(start, end, ignore_branch, branch) ==
std::tie(sb.start, sb.end, sb.ignore_branch, sb.branch);
}
};
struct ShaderCharacteristics {
std::list<ShaderBlock> blocks{};
bool decompilable{};
u32 start{};
u32 end{};
std::unordered_set<u32> labels{};
};
std::optional<ShaderCharacteristics> ScanFlow(const ProgramCode& program_code, u32 program_size,
u32 start_address);
} // namespace VideoCommon::Shader

View File

@ -11,6 +11,7 @@
#include "common/common_types.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/engines/shader_header.h"
#include "video_core/shader/control_flow.h"
#include "video_core/shader/node_helper.h"
#include "video_core/shader/shader_ir.h"
@ -21,20 +22,6 @@ using Tegra::Shader::OpCode;
namespace {
/// Merges exit method of two parallel branches.
constexpr ExitMethod ParallelExit(ExitMethod a, ExitMethod b) {
if (a == ExitMethod::Undetermined) {
return b;
}
if (b == ExitMethod::Undetermined) {
return a;
}
if (a == b) {
return a;
}
return ExitMethod::Conditional;
}
/**
* Returns whether the instruction at the specified offset is a 'sched' instruction.
* Sched instructions always appear before a sequence of 3 instructions.
@ -51,87 +38,106 @@ constexpr bool IsSchedInstruction(u32 offset, u32 main_offset) {
void ShaderIR::Decode() {
std::memcpy(&header, program_code.data(), sizeof(Tegra::Shader::Header));
std::set<u32> labels;
const ExitMethod exit_method = Scan(main_offset, MAX_PROGRAM_LENGTH, labels);
if (exit_method != ExitMethod::AlwaysEnd) {
UNREACHABLE_MSG("Program does not always end");
}
if (labels.empty()) {
basic_blocks.insert({main_offset, DecodeRange(main_offset, MAX_PROGRAM_LENGTH)});
disable_flow_stack = false;
const auto info = ScanFlow(program_code, program_size, main_offset);
if (info) {
const auto& shader_info = *info;
coverage_begin = shader_info.start;
coverage_end = shader_info.end;
if (shader_info.decompilable) {
disable_flow_stack = true;
const auto insert_block = ([this](NodeBlock& nodes, u32 label) {
if (label == exit_branch) {
return;
}
basic_blocks.insert({label, nodes});
});
const auto& blocks = shader_info.blocks;
NodeBlock current_block;
u32 current_label = exit_branch;
for (auto& block : blocks) {
if (shader_info.labels.count(block.start) != 0) {
insert_block(current_block, current_label);
current_block.clear();
current_label = block.start;
}
if (!block.ignore_branch) {
DecodeRangeInner(current_block, block.start, block.end);
InsertControlFlow(current_block, block);
} else {
DecodeRangeInner(current_block, block.start, block.end + 1);
}
}
insert_block(current_block, current_label);
return;
}
LOG_WARNING(HW_GPU, "Flow Stack Removing Failed! Falling back to old method");
// we can't decompile it, fallback to standard method
for (const auto& block : shader_info.blocks) {
basic_blocks.insert({block.start, DecodeRange(block.start, block.end + 1)});
}
return;
}
LOG_WARNING(HW_GPU, "Flow Analysis Failed! Falling back to brute force compiling");
labels.insert(main_offset);
for (const u32 label : labels) {
const auto next_it = labels.lower_bound(label + 1);
const u32 next_label = next_it == labels.end() ? MAX_PROGRAM_LENGTH : *next_it;
basic_blocks.insert({label, DecodeRange(label, next_label)});
// Now we need to deal with an undecompilable shader. We need to brute force
// a shader that captures every position.
coverage_begin = main_offset;
const u32 shader_end = static_cast<u32>(program_size / sizeof(u64));
coverage_end = shader_end;
for (u32 label = main_offset; label < shader_end; label++) {
basic_blocks.insert({label, DecodeRange(label, label + 1)});
}
}
ExitMethod ShaderIR::Scan(u32 begin, u32 end, std::set<u32>& labels) {
const auto [iter, inserted] =
exit_method_map.emplace(std::make_pair(begin, end), ExitMethod::Undetermined);
ExitMethod& exit_method = iter->second;
if (!inserted)
return exit_method;
for (u32 offset = begin; offset != end && offset != MAX_PROGRAM_LENGTH; ++offset) {
coverage_begin = std::min(coverage_begin, offset);
coverage_end = std::max(coverage_end, offset + 1);
const Instruction instr = {program_code[offset]};
const auto opcode = OpCode::Decode(instr);
if (!opcode)
continue;
switch (opcode->get().GetId()) {
case OpCode::Id::EXIT: {
// The EXIT instruction can be predicated, which means that the shader can conditionally
// end on this instruction. We have to consider the case where the condition is not met
// and check the exit method of that other basic block.
using Tegra::Shader::Pred;
if (instr.pred.pred_index == static_cast<u64>(Pred::UnusedIndex)) {
return exit_method = ExitMethod::AlwaysEnd;
} else {
const ExitMethod not_met = Scan(offset + 1, end, labels);
return exit_method = ParallelExit(ExitMethod::AlwaysEnd, not_met);
}
}
case OpCode::Id::BRA: {
const u32 target = offset + instr.bra.GetBranchTarget();
labels.insert(target);
const ExitMethod no_jmp = Scan(offset + 1, end, labels);
const ExitMethod jmp = Scan(target, end, labels);
return exit_method = ParallelExit(no_jmp, jmp);
}
case OpCode::Id::SSY:
case OpCode::Id::PBK: {
// The SSY and PBK use a similar encoding as the BRA instruction.
UNIMPLEMENTED_IF_MSG(instr.bra.constant_buffer != 0,
"Constant buffer branching is not supported");
const u32 target = offset + instr.bra.GetBranchTarget();
labels.insert(target);
// Continue scanning for an exit method.
break;
}
default:
break;
}
}
return exit_method = ExitMethod::AlwaysReturn;
}
NodeBlock ShaderIR::DecodeRange(u32 begin, u32 end) {
NodeBlock basic_block;
for (u32 pc = begin; pc < (begin > end ? MAX_PROGRAM_LENGTH : end);) {
pc = DecodeInstr(basic_block, pc);
}
DecodeRangeInner(basic_block, begin, end);
return basic_block;
}
void ShaderIR::DecodeRangeInner(NodeBlock& bb, u32 begin, u32 end) {
for (u32 pc = begin; pc < (begin > end ? MAX_PROGRAM_LENGTH : end);) {
pc = DecodeInstr(bb, pc);
}
}
void ShaderIR::InsertControlFlow(NodeBlock& bb, const ShaderBlock& block) {
const auto apply_conditions = ([&](const Condition& cond, Node n) -> Node {
Node result = n;
if (cond.cc != ConditionCode::T) {
result = Conditional(GetConditionCode(cond.cc), {result});
}
if (cond.predicate != Pred::UnusedIndex) {
u32 pred = static_cast<u32>(cond.predicate);
const bool is_neg = pred > 7;
if (is_neg) {
pred -= 8;
}
result = Conditional(GetPredicate(pred, is_neg), {result});
}
return result;
});
if (block.branch.address < 0) {
if (block.branch.kills) {
Node n = Operation(OperationCode::Discard);
n = apply_conditions(block.branch.cond, n);
bb.push_back(n);
global_code.push_back(n);
return;
}
Node n = Operation(OperationCode::Exit);
n = apply_conditions(block.branch.cond, n);
bb.push_back(n);
global_code.push_back(n);
return;
}
Node n = Operation(OperationCode::Branch, Immediate(block.branch.address));
n = apply_conditions(block.branch.cond, n);
bb.push_back(n);
global_code.push_back(n);
}
u32 ShaderIR::DecodeInstr(NodeBlock& bb, u32 pc) {
// Ignore sched instructions when generating code.
if (IsSchedInstruction(pc, main_offset)) {
@ -140,15 +146,18 @@ u32 ShaderIR::DecodeInstr(NodeBlock& bb, u32 pc) {
const Instruction instr = {program_code[pc]};
const auto opcode = OpCode::Decode(instr);
const u32 nv_address = ConvertAddressToNvidiaSpace(pc);
// Decoding failure
if (!opcode) {
UNIMPLEMENTED_MSG("Unhandled instruction: {0:x}", instr.value);
bb.push_back(Comment(fmt::format("{:05x} Unimplemented Shader instruction (0x{:016x})",
nv_address, instr.value)));
return pc + 1;
}
bb.push_back(
Comment(fmt::format("{}: {} (0x{:016x})", pc, opcode->get().GetName(), instr.value)));
bb.push_back(Comment(
fmt::format("{:05x} {} (0x{:016x})", nv_address, opcode->get().GetName(), instr.value)));
using Tegra::Shader::Pred;
UNIMPLEMENTED_IF_MSG(instr.pred.full_pred == Pred::NeverExecute,

View File

@ -91,11 +91,46 @@ u32 ShaderIR::DecodeOther(NodeBlock& bb, u32 pc) {
break;
}
case OpCode::Id::BRA: {
UNIMPLEMENTED_IF_MSG(instr.bra.constant_buffer != 0,
"BRA with constant buffers are not implemented");
Node branch;
if (instr.bra.constant_buffer == 0) {
const u32 target = pc + instr.bra.GetBranchTarget();
branch = Operation(OperationCode::Branch, Immediate(target));
} else {
const u32 target = pc + 1;
const Node op_a = GetConstBuffer(instr.cbuf36.index, instr.cbuf36.GetOffset());
const Node convert = SignedOperation(OperationCode::IArithmeticShiftRight, true,
PRECISE, op_a, Immediate(3));
const Node operand =
Operation(OperationCode::IAdd, PRECISE, convert, Immediate(target));
branch = Operation(OperationCode::BranchIndirect, convert);
}
const u32 target = pc + instr.bra.GetBranchTarget();
const Node branch = Operation(OperationCode::Branch, Immediate(target));
const Tegra::Shader::ConditionCode cc = instr.flow_condition_code;
if (cc != Tegra::Shader::ConditionCode::T) {
bb.push_back(Conditional(GetConditionCode(cc), {branch}));
} else {
bb.push_back(branch);
}
break;
}
case OpCode::Id::BRX: {
Node operand;
if (instr.brx.constant_buffer != 0) {
const s32 target = pc + 1;
const Node index = GetRegister(instr.gpr8);
const Node op_a =
GetConstBufferIndirect(instr.cbuf36.index, instr.cbuf36.GetOffset() + 0, index);
const Node convert = SignedOperation(OperationCode::IArithmeticShiftRight, true,
PRECISE, op_a, Immediate(3));
operand = Operation(OperationCode::IAdd, PRECISE, convert, Immediate(target));
} else {
const s32 target = pc + instr.brx.GetBranchExtend();
const Node op_a = GetRegister(instr.gpr8);
const Node convert = SignedOperation(OperationCode::IArithmeticShiftRight, true,
PRECISE, op_a, Immediate(3));
operand = Operation(OperationCode::IAdd, PRECISE, convert, Immediate(target));
}
const Node branch = Operation(OperationCode::BranchIndirect, operand);
const Tegra::Shader::ConditionCode cc = instr.flow_condition_code;
if (cc != Tegra::Shader::ConditionCode::T) {
@ -109,6 +144,10 @@ u32 ShaderIR::DecodeOther(NodeBlock& bb, u32 pc) {
UNIMPLEMENTED_IF_MSG(instr.bra.constant_buffer != 0,
"Constant buffer flow is not supported");
if (disable_flow_stack) {
break;
}
// The SSY opcode tells the GPU where to re-converge divergent execution paths with SYNC.
const u32 target = pc + instr.bra.GetBranchTarget();
bb.push_back(
@ -119,6 +158,10 @@ u32 ShaderIR::DecodeOther(NodeBlock& bb, u32 pc) {
UNIMPLEMENTED_IF_MSG(instr.bra.constant_buffer != 0,
"Constant buffer PBK is not supported");
if (disable_flow_stack) {
break;
}
// PBK pushes to a stack the address where BRK will jump to.
const u32 target = pc + instr.bra.GetBranchTarget();
bb.push_back(
@ -130,6 +173,10 @@ u32 ShaderIR::DecodeOther(NodeBlock& bb, u32 pc) {
UNIMPLEMENTED_IF_MSG(cc != Tegra::Shader::ConditionCode::T, "SYNC condition code used: {}",
static_cast<u32>(cc));
if (disable_flow_stack) {
break;
}
// The SYNC opcode jumps to the address previously set by the SSY opcode
bb.push_back(Operation(OperationCode::PopFlowStack, MetaStackClass::Ssy));
break;
@ -138,6 +185,9 @@ u32 ShaderIR::DecodeOther(NodeBlock& bb, u32 pc) {
const Tegra::Shader::ConditionCode cc = instr.flow_condition_code;
UNIMPLEMENTED_IF_MSG(cc != Tegra::Shader::ConditionCode::T, "BRK condition code used: {}",
static_cast<u32>(cc));
if (disable_flow_stack) {
break;
}
// The BRK opcode jumps to the address previously set by the PBK opcode
bb.push_back(Operation(OperationCode::PopFlowStack, MetaStackClass::Pbk));

View File

@ -148,11 +148,12 @@ enum class OperationCode {
ImageStore, /// (MetaImage, float[N] coords) -> void
Branch, /// (uint branch_target) -> void
PushFlowStack, /// (uint branch_target) -> void
PopFlowStack, /// () -> void
Exit, /// () -> void
Discard, /// () -> void
Branch, /// (uint branch_target) -> void
BranchIndirect, /// (uint branch_target) -> void
PushFlowStack, /// (uint branch_target) -> void
PopFlowStack, /// () -> void
Exit, /// () -> void
Discard, /// () -> void
EmitVertex, /// () -> void
EndPrimitive, /// () -> void

View File

@ -22,8 +22,8 @@ using Tegra::Shader::PredCondition;
using Tegra::Shader::PredOperation;
using Tegra::Shader::Register;
ShaderIR::ShaderIR(const ProgramCode& program_code, u32 main_offset)
: program_code{program_code}, main_offset{main_offset} {
ShaderIR::ShaderIR(const ProgramCode& program_code, u32 main_offset, const std::size_t size)
: program_code{program_code}, main_offset{main_offset}, program_size{size} {
Decode();
}

View File

@ -22,18 +22,12 @@
namespace VideoCommon::Shader {
struct ShaderBlock;
using ProgramCode = std::vector<u64>;
constexpr u32 MAX_PROGRAM_LENGTH = 0x1000;
/// Describes the behaviour of code path of a given entry point and a return point.
enum class ExitMethod {
Undetermined, ///< Internal value. Only occur when analyzing JMP loop.
AlwaysReturn, ///< All code paths reach the return point.
Conditional, ///< Code path reaches the return point or an END instruction conditionally.
AlwaysEnd, ///< All code paths reach a END instruction.
};
class ConstBuffer {
public:
explicit ConstBuffer(u32 max_offset, bool is_indirect)
@ -73,7 +67,7 @@ struct GlobalMemoryUsage {
class ShaderIR final {
public:
explicit ShaderIR(const ProgramCode& program_code, u32 main_offset);
explicit ShaderIR(const ProgramCode& program_code, u32 main_offset, std::size_t size);
~ShaderIR();
const std::map<u32, NodeBlock>& GetBasicBlocks() const {
@ -129,12 +123,20 @@ public:
return header;
}
bool IsFlowStackDisabled() const {
return disable_flow_stack;
}
u32 ConvertAddressToNvidiaSpace(const u32 address) const {
return (address - main_offset) * sizeof(Tegra::Shader::Instruction);
}
private:
void Decode();
ExitMethod Scan(u32 begin, u32 end, std::set<u32>& labels);
NodeBlock DecodeRange(u32 begin, u32 end);
void DecodeRangeInner(NodeBlock& bb, u32 begin, u32 end);
void InsertControlFlow(NodeBlock& bb, const ShaderBlock& block);
/**
* Decodes a single instruction from Tegra to IR.
@ -326,10 +328,11 @@ private:
const ProgramCode& program_code;
const u32 main_offset;
const std::size_t program_size;
bool disable_flow_stack{};
u32 coverage_begin{};
u32 coverage_end{};
std::map<std::pair<u32, u32>, ExitMethod> exit_method_map;
std::map<u32, NodeBlock> basic_blocks;
NodeBlock global_code;