yuzu-emu
/
yuzu-android
Archived
1
0
Fork 0

Merge pull request #388 from bunnei/refactor-rasterizer-cache

Refactor rasterizer cache
This commit is contained in:
bunnei 2018-04-24 23:22:24 -04:00 committed by GitHub
commit ea3151f475
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 334 additions and 175 deletions

View File

@ -325,15 +325,29 @@ u8* GetPhysicalPointer(PAddr address) {
return target_pointer; return target_pointer;
} }
void RasterizerMarkRegionCached(VAddr start, u64 size, bool cached) { void RasterizerMarkRegionCached(Tegra::GPUVAddr gpu_addr, u64 size, bool cached) {
if (start == 0) { if (gpu_addr == 0) {
return; return;
} }
u64 num_pages = ((start + size - 1) >> PAGE_BITS) - (start >> PAGE_BITS) + 1; // Iterate over a contiguous CPU address space, which corresponds to the specified GPU address
VAddr vaddr = start; // space, marking the region as un/cached. The region is marked un/cached at a granularity of
// CPU pages, hence why we iterate on a CPU page basis (note: GPU page size is different). This
// assumes the specified GPU address region is contiguous as well.
u64 num_pages = ((gpu_addr + size - 1) >> PAGE_BITS) - (gpu_addr >> PAGE_BITS) + 1;
for (unsigned i = 0; i < num_pages; ++i, gpu_addr += PAGE_SIZE) {
boost::optional<VAddr> maybe_vaddr =
Core::System::GetInstance().GPU().memory_manager->GpuToCpuAddress(gpu_addr);
// The GPU <-> CPU virtual memory mapping is not 1:1
if (!maybe_vaddr) {
LOG_ERROR(HW_Memory,
"Trying to flush a cached region to an invalid physical address %08X",
gpu_addr);
continue;
}
VAddr vaddr = *maybe_vaddr;
for (unsigned i = 0; i < num_pages; ++i, vaddr += PAGE_SIZE) {
PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS]; PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS];
if (cached) { if (cached) {
@ -347,6 +361,10 @@ void RasterizerMarkRegionCached(VAddr start, u64 size, bool cached) {
page_type = PageType::RasterizerCachedMemory; page_type = PageType::RasterizerCachedMemory;
current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr; current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr;
break; break;
case PageType::RasterizerCachedMemory:
// There can be more than one GPU region mapped per CPU region, so it's common that
// this area is already marked as cached.
break;
default: default:
UNREACHABLE(); UNREACHABLE();
} }
@ -357,6 +375,10 @@ void RasterizerMarkRegionCached(VAddr start, u64 size, bool cached) {
// It is not necessary for a process to have this region mapped into its address // It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping. // space, for example, a system module need not have a VRAM mapping.
break; break;
case PageType::Memory:
// There can be more than one GPU region mapped per CPU region, so it's common that
// this area is already unmarked as cached.
break;
case PageType::RasterizerCachedMemory: { case PageType::RasterizerCachedMemory: {
u8* pointer = GetPointerFromVMA(vaddr & ~PAGE_MASK); u8* pointer = GetPointerFromVMA(vaddr & ~PAGE_MASK);
if (pointer == nullptr) { if (pointer == nullptr) {
@ -394,20 +416,30 @@ void RasterizerFlushVirtualRegion(VAddr start, u64 size, FlushMode mode) {
VAddr overlap_start = std::max(start, region_start); VAddr overlap_start = std::max(start, region_start);
VAddr overlap_end = std::min(end, region_end); VAddr overlap_end = std::min(end, region_end);
std::vector<Tegra::GPUVAddr> gpu_addresses =
Core::System::GetInstance().GPU().memory_manager->CpuToGpuAddress(overlap_start);
if (gpu_addresses.empty()) {
return;
}
u64 overlap_size = overlap_end - overlap_start; u64 overlap_size = overlap_end - overlap_start;
for (const auto& gpu_address : gpu_addresses) {
auto* rasterizer = VideoCore::g_renderer->Rasterizer(); auto* rasterizer = VideoCore::g_renderer->Rasterizer();
switch (mode) { switch (mode) {
case FlushMode::Flush: case FlushMode::Flush:
rasterizer->FlushRegion(overlap_start, overlap_size); rasterizer->FlushRegion(gpu_address, overlap_size);
break; break;
case FlushMode::Invalidate: case FlushMode::Invalidate:
rasterizer->InvalidateRegion(overlap_start, overlap_size); rasterizer->InvalidateRegion(gpu_address, overlap_size);
break; break;
case FlushMode::FlushAndInvalidate: case FlushMode::FlushAndInvalidate:
rasterizer->FlushAndInvalidateRegion(overlap_start, overlap_size); rasterizer->FlushAndInvalidateRegion(gpu_address, overlap_size);
break; break;
} }
}
}; };
CheckRegion(PROCESS_IMAGE_VADDR, PROCESS_IMAGE_VADDR_END); CheckRegion(PROCESS_IMAGE_VADDR, PROCESS_IMAGE_VADDR_END);

View File

@ -14,6 +14,7 @@
#include <boost/optional.hpp> #include <boost/optional.hpp>
#include "common/common_types.h" #include "common/common_types.h"
#include "core/memory_hook.h" #include "core/memory_hook.h"
#include "video_core/memory_manager.h"
namespace Kernel { namespace Kernel {
class Process; class Process;
@ -258,7 +259,7 @@ enum class FlushMode {
/** /**
* Mark each page touching the region as cached. * Mark each page touching the region as cached.
*/ */
void RasterizerMarkRegionCached(VAddr start, u64 size, bool cached); void RasterizerMarkRegionCached(Tegra::GPUVAddr start, u64 size, bool cached);
/** /**
* Flushes and invalidates any externally cached rasterizer resources touching the given virtual * Flushes and invalidates any externally cached rasterizer resources touching the given virtual

View File

@ -90,11 +90,9 @@ void GPU::WriteReg(u32 method, u32 subchannel, u32 value, u32 remaining_params)
} }
void GPU::ProcessCommandList(GPUVAddr address, u32 size) { void GPU::ProcessCommandList(GPUVAddr address, u32 size) {
// TODO(Subv): PhysicalToVirtualAddress is a misnomer, it converts a GPU VAddr into an const boost::optional<VAddr> head_address = memory_manager->GpuToCpuAddress(address);
// application VAddr. VAddr current_addr = *head_address;
const VAddr head_address = memory_manager->PhysicalToVirtualAddress(address); while (current_addr < *head_address + size * sizeof(CommandHeader)) {
VAddr current_addr = head_address;
while (current_addr < head_address + size * sizeof(CommandHeader)) {
const CommandHeader header = {Memory::Read32(current_addr)}; const CommandHeader header = {Memory::Read32(current_addr)};
current_addr += sizeof(u32); current_addr += sizeof(u32);

View File

@ -145,7 +145,7 @@ void Maxwell3D::ProcessQueryGet() {
GPUVAddr sequence_address = regs.query.QueryAddress(); GPUVAddr sequence_address = regs.query.QueryAddress();
// Since the sequence address is given as a GPU VAddr, we have to convert it to an application // Since the sequence address is given as a GPU VAddr, we have to convert it to an application
// VAddr before writing. // VAddr before writing.
VAddr address = memory_manager.PhysicalToVirtualAddress(sequence_address); boost::optional<VAddr> address = memory_manager.GpuToCpuAddress(sequence_address);
// TODO(Subv): Support the other query units. // TODO(Subv): Support the other query units.
ASSERT_MSG(regs.query.query_get.unit == Regs::QueryUnit::Crop, ASSERT_MSG(regs.query.query_get.unit == Regs::QueryUnit::Crop,
@ -153,7 +153,7 @@ void Maxwell3D::ProcessQueryGet() {
ASSERT_MSG(regs.query.query_get.short_query, ASSERT_MSG(regs.query.query_get.short_query,
"Writing the entire query result structure is unimplemented"); "Writing the entire query result structure is unimplemented");
u32 value = Memory::Read32(address); u32 value = Memory::Read32(*address);
u32 result = 0; u32 result = 0;
// TODO(Subv): Support the other query variables // TODO(Subv): Support the other query variables
@ -173,7 +173,7 @@ void Maxwell3D::ProcessQueryGet() {
case Regs::QueryMode::Write2: { case Regs::QueryMode::Write2: {
// Write the current query sequence to the sequence address. // Write the current query sequence to the sequence address.
u32 sequence = regs.query.query_sequence; u32 sequence = regs.query.query_sequence;
Memory::Write32(address, sequence); Memory::Write32(*address, sequence);
// TODO(Subv): Write the proper query response structure to the address when not using short // TODO(Subv): Write the proper query response structure to the address when not using short
// mode. // mode.
@ -225,10 +225,10 @@ void Maxwell3D::ProcessCBData(u32 value) {
// Don't allow writing past the end of the buffer. // Don't allow writing past the end of the buffer.
ASSERT(regs.const_buffer.cb_pos + sizeof(u32) <= regs.const_buffer.cb_size); ASSERT(regs.const_buffer.cb_pos + sizeof(u32) <= regs.const_buffer.cb_size);
VAddr address = boost::optional<VAddr> address =
memory_manager.PhysicalToVirtualAddress(buffer_address + regs.const_buffer.cb_pos); memory_manager.GpuToCpuAddress(buffer_address + regs.const_buffer.cb_pos);
Memory::Write32(address, value); Memory::Write32(*address, value);
// Increment the current buffer position. // Increment the current buffer position.
regs.const_buffer.cb_pos = regs.const_buffer.cb_pos + 4; regs.const_buffer.cb_pos = regs.const_buffer.cb_pos + 4;
@ -238,10 +238,10 @@ Texture::TICEntry Maxwell3D::GetTICEntry(u32 tic_index) const {
GPUVAddr tic_base_address = regs.tic.TICAddress(); GPUVAddr tic_base_address = regs.tic.TICAddress();
GPUVAddr tic_address_gpu = tic_base_address + tic_index * sizeof(Texture::TICEntry); GPUVAddr tic_address_gpu = tic_base_address + tic_index * sizeof(Texture::TICEntry);
VAddr tic_address_cpu = memory_manager.PhysicalToVirtualAddress(tic_address_gpu); boost::optional<VAddr> tic_address_cpu = memory_manager.GpuToCpuAddress(tic_address_gpu);
Texture::TICEntry tic_entry; Texture::TICEntry tic_entry;
Memory::ReadBlock(tic_address_cpu, &tic_entry, sizeof(Texture::TICEntry)); Memory::ReadBlock(*tic_address_cpu, &tic_entry, sizeof(Texture::TICEntry));
ASSERT_MSG(tic_entry.header_version == Texture::TICHeaderVersion::BlockLinear || ASSERT_MSG(tic_entry.header_version == Texture::TICHeaderVersion::BlockLinear ||
tic_entry.header_version == Texture::TICHeaderVersion::Pitch, tic_entry.header_version == Texture::TICHeaderVersion::Pitch,
@ -268,10 +268,10 @@ Texture::TSCEntry Maxwell3D::GetTSCEntry(u32 tsc_index) const {
GPUVAddr tsc_base_address = regs.tsc.TSCAddress(); GPUVAddr tsc_base_address = regs.tsc.TSCAddress();
GPUVAddr tsc_address_gpu = tsc_base_address + tsc_index * sizeof(Texture::TSCEntry); GPUVAddr tsc_address_gpu = tsc_base_address + tsc_index * sizeof(Texture::TSCEntry);
VAddr tsc_address_cpu = memory_manager.PhysicalToVirtualAddress(tsc_address_gpu); boost::optional<VAddr> tsc_address_cpu = memory_manager.GpuToCpuAddress(tsc_address_gpu);
Texture::TSCEntry tsc_entry; Texture::TSCEntry tsc_entry;
Memory::ReadBlock(tsc_address_cpu, &tsc_entry, sizeof(Texture::TSCEntry)); Memory::ReadBlock(*tsc_address_cpu, &tsc_entry, sizeof(Texture::TSCEntry));
return tsc_entry; return tsc_entry;
} }
@ -293,7 +293,7 @@ std::vector<Texture::FullTextureInfo> Maxwell3D::GetStageTextures(Regs::ShaderSt
current_texture < tex_info_buffer_end; current_texture += sizeof(Texture::TextureHandle)) { current_texture < tex_info_buffer_end; current_texture += sizeof(Texture::TextureHandle)) {
Texture::TextureHandle tex_handle{ Texture::TextureHandle tex_handle{
Memory::Read32(memory_manager.PhysicalToVirtualAddress(current_texture))}; Memory::Read32(*memory_manager.GpuToCpuAddress(current_texture))};
Texture::FullTextureInfo tex_info{}; Texture::FullTextureInfo tex_info{};
// TODO(Subv): Use the shader to determine which textures are actually accessed. // TODO(Subv): Use the shader to determine which textures are actually accessed.

View File

@ -8,90 +8,112 @@
namespace Tegra { namespace Tegra {
PAddr MemoryManager::AllocateSpace(u64 size, u64 align) { GPUVAddr MemoryManager::AllocateSpace(u64 size, u64 align) {
boost::optional<PAddr> paddr = FindFreeBlock(size, align); boost::optional<GPUVAddr> gpu_addr = FindFreeBlock(size, align);
ASSERT(paddr); ASSERT(gpu_addr);
for (u64 offset = 0; offset < size; offset += PAGE_SIZE) { for (u64 offset = 0; offset < size; offset += PAGE_SIZE) {
ASSERT(PageSlot(*paddr + offset) == static_cast<u64>(PageStatus::Unmapped)); ASSERT(PageSlot(*gpu_addr + offset) == static_cast<u64>(PageStatus::Unmapped));
PageSlot(*paddr + offset) = static_cast<u64>(PageStatus::Allocated); PageSlot(*gpu_addr + offset) = static_cast<u64>(PageStatus::Allocated);
} }
return *paddr; return *gpu_addr;
} }
PAddr MemoryManager::AllocateSpace(PAddr paddr, u64 size, u64 align) { GPUVAddr MemoryManager::AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align) {
for (u64 offset = 0; offset < size; offset += PAGE_SIZE) { for (u64 offset = 0; offset < size; offset += PAGE_SIZE) {
ASSERT(PageSlot(paddr + offset) == static_cast<u64>(PageStatus::Unmapped)); ASSERT(PageSlot(gpu_addr + offset) == static_cast<u64>(PageStatus::Unmapped));
PageSlot(paddr + offset) = static_cast<u64>(PageStatus::Allocated); PageSlot(gpu_addr + offset) = static_cast<u64>(PageStatus::Allocated);
} }
return paddr; return gpu_addr;
} }
PAddr MemoryManager::MapBufferEx(VAddr vaddr, u64 size) { GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, u64 size) {
boost::optional<PAddr> paddr = FindFreeBlock(size, PAGE_SIZE); boost::optional<GPUVAddr> gpu_addr = FindFreeBlock(size, PAGE_SIZE);
ASSERT(paddr); ASSERT(gpu_addr);
for (u64 offset = 0; offset < size; offset += PAGE_SIZE) { for (u64 offset = 0; offset < size; offset += PAGE_SIZE) {
ASSERT(PageSlot(*paddr + offset) == static_cast<u64>(PageStatus::Unmapped)); ASSERT(PageSlot(*gpu_addr + offset) == static_cast<u64>(PageStatus::Unmapped));
PageSlot(*paddr + offset) = vaddr + offset; PageSlot(*gpu_addr + offset) = cpu_addr + offset;
} }
return *paddr; MappedRegion region{cpu_addr, *gpu_addr, size};
mapped_regions.push_back(region);
return *gpu_addr;
} }
PAddr MemoryManager::MapBufferEx(VAddr vaddr, PAddr paddr, u64 size) { GPUVAddr MemoryManager::MapBufferEx(VAddr cpu_addr, GPUVAddr gpu_addr, u64 size) {
ASSERT((paddr & PAGE_MASK) == 0); ASSERT((gpu_addr & PAGE_MASK) == 0);
for (u64 offset = 0; offset < size; offset += PAGE_SIZE) { for (u64 offset = 0; offset < size; offset += PAGE_SIZE) {
ASSERT(PageSlot(paddr + offset) == static_cast<u64>(PageStatus::Allocated)); ASSERT(PageSlot(gpu_addr + offset) == static_cast<u64>(PageStatus::Allocated));
PageSlot(paddr + offset) = vaddr + offset; PageSlot(gpu_addr + offset) = cpu_addr + offset;
} }
return paddr; MappedRegion region{cpu_addr, gpu_addr, size};
mapped_regions.push_back(region);
return gpu_addr;
} }
boost::optional<PAddr> MemoryManager::FindFreeBlock(u64 size, u64 align) { boost::optional<GPUVAddr> MemoryManager::FindFreeBlock(u64 size, u64 align) {
PAddr paddr = 0; GPUVAddr gpu_addr = 0;
u64 free_space = 0; u64 free_space = 0;
align = (align + PAGE_MASK) & ~PAGE_MASK; align = (align + PAGE_MASK) & ~PAGE_MASK;
while (paddr + free_space < MAX_ADDRESS) { while (gpu_addr + free_space < MAX_ADDRESS) {
if (!IsPageMapped(paddr + free_space)) { if (!IsPageMapped(gpu_addr + free_space)) {
free_space += PAGE_SIZE; free_space += PAGE_SIZE;
if (free_space >= size) { if (free_space >= size) {
return paddr; return gpu_addr;
} }
} else { } else {
paddr += free_space + PAGE_SIZE; gpu_addr += free_space + PAGE_SIZE;
free_space = 0; free_space = 0;
paddr = Common::AlignUp(paddr, align); gpu_addr = Common::AlignUp(gpu_addr, align);
} }
} }
return {}; return {};
} }
VAddr MemoryManager::PhysicalToVirtualAddress(PAddr paddr) { boost::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) {
VAddr base_addr = PageSlot(paddr); VAddr base_addr = PageSlot(gpu_addr);
ASSERT(base_addr != static_cast<u64>(PageStatus::Unmapped)); ASSERT(base_addr != static_cast<u64>(PageStatus::Unmapped));
return base_addr + (paddr & PAGE_MASK);
if (base_addr == static_cast<u64>(PageStatus::Allocated)) {
return {};
}
return base_addr + (gpu_addr & PAGE_MASK);
} }
bool MemoryManager::IsPageMapped(PAddr paddr) { std::vector<GPUVAddr> MemoryManager::CpuToGpuAddress(VAddr cpu_addr) const {
return PageSlot(paddr) != static_cast<u64>(PageStatus::Unmapped); std::vector<GPUVAddr> results;
for (const auto& region : mapped_regions) {
if (cpu_addr >= region.cpu_addr && cpu_addr < (region.cpu_addr + region.size)) {
u64 offset = cpu_addr - region.cpu_addr;
results.push_back(region.gpu_addr + offset);
}
}
return results;
} }
VAddr& MemoryManager::PageSlot(PAddr paddr) { bool MemoryManager::IsPageMapped(GPUVAddr gpu_addr) {
auto& block = page_table[(paddr >> (PAGE_BITS + PAGE_TABLE_BITS)) & PAGE_TABLE_MASK]; return PageSlot(gpu_addr) != static_cast<u64>(PageStatus::Unmapped);
}
VAddr& MemoryManager::PageSlot(GPUVAddr gpu_addr) {
auto& block = page_table[(gpu_addr >> (PAGE_BITS + PAGE_TABLE_BITS)) & PAGE_TABLE_MASK];
if (!block) { if (!block) {
block = std::make_unique<PageBlock>(); block = std::make_unique<PageBlock>();
for (unsigned index = 0; index < PAGE_BLOCK_SIZE; index++) { for (unsigned index = 0; index < PAGE_BLOCK_SIZE; index++) {
(*block)[index] = static_cast<u64>(PageStatus::Unmapped); (*block)[index] = static_cast<u64>(PageStatus::Unmapped);
} }
} }
return (*block)[(paddr >> PAGE_BITS) & PAGE_BLOCK_MASK]; return (*block)[(gpu_addr >> PAGE_BITS) & PAGE_BLOCK_MASK];
} }
} // namespace Tegra } // namespace Tegra

View File

@ -6,8 +6,11 @@
#include <array> #include <array>
#include <memory> #include <memory>
#include <vector>
#include <boost/optional.hpp>
#include "common/common_types.h" #include "common/common_types.h"
#include "core/memory.h"
namespace Tegra { namespace Tegra {
@ -18,20 +21,21 @@ class MemoryManager final {
public: public:
MemoryManager() = default; MemoryManager() = default;
PAddr AllocateSpace(u64 size, u64 align); GPUVAddr AllocateSpace(u64 size, u64 align);
PAddr AllocateSpace(PAddr paddr, u64 size, u64 align); GPUVAddr AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align);
PAddr MapBufferEx(VAddr vaddr, u64 size); GPUVAddr MapBufferEx(VAddr cpu_addr, u64 size);
PAddr MapBufferEx(VAddr vaddr, PAddr paddr, u64 size); GPUVAddr MapBufferEx(VAddr cpu_addr, GPUVAddr gpu_addr, u64 size);
VAddr PhysicalToVirtualAddress(PAddr paddr); boost::optional<VAddr> GpuToCpuAddress(GPUVAddr gpu_addr);
std::vector<GPUVAddr> CpuToGpuAddress(VAddr cpu_addr) const;
static constexpr u64 PAGE_BITS = 16; static constexpr u64 PAGE_BITS = 16;
static constexpr u64 PAGE_SIZE = 1 << PAGE_BITS; static constexpr u64 PAGE_SIZE = 1 << PAGE_BITS;
static constexpr u64 PAGE_MASK = PAGE_SIZE - 1; static constexpr u64 PAGE_MASK = PAGE_SIZE - 1;
private: private:
boost::optional<PAddr> FindFreeBlock(u64 size, u64 align = 1); boost::optional<GPUVAddr> FindFreeBlock(u64 size, u64 align = 1);
bool IsPageMapped(PAddr paddr); bool IsPageMapped(GPUVAddr gpu_addr);
VAddr& PageSlot(PAddr paddr); VAddr& PageSlot(GPUVAddr gpu_addr);
enum class PageStatus : u64 { enum class PageStatus : u64 {
Unmapped = 0xFFFFFFFFFFFFFFFFULL, Unmapped = 0xFFFFFFFFFFFFFFFFULL,
@ -48,6 +52,14 @@ private:
using PageBlock = std::array<VAddr, PAGE_BLOCK_SIZE>; using PageBlock = std::array<VAddr, PAGE_BLOCK_SIZE>;
std::array<std::unique_ptr<PageBlock>, PAGE_TABLE_SIZE> page_table{}; std::array<std::unique_ptr<PageBlock>, PAGE_TABLE_SIZE> page_table{};
struct MappedRegion {
VAddr cpu_addr;
GPUVAddr gpu_addr;
u64 size;
};
std::vector<MappedRegion> mapped_regions;
}; };
} // namespace Tegra } // namespace Tegra

View File

@ -6,6 +6,7 @@
#include "common/common_types.h" #include "common/common_types.h"
#include "video_core/gpu.h" #include "video_core/gpu.h"
#include "video_core/memory_manager.h"
struct ScreenInfo; struct ScreenInfo;
@ -25,14 +26,14 @@ public:
virtual void FlushAll() = 0; virtual void FlushAll() = 0;
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory /// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
virtual void FlushRegion(VAddr addr, u64 size) = 0; virtual void FlushRegion(Tegra::GPUVAddr addr, u64 size) = 0;
/// Notify rasterizer that any caches of the specified region should be invalidated /// Notify rasterizer that any caches of the specified region should be invalidated
virtual void InvalidateRegion(VAddr addr, u64 size) = 0; virtual void InvalidateRegion(Tegra::GPUVAddr addr, u64 size) = 0;
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory /// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
/// and invalidated /// and invalidated
virtual void FlushAndInvalidateRegion(VAddr addr, u64 size) = 0; virtual void FlushAndInvalidateRegion(Tegra::GPUVAddr addr, u64 size) = 0;
/// Attempt to use a faster method to perform a display transfer with is_texture_copy = 0 /// Attempt to use a faster method to perform a display transfer with is_texture_copy = 0
virtual bool AccelerateDisplayTransfer(const void* config) { virtual bool AccelerateDisplayTransfer(const void* config) {

View File

@ -150,9 +150,8 @@ std::pair<u8*, GLintptr> RasterizerOpenGL::SetupVertexArrays(u8* array_ptr,
u64 size = end - start + 1; u64 size = end - start + 1;
// Copy vertex array data // Copy vertex array data
const VAddr data_addr{memory_manager->PhysicalToVirtualAddress(start)}; res_cache.FlushRegion(start, size, nullptr);
res_cache.FlushRegion(data_addr, size, nullptr); Memory::ReadBlock(*memory_manager->GpuToCpuAddress(start), array_ptr, size);
Memory::ReadBlock(data_addr, array_ptr, size);
// Bind the vertex array to the buffer at the current offset. // Bind the vertex array to the buffer at the current offset.
glBindVertexBuffer(index, stream_buffer->GetHandle(), buffer_offset, vertex_array.stride); glBindVertexBuffer(index, stream_buffer->GetHandle(), buffer_offset, vertex_array.stride);
@ -233,8 +232,8 @@ void RasterizerOpenGL::SetupShaders(u8* buffer_ptr, GLintptr buffer_offset) {
// Fetch program code from memory // Fetch program code from memory
GLShader::ProgramCode program_code; GLShader::ProgramCode program_code;
const u64 gpu_address{gpu.regs.code_address.CodeAddress() + shader_config.offset}; const u64 gpu_address{gpu.regs.code_address.CodeAddress() + shader_config.offset};
const VAddr cpu_address{gpu.memory_manager.PhysicalToVirtualAddress(gpu_address)}; const boost::optional<VAddr> cpu_address{gpu.memory_manager.GpuToCpuAddress(gpu_address)};
Memory::ReadBlock(cpu_address, program_code.data(), program_code.size() * sizeof(u64)); Memory::ReadBlock(*cpu_address, program_code.data(), program_code.size() * sizeof(u64));
GLShader::ShaderSetup setup{std::move(program_code)}; GLShader::ShaderSetup setup{std::move(program_code)};
GLShader::ShaderEntries shader_resources; GLShader::ShaderEntries shader_resources;
@ -394,9 +393,9 @@ void RasterizerOpenGL::DrawArrays() {
GLintptr index_buffer_offset = 0; GLintptr index_buffer_offset = 0;
if (is_indexed) { if (is_indexed) {
const auto& memory_manager = Core::System().GetInstance().GPU().memory_manager; const auto& memory_manager = Core::System().GetInstance().GPU().memory_manager;
const VAddr index_data_addr{ const boost::optional<VAddr> index_data_addr{
memory_manager->PhysicalToVirtualAddress(regs.index_array.StartAddress())}; memory_manager->GpuToCpuAddress(regs.index_array.StartAddress())};
Memory::ReadBlock(index_data_addr, offseted_buffer, index_buffer_size); Memory::ReadBlock(*index_data_addr, offseted_buffer, index_buffer_size);
index_buffer_offset = buffer_offset; index_buffer_offset = buffer_offset;
offseted_buffer += index_buffer_size; offseted_buffer += index_buffer_size;
@ -519,17 +518,17 @@ void RasterizerOpenGL::FlushAll() {
res_cache.FlushAll(); res_cache.FlushAll();
} }
void RasterizerOpenGL::FlushRegion(VAddr addr, u64 size) { void RasterizerOpenGL::FlushRegion(Tegra::GPUVAddr addr, u64 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement); MICROPROFILE_SCOPE(OpenGL_CacheManagement);
res_cache.FlushRegion(addr, size); res_cache.FlushRegion(addr, size);
} }
void RasterizerOpenGL::InvalidateRegion(VAddr addr, u64 size) { void RasterizerOpenGL::InvalidateRegion(Tegra::GPUVAddr addr, u64 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement); MICROPROFILE_SCOPE(OpenGL_CacheManagement);
res_cache.InvalidateRegion(addr, size, nullptr); res_cache.InvalidateRegion(addr, size, nullptr);
} }
void RasterizerOpenGL::FlushAndInvalidateRegion(VAddr addr, u64 size) { void RasterizerOpenGL::FlushAndInvalidateRegion(Tegra::GPUVAddr addr, u64 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement); MICROPROFILE_SCOPE(OpenGL_CacheManagement);
res_cache.FlushRegion(addr, size); res_cache.FlushRegion(addr, size);
res_cache.InvalidateRegion(addr, size, nullptr); res_cache.InvalidateRegion(addr, size, nullptr);
@ -560,7 +559,8 @@ bool RasterizerOpenGL::AccelerateDisplay(const Tegra::FramebufferConfig& framebu
MICROPROFILE_SCOPE(OpenGL_CacheManagement); MICROPROFILE_SCOPE(OpenGL_CacheManagement);
SurfaceParams src_params; SurfaceParams src_params;
src_params.addr = framebuffer_addr; src_params.cpu_addr = framebuffer_addr;
src_params.addr = res_cache.TryFindFramebufferGpuAddress(framebuffer_addr).get_value_or(0);
src_params.width = std::min(framebuffer.width, pixel_stride); src_params.width = std::min(framebuffer.width, pixel_stride);
src_params.height = framebuffer.height; src_params.height = framebuffer.height;
src_params.stride = pixel_stride; src_params.stride = pixel_stride;
@ -659,9 +659,9 @@ u32 RasterizerOpenGL::SetupConstBuffers(Maxwell::ShaderStage stage, GLuint progr
buffer_draw_state.enabled = true; buffer_draw_state.enabled = true;
buffer_draw_state.bindpoint = current_bindpoint + bindpoint; buffer_draw_state.bindpoint = current_bindpoint + bindpoint;
VAddr addr = gpu.memory_manager->PhysicalToVirtualAddress(buffer.address); boost::optional<VAddr> addr = gpu.memory_manager->GpuToCpuAddress(buffer.address);
std::vector<u8> data(used_buffer.GetSize() * sizeof(float)); std::vector<u8> data(used_buffer.GetSize() * sizeof(float));
Memory::ReadBlock(addr, data.data(), data.size()); Memory::ReadBlock(*addr, data.data(), data.size());
glBindBuffer(GL_SHADER_STORAGE_BUFFER, buffer_draw_state.ssbo); glBindBuffer(GL_SHADER_STORAGE_BUFFER, buffer_draw_state.ssbo);
glBufferData(GL_SHADER_STORAGE_BUFFER, data.size(), data.data(), GL_DYNAMIC_DRAW); glBufferData(GL_SHADER_STORAGE_BUFFER, data.size(), data.data(), GL_DYNAMIC_DRAW);

View File

@ -11,6 +11,7 @@
#include <glad/glad.h> #include <glad/glad.h>
#include "common/common_types.h" #include "common/common_types.h"
#include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_3d.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h" #include "video_core/rasterizer_interface.h"
#include "video_core/renderer_opengl/gl_rasterizer_cache.h" #include "video_core/renderer_opengl/gl_rasterizer_cache.h"
#include "video_core/renderer_opengl/gl_resource_manager.h" #include "video_core/renderer_opengl/gl_resource_manager.h"
@ -29,9 +30,9 @@ public:
void DrawArrays() override; void DrawArrays() override;
void NotifyMaxwellRegisterChanged(u32 method) override; void NotifyMaxwellRegisterChanged(u32 method) override;
void FlushAll() override; void FlushAll() override;
void FlushRegion(VAddr addr, u64 size) override; void FlushRegion(Tegra::GPUVAddr addr, u64 size) override;
void InvalidateRegion(VAddr addr, u64 size) override; void InvalidateRegion(Tegra::GPUVAddr addr, u64 size) override;
void FlushAndInvalidateRegion(VAddr addr, u64 size) override; void FlushAndInvalidateRegion(Tegra::GPUVAddr addr, u64 size) override;
bool AccelerateDisplayTransfer(const void* config) override; bool AccelerateDisplayTransfer(const void* config) override;
bool AccelerateTextureCopy(const void* config) override; bool AccelerateTextureCopy(const void* config) override;
bool AccelerateFill(const void* config) override; bool AccelerateFill(const void* config) override;

View File

@ -41,18 +41,15 @@ struct FormatTuple {
GLenum format; GLenum format;
GLenum type; GLenum type;
bool compressed; bool compressed;
// How many pixels in the original texture are equivalent to one pixel in the compressed
// texture.
u32 compression_factor;
}; };
static constexpr std::array<FormatTuple, SurfaceParams::MaxPixelFormat> tex_format_tuples = {{ static constexpr std::array<FormatTuple, SurfaceParams::MaxPixelFormat> tex_format_tuples = {{
{GL_RGBA8, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8_REV, false, 1}, // ABGR8 {GL_RGBA8, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8_REV, false}, // ABGR8
{GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5_REV, false, 1}, // B5G6R5 {GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5_REV, false}, // B5G6R5
{GL_RGB10_A2, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, false, 1}, // A2B10G10R10 {GL_RGB10_A2, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, false}, // A2B10G10R10
{GL_COMPRESSED_RGB_S3TC_DXT1_EXT, GL_RGB, GL_UNSIGNED_INT_8_8_8_8, true, 16}, // DXT1 {GL_COMPRESSED_RGB_S3TC_DXT1_EXT, GL_RGB, GL_UNSIGNED_INT_8_8_8_8, true}, // DXT1
{GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, true, 16}, // DXT23 {GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, true}, // DXT23
{GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, true, 16}, // DXT45 {GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, true}, // DXT45
}}; }};
static const FormatTuple& GetFormatTuple(PixelFormat pixel_format, ComponentType component_type) { static const FormatTuple& GetFormatTuple(PixelFormat pixel_format, ComponentType component_type) {
@ -83,26 +80,30 @@ static u16 GetResolutionScaleFactor() {
} }
template <bool morton_to_gl, PixelFormat format> template <bool morton_to_gl, PixelFormat format>
void MortonCopy(u32 stride, u32 block_height, u32 height, u8* gl_buffer, VAddr base, VAddr start, void MortonCopy(u32 stride, u32 block_height, u32 height, u8* gl_buffer, Tegra::GPUVAddr base,
VAddr end) { Tegra::GPUVAddr start, Tegra::GPUVAddr end) {
constexpr u32 bytes_per_pixel = SurfaceParams::GetFormatBpp(format) / 8; constexpr u32 bytes_per_pixel = SurfaceParams::GetFormatBpp(format) / CHAR_BIT;
constexpr u32 gl_bytes_per_pixel = CachedSurface::GetGLBytesPerPixel(format); constexpr u32 gl_bytes_per_pixel = CachedSurface::GetGLBytesPerPixel(format);
const auto& gpu = Core::System::GetInstance().GPU();
if (morton_to_gl) { if (morton_to_gl) {
auto data = Tegra::Texture::UnswizzleTexture( auto data = Tegra::Texture::UnswizzleTexture(
base, SurfaceParams::TextureFormatFromPixelFormat(format), stride, height, *gpu.memory_manager->GpuToCpuAddress(base),
block_height); SurfaceParams::TextureFormatFromPixelFormat(format), stride, height, block_height);
std::memcpy(gl_buffer, data.data(), data.size()); std::memcpy(gl_buffer, data.data(), data.size());
} else { } else {
// TODO(bunnei): Assumes the default rendering GOB size of 16 (128 lines). We should check // TODO(bunnei): Assumes the default rendering GOB size of 16 (128 lines). We should check
// the configuration for this and perform more generic un/swizzle // the configuration for this and perform more generic un/swizzle
LOG_WARNING(Render_OpenGL, "need to use correct swizzle/GOB parameters!"); NGLOG_WARNING(Render_OpenGL, "need to use correct swizzle/GOB parameters!");
VideoCore::MortonCopyPixels128(stride, height, bytes_per_pixel, gl_bytes_per_pixel, VideoCore::MortonCopyPixels128(
Memory::GetPointer(base), gl_buffer, morton_to_gl); stride, height, bytes_per_pixel, gl_bytes_per_pixel,
Memory::GetPointer(*gpu.memory_manager->GpuToCpuAddress(base)), gl_buffer,
morton_to_gl);
} }
} }
static constexpr std::array<void (*)(u32, u32, u32, u8*, VAddr, VAddr, VAddr), static constexpr std::array<void (*)(u32, u32, u32, u8*, Tegra::GPUVAddr, Tegra::GPUVAddr,
Tegra::GPUVAddr),
SurfaceParams::MaxPixelFormat> SurfaceParams::MaxPixelFormat>
morton_to_gl_fns = { morton_to_gl_fns = {
MortonCopy<true, PixelFormat::ABGR8>, MortonCopy<true, PixelFormat::B5G6R5>, MortonCopy<true, PixelFormat::ABGR8>, MortonCopy<true, PixelFormat::B5G6R5>,
@ -110,7 +111,8 @@ static constexpr std::array<void (*)(u32, u32, u32, u8*, VAddr, VAddr, VAddr),
MortonCopy<true, PixelFormat::DXT23>, MortonCopy<true, PixelFormat::DXT45>, MortonCopy<true, PixelFormat::DXT23>, MortonCopy<true, PixelFormat::DXT45>,
}; };
static constexpr std::array<void (*)(u32, u32, u32, u8*, VAddr, VAddr, VAddr), static constexpr std::array<void (*)(u32, u32, u32, u8*, Tegra::GPUVAddr, Tegra::GPUVAddr,
Tegra::GPUVAddr),
SurfaceParams::MaxPixelFormat> SurfaceParams::MaxPixelFormat>
gl_to_morton_fns = { gl_to_morton_fns = {
MortonCopy<false, PixelFormat::ABGR8>, MortonCopy<false, PixelFormat::ABGR8>,
@ -219,9 +221,9 @@ SurfaceParams SurfaceParams::FromInterval(SurfaceInterval interval) const {
SurfaceParams params = *this; SurfaceParams params = *this;
const u32 tiled_size = is_tiled ? 8 : 1; const u32 tiled_size = is_tiled ? 8 : 1;
const u64 stride_tiled_bytes = BytesInPixels(stride * tiled_size); const u64 stride_tiled_bytes = BytesInPixels(stride * tiled_size);
VAddr aligned_start = Tegra::GPUVAddr aligned_start =
addr + Common::AlignDown(boost::icl::first(interval) - addr, stride_tiled_bytes); addr + Common::AlignDown(boost::icl::first(interval) - addr, stride_tiled_bytes);
VAddr aligned_end = Tegra::GPUVAddr aligned_end =
addr + Common::AlignUp(boost::icl::last_next(interval) - addr, stride_tiled_bytes); addr + Common::AlignUp(boost::icl::last_next(interval) - addr, stride_tiled_bytes);
if (aligned_end - aligned_start > stride_tiled_bytes) { if (aligned_end - aligned_start > stride_tiled_bytes) {
@ -342,6 +344,13 @@ bool SurfaceParams::CanTexCopy(const SurfaceParams& texcopy_params) const {
return FromInterval(texcopy_params.GetInterval()).GetInterval() == texcopy_params.GetInterval(); return FromInterval(texcopy_params.GetInterval()).GetInterval() == texcopy_params.GetInterval();
} }
VAddr SurfaceParams::GetCpuAddr() const {
// When this function is used, only cpu_addr or (GPU) addr should be set, not both
ASSERT(!(cpu_addr && addr));
const auto& gpu = Core::System::GetInstance().GPU();
return cpu_addr.get_value_or(*gpu.memory_manager->GpuToCpuAddress(addr));
}
bool CachedSurface::CanFill(const SurfaceParams& dest_surface, bool CachedSurface::CanFill(const SurfaceParams& dest_surface,
SurfaceInterval fill_interval) const { SurfaceInterval fill_interval) const {
if (type == SurfaceType::Fill && IsRegionValid(fill_interval) && if (type == SurfaceType::Fill && IsRegionValid(fill_interval) &&
@ -349,9 +358,9 @@ bool CachedSurface::CanFill(const SurfaceParams& dest_surface,
boost::icl::last_next(fill_interval) <= end && // dest_surface is within our fill range boost::icl::last_next(fill_interval) <= end && // dest_surface is within our fill range
dest_surface.FromInterval(fill_interval).GetInterval() == dest_surface.FromInterval(fill_interval).GetInterval() ==
fill_interval) { // make sure interval is a rectangle in dest surface fill_interval) { // make sure interval is a rectangle in dest surface
if (fill_size * 8 != dest_surface.GetFormatBpp()) { if (fill_size * CHAR_BIT != dest_surface.GetFormatBpp()) {
// Check if bits repeat for our fill_size // Check if bits repeat for our fill_size
const u32 dest_bytes_per_pixel = std::max(dest_surface.GetFormatBpp() / 8, 1u); const u32 dest_bytes_per_pixel = std::max(dest_surface.GetFormatBpp() / CHAR_BIT, 1u);
std::vector<u8> fill_test(fill_size * dest_bytes_per_pixel); std::vector<u8> fill_test(fill_size * dest_bytes_per_pixel);
for (u32 i = 0; i < dest_bytes_per_pixel; ++i) for (u32 i = 0; i < dest_bytes_per_pixel; ++i)
@ -456,15 +465,15 @@ void RasterizerCacheOpenGL::CopySurface(const Surface& src_surface, const Surfac
} }
MICROPROFILE_DEFINE(OpenGL_SurfaceLoad, "OpenGL", "Surface Load", MP_RGB(128, 64, 192)); MICROPROFILE_DEFINE(OpenGL_SurfaceLoad, "OpenGL", "Surface Load", MP_RGB(128, 64, 192));
void CachedSurface::LoadGLBuffer(VAddr load_start, VAddr load_end) { void CachedSurface::LoadGLBuffer(Tegra::GPUVAddr load_start, Tegra::GPUVAddr load_end) {
ASSERT(type != SurfaceType::Fill); ASSERT(type != SurfaceType::Fill);
u8* const texture_src_data = Memory::GetPointer(addr); u8* const texture_src_data = Memory::GetPointer(GetCpuAddr());
if (texture_src_data == nullptr) if (texture_src_data == nullptr)
return; return;
if (gl_buffer == nullptr) { if (gl_buffer == nullptr) {
gl_buffer_size = width * height * GetGLBytesPerPixel(pixel_format); gl_buffer_size = GetActualWidth() * GetActualHeight() * GetGLBytesPerPixel(pixel_format);
gl_buffer.reset(new u8[gl_buffer_size]); gl_buffer.reset(new u8[gl_buffer_size]);
} }
@ -479,14 +488,15 @@ void CachedSurface::LoadGLBuffer(VAddr load_start, VAddr load_end) {
std::memcpy(&gl_buffer[start_offset], texture_src_data + start_offset, std::memcpy(&gl_buffer[start_offset], texture_src_data + start_offset,
bytes_per_pixel * width * height); bytes_per_pixel * width * height);
} else { } else {
morton_to_gl_fns[static_cast<size_t>(pixel_format)]( morton_to_gl_fns[static_cast<size_t>(pixel_format)](GetActualWidth(), block_height,
stride, block_height, height, &gl_buffer[0], addr, load_start, load_end); GetActualHeight(), &gl_buffer[0], addr,
load_start, load_end);
} }
} }
MICROPROFILE_DEFINE(OpenGL_SurfaceFlush, "OpenGL", "Surface Flush", MP_RGB(128, 192, 64)); MICROPROFILE_DEFINE(OpenGL_SurfaceFlush, "OpenGL", "Surface Flush", MP_RGB(128, 192, 64));
void CachedSurface::FlushGLBuffer(VAddr flush_start, VAddr flush_end) { void CachedSurface::FlushGLBuffer(Tegra::GPUVAddr flush_start, Tegra::GPUVAddr flush_end) {
u8* const dst_buffer = Memory::GetPointer(addr); u8* const dst_buffer = Memory::GetPointer(GetCpuAddr());
if (dst_buffer == nullptr) if (dst_buffer == nullptr)
return; return;
@ -536,7 +546,8 @@ void CachedSurface::UploadGLTexture(const MathUtil::Rectangle<u32>& rect, GLuint
MICROPROFILE_SCOPE(OpenGL_TextureUL); MICROPROFILE_SCOPE(OpenGL_TextureUL);
ASSERT(gl_buffer_size == width * height * GetGLBytesPerPixel(pixel_format)); ASSERT(gl_buffer_size ==
GetActualWidth() * GetActualHeight() * GetGLBytesPerPixel(pixel_format));
// Load data from memory to the surface // Load data from memory to the surface
GLint x0 = static_cast<GLint>(rect.left); GLint x0 = static_cast<GLint>(rect.left);
@ -571,11 +582,9 @@ void CachedSurface::UploadGLTexture(const MathUtil::Rectangle<u32>& rect, GLuint
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0);
if (tuple.compressed) { if (tuple.compressed) {
glCompressedTexImage2D(GL_TEXTURE_2D, 0, tuple.internal_format, glCompressedTexImage2D(GL_TEXTURE_2D, 0, tuple.internal_format,
static_cast<GLsizei>(rect.GetWidth()), static_cast<GLsizei>(rect.GetWidth() * GetCompresssionFactor()),
static_cast<GLsizei>(rect.GetHeight()), 0, static_cast<GLsizei>(rect.GetHeight() * GetCompresssionFactor()), 0,
rect.GetWidth() * rect.GetHeight() * size, &gl_buffer[buffer_offset]);
GetGLBytesPerPixel(pixel_format) / tuple.compression_factor,
&gl_buffer[buffer_offset]);
} else { } else {
glTexSubImage2D(GL_TEXTURE_2D, 0, x0, y0, static_cast<GLsizei>(rect.GetWidth()), glTexSubImage2D(GL_TEXTURE_2D, 0, x0, y0, static_cast<GLsizei>(rect.GetWidth()),
static_cast<GLsizei>(rect.GetHeight()), tuple.format, tuple.type, static_cast<GLsizei>(rect.GetHeight()), tuple.format, tuple.type,
@ -945,6 +954,33 @@ Surface RasterizerCacheOpenGL::GetSurface(const SurfaceParams& params, ScaleMatc
return surface; return surface;
} }
boost::optional<Tegra::GPUVAddr> RasterizerCacheOpenGL::TryFindFramebufferGpuAddress(
VAddr cpu_addr) const {
// Tries to find the GPU address of a framebuffer based on the CPU address. This is because
// final output framebuffers are specified by CPU address, but internally our GPU cache uses GPU
// addresses. We iterate through all cached framebuffers, and compare their starting CPU address
// to the one provided. This is obviously not great, and won't work if the framebuffer overlaps
// surfaces.
std::vector<Tegra::GPUVAddr> gpu_addresses;
for (const auto& pair : surface_cache) {
for (const auto& surface : pair.second) {
const VAddr surface_cpu_addr = surface->GetCpuAddr();
if (cpu_addr >= surface_cpu_addr && cpu_addr < (surface_cpu_addr + surface->size)) {
ASSERT_MSG(cpu_addr == surface_cpu_addr, "overlapping surfaces are unsupported");
gpu_addresses.push_back(surface->addr);
}
}
}
if (gpu_addresses.empty()) {
return {};
}
ASSERT_MSG(gpu_addresses.size() == 1, ">1 surface is unsupported");
return gpu_addresses[0];
}
SurfaceRect_Tuple RasterizerCacheOpenGL::GetSurfaceSubRect(const SurfaceParams& params, SurfaceRect_Tuple RasterizerCacheOpenGL::GetSurfaceSubRect(const SurfaceParams& params,
ScaleMatch match_res_scale, ScaleMatch match_res_scale,
bool load_if_create) { bool load_if_create) {
@ -1028,11 +1064,11 @@ Surface RasterizerCacheOpenGL::GetTextureSurface(const Tegra::Texture::FullTextu
auto& gpu = Core::System::GetInstance().GPU(); auto& gpu = Core::System::GetInstance().GPU();
SurfaceParams params; SurfaceParams params;
params.addr = gpu.memory_manager->PhysicalToVirtualAddress(config.tic.Address()); params.addr = config.tic.Address();
params.width = config.tic.Width();
params.height = config.tic.Height();
params.is_tiled = config.tic.IsTiled(); params.is_tiled = config.tic.IsTiled();
params.pixel_format = SurfaceParams::PixelFormatFromTextureFormat(config.tic.format); params.pixel_format = SurfaceParams::PixelFormatFromTextureFormat(config.tic.format);
params.width = config.tic.Width() / params.GetCompresssionFactor();
params.height = config.tic.Height() / params.GetCompresssionFactor();
// TODO(Subv): Different types per component are not supported. // TODO(Subv): Different types per component are not supported.
ASSERT(config.tic.r_type.Value() == config.tic.g_type.Value() && ASSERT(config.tic.r_type.Value() == config.tic.g_type.Value() &&
@ -1045,7 +1081,7 @@ Surface RasterizerCacheOpenGL::GetTextureSurface(const Tegra::Texture::FullTextu
params.block_height = config.tic.BlockHeight(); params.block_height = config.tic.BlockHeight();
} else { } else {
// Use the texture-provided stride value if the texture isn't tiled. // Use the texture-provided stride value if the texture isn't tiled.
params.stride = params.PixelsInBytes(config.tic.Pitch()); params.stride = static_cast<u32>(params.PixelsInBytes(config.tic.Pitch()));
} }
params.UpdateParams(); params.UpdateParams();
@ -1073,11 +1109,10 @@ Surface RasterizerCacheOpenGL::GetTextureSurface(const Tegra::Texture::FullTextu
SurfaceSurfaceRect_Tuple RasterizerCacheOpenGL::GetFramebufferSurfaces( SurfaceSurfaceRect_Tuple RasterizerCacheOpenGL::GetFramebufferSurfaces(
bool using_color_fb, bool using_depth_fb, const MathUtil::Rectangle<s32>& viewport) { bool using_color_fb, bool using_depth_fb, const MathUtil::Rectangle<s32>& viewport) {
const auto& regs = Core::System().GetInstance().GPU().Maxwell3D().regs; const auto& regs = Core::System().GetInstance().GPU().Maxwell3D().regs;
const auto& memory_manager = Core::System().GetInstance().GPU().memory_manager;
const auto& config = regs.rt[0]; const auto& config = regs.rt[0];
// TODO(bunnei): This is hard corded to use just the first render buffer // TODO(bunnei): This is hard corded to use just the first render buffer
LOG_WARNING(Render_OpenGL, "hard-coded for render target 0!"); NGLOG_WARNING(Render_OpenGL, "hard-coded for render target 0!");
// update resolution_scale_factor and reset cache if changed // update resolution_scale_factor and reset cache if changed
// TODO (bunnei): This code was ported as-is from Citra, and is technically not thread-safe. We // TODO (bunnei): This code was ported as-is from Citra, and is technically not thread-safe. We
@ -1106,7 +1141,7 @@ SurfaceSurfaceRect_Tuple RasterizerCacheOpenGL::GetFramebufferSurfaces(
color_params.block_height = Tegra::Texture::TICEntry::DefaultBlockHeight; color_params.block_height = Tegra::Texture::TICEntry::DefaultBlockHeight;
SurfaceParams depth_params = color_params; SurfaceParams depth_params = color_params;
color_params.addr = memory_manager->PhysicalToVirtualAddress(config.Address()); color_params.addr = config.Address();
color_params.pixel_format = SurfaceParams::PixelFormatFromRenderTargetFormat(config.format); color_params.pixel_format = SurfaceParams::PixelFormatFromRenderTargetFormat(config.format);
color_params.component_type = SurfaceParams::ComponentTypeFromRenderTarget(config.format); color_params.component_type = SurfaceParams::ComponentTypeFromRenderTarget(config.format);
color_params.UpdateParams(); color_params.UpdateParams();
@ -1122,7 +1157,7 @@ SurfaceSurfaceRect_Tuple RasterizerCacheOpenGL::GetFramebufferSurfaces(
// Make sure that framebuffers don't overlap if both color and depth are being used // Make sure that framebuffers don't overlap if both color and depth are being used
if (using_color_fb && using_depth_fb && if (using_color_fb && using_depth_fb &&
boost::icl::length(color_vp_interval & depth_vp_interval)) { boost::icl::length(color_vp_interval & depth_vp_interval)) {
LOG_CRITICAL(Render_OpenGL, "Color and depth framebuffer memory regions overlap; " NGLOG_CRITICAL(Render_OpenGL, "Color and depth framebuffer memory regions overlap; "
"overlapping framebuffers not supported!"); "overlapping framebuffers not supported!");
using_depth_fb = false; using_depth_fb = false;
} }
@ -1222,7 +1257,8 @@ void RasterizerCacheOpenGL::DuplicateSurface(const Surface& src_surface,
} }
} }
void RasterizerCacheOpenGL::ValidateSurface(const Surface& surface, VAddr addr, u64 size) { void RasterizerCacheOpenGL::ValidateSurface(const Surface& surface, Tegra::GPUVAddr addr,
u64 size) {
if (size == 0) if (size == 0)
return; return;
@ -1261,7 +1297,7 @@ void RasterizerCacheOpenGL::ValidateSurface(const Surface& surface, VAddr addr,
} }
} }
void RasterizerCacheOpenGL::FlushRegion(VAddr addr, u64 size, Surface flush_surface) { void RasterizerCacheOpenGL::FlushRegion(Tegra::GPUVAddr addr, u64 size, Surface flush_surface) {
if (size == 0) if (size == 0)
return; return;
@ -1297,7 +1333,8 @@ void RasterizerCacheOpenGL::FlushAll() {
FlushRegion(0, Kernel::VMManager::MAX_ADDRESS); FlushRegion(0, Kernel::VMManager::MAX_ADDRESS);
} }
void RasterizerCacheOpenGL::InvalidateRegion(VAddr addr, u64 size, const Surface& region_owner) { void RasterizerCacheOpenGL::InvalidateRegion(Tegra::GPUVAddr addr, u64 size,
const Surface& region_owner) {
if (size == 0) if (size == 0)
return; return;
@ -1390,10 +1427,10 @@ void RasterizerCacheOpenGL::UnregisterSurface(const Surface& surface) {
surface_cache.subtract({surface->GetInterval(), SurfaceSet{surface}}); surface_cache.subtract({surface->GetInterval(), SurfaceSet{surface}});
} }
void RasterizerCacheOpenGL::UpdatePagesCachedCount(VAddr addr, u64 size, int delta) { void RasterizerCacheOpenGL::UpdatePagesCachedCount(Tegra::GPUVAddr addr, u64 size, int delta) {
const u64 num_pages = const u64 num_pages = ((addr + size - 1) >> Tegra::MemoryManager::PAGE_BITS) -
((addr + size - 1) >> Memory::PAGE_BITS) - (addr >> Memory::PAGE_BITS) + 1; (addr >> Tegra::MemoryManager::PAGE_BITS) + 1;
const u64 page_start = addr >> Memory::PAGE_BITS; const u64 page_start = addr >> Tegra::MemoryManager::PAGE_BITS;
const u64 page_end = page_start + num_pages; const u64 page_end = page_start + num_pages;
// Interval maps will erase segments if count reaches 0, so if delta is negative we have to // Interval maps will erase segments if count reaches 0, so if delta is negative we have to
@ -1406,8 +1443,10 @@ void RasterizerCacheOpenGL::UpdatePagesCachedCount(VAddr addr, u64 size, int del
const auto interval = pair.first & pages_interval; const auto interval = pair.first & pages_interval;
const int count = pair.second; const int count = pair.second;
const VAddr interval_start_addr = boost::icl::first(interval) << Memory::PAGE_BITS; const Tegra::GPUVAddr interval_start_addr = boost::icl::first(interval)
const VAddr interval_end_addr = boost::icl::last_next(interval) << Memory::PAGE_BITS; << Tegra::MemoryManager::PAGE_BITS;
const Tegra::GPUVAddr interval_end_addr = boost::icl::last_next(interval)
<< Tegra::MemoryManager::PAGE_BITS;
const u64 interval_size = interval_end_addr - interval_start_addr; const u64 interval_size = interval_end_addr - interval_start_addr;
if (delta > 0 && count == delta) if (delta > 0 && count == delta)

View File

@ -17,12 +17,14 @@
#ifdef __GNUC__ #ifdef __GNUC__
#pragma GCC diagnostic pop #pragma GCC diagnostic pop
#endif #endif
#include <boost/optional.hpp>
#include <glad/glad.h> #include <glad/glad.h>
#include "common/assert.h" #include "common/assert.h"
#include "common/common_funcs.h" #include "common/common_funcs.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "common/math_util.h" #include "common/math_util.h"
#include "video_core/gpu.h" #include "video_core/gpu.h"
#include "video_core/memory_manager.h"
#include "video_core/renderer_opengl/gl_resource_manager.h" #include "video_core/renderer_opengl/gl_resource_manager.h"
#include "video_core/textures/texture.h" #include "video_core/textures/texture.h"
@ -30,9 +32,9 @@ struct CachedSurface;
using Surface = std::shared_ptr<CachedSurface>; using Surface = std::shared_ptr<CachedSurface>;
using SurfaceSet = std::set<Surface>; using SurfaceSet = std::set<Surface>;
using SurfaceRegions = boost::icl::interval_set<VAddr>; using SurfaceRegions = boost::icl::interval_set<Tegra::GPUVAddr>;
using SurfaceMap = boost::icl::interval_map<VAddr, Surface>; using SurfaceMap = boost::icl::interval_map<Tegra::GPUVAddr, Surface>;
using SurfaceCache = boost::icl::interval_map<VAddr, SurfaceSet>; using SurfaceCache = boost::icl::interval_map<Tegra::GPUVAddr, SurfaceSet>;
using SurfaceInterval = SurfaceCache::interval_type; using SurfaceInterval = SurfaceCache::interval_type;
static_assert(std::is_same<SurfaceRegions::interval_type, SurfaceCache::interval_type>() && static_assert(std::is_same<SurfaceRegions::interval_type, SurfaceCache::interval_type>() &&
@ -82,23 +84,49 @@ struct SurfaceParams {
Invalid = 4, Invalid = 4,
}; };
static constexpr unsigned int GetFormatBpp(PixelFormat format) { /**
* Gets the compression factor for the specified PixelFormat. This applies to just the
* "compressed width" and "compressed height", not the overall compression factor of a
* compressed image. This is used for maintaining proper surface sizes for compressed texture
* formats.
*/
static constexpr u32 GetCompresssionFactor(PixelFormat format) {
if (format == PixelFormat::Invalid) if (format == PixelFormat::Invalid)
return 0; return 0;
constexpr std::array<unsigned int, MaxPixelFormat> bpp_table = { constexpr std::array<u32, MaxPixelFormat> compression_factor_table = {{
1, // ABGR8
1, // B5G6R5
1, // A2B10G10R10
4, // DXT1
4, // DXT23
4, // DXT45
}};
ASSERT(static_cast<size_t>(format) < compression_factor_table.size());
return compression_factor_table[static_cast<size_t>(format)];
}
u32 GetCompresssionFactor() const {
return GetCompresssionFactor(pixel_format);
}
static constexpr u32 GetFormatBpp(PixelFormat format) {
if (format == PixelFormat::Invalid)
return 0;
constexpr std::array<u32, MaxPixelFormat> bpp_table = {{
32, // ABGR8 32, // ABGR8
16, // B5G6R5 16, // B5G6R5
32, // A2B10G10R10 32, // A2B10G10R10
64, // DXT1 64, // DXT1
128, // DXT23 128, // DXT23
128, // DXT45 128, // DXT45
}; }};
ASSERT(static_cast<size_t>(format) < bpp_table.size()); ASSERT(static_cast<size_t>(format) < bpp_table.size());
return bpp_table[static_cast<size_t>(format)]; return bpp_table[static_cast<size_t>(format)];
} }
unsigned int GetFormatBpp() const { u32 GetFormatBpp() const {
return GetFormatBpp(pixel_format); return GetFormatBpp(pixel_format);
} }
@ -253,6 +281,24 @@ struct SurfaceParams {
// Returns the region of the biggest valid rectange within interval // Returns the region of the biggest valid rectange within interval
SurfaceInterval GetCopyableInterval(const Surface& src_surface) const; SurfaceInterval GetCopyableInterval(const Surface& src_surface) const;
/**
* Gets the actual width (in pixels) of the surface. This is provided because `width` is used
* for tracking the surface region in memory, which may be compressed for certain formats. In
* this scenario, `width` is actually the compressed width.
*/
u32 GetActualWidth() const {
return width * GetCompresssionFactor();
}
/**
* Gets the actual height (in pixels) of the surface. This is provided because `height` is used
* for tracking the surface region in memory, which may be compressed for certain formats. In
* this scenario, `height` is actually the compressed height.
*/
u32 GetActualHeight() const {
return height * GetCompresssionFactor();
}
u32 GetScaledWidth() const { u32 GetScaledWidth() const {
return width * res_scale; return width * res_scale;
} }
@ -277,6 +323,8 @@ struct SurfaceParams {
return pixels * GetFormatBpp(pixel_format) / CHAR_BIT; return pixels * GetFormatBpp(pixel_format) / CHAR_BIT;
} }
VAddr GetCpuAddr() const;
bool ExactMatch(const SurfaceParams& other_surface) const; bool ExactMatch(const SurfaceParams& other_surface) const;
bool CanSubRect(const SurfaceParams& sub_surface) const; bool CanSubRect(const SurfaceParams& sub_surface) const;
bool CanExpand(const SurfaceParams& expanded_surface) const; bool CanExpand(const SurfaceParams& expanded_surface) const;
@ -285,8 +333,9 @@ struct SurfaceParams {
MathUtil::Rectangle<u32> GetSubRect(const SurfaceParams& sub_surface) const; MathUtil::Rectangle<u32> GetSubRect(const SurfaceParams& sub_surface) const;
MathUtil::Rectangle<u32> GetScaledSubRect(const SurfaceParams& sub_surface) const; MathUtil::Rectangle<u32> GetScaledSubRect(const SurfaceParams& sub_surface) const;
VAddr addr = 0; Tegra::GPUVAddr addr = 0;
VAddr end = 0; Tegra::GPUVAddr end = 0;
boost::optional<VAddr> cpu_addr;
u64 size = 0; u64 size = 0;
u32 width = 0; u32 width = 0;
@ -325,15 +374,15 @@ struct CachedSurface : SurfaceParams {
if (format == PixelFormat::Invalid) if (format == PixelFormat::Invalid)
return 0; return 0;
return SurfaceParams::GetFormatBpp(format) / 8; return SurfaceParams::GetFormatBpp(format) / CHAR_BIT;
} }
std::unique_ptr<u8[]> gl_buffer; std::unique_ptr<u8[]> gl_buffer;
size_t gl_buffer_size = 0; size_t gl_buffer_size = 0;
// Read/Write data in Switch memory to/from gl_buffer // Read/Write data in Switch memory to/from gl_buffer
void LoadGLBuffer(VAddr load_start, VAddr load_end); void LoadGLBuffer(Tegra::GPUVAddr load_start, Tegra::GPUVAddr load_end);
void FlushGLBuffer(VAddr flush_start, VAddr flush_end); void FlushGLBuffer(Tegra::GPUVAddr flush_start, Tegra::GPUVAddr flush_end);
// Upload/Download data in gl_buffer in/to this surface's texture // Upload/Download data in gl_buffer in/to this surface's texture
void UploadGLTexture(const MathUtil::Rectangle<u32>& rect, GLuint read_fb_handle, void UploadGLTexture(const MathUtil::Rectangle<u32>& rect, GLuint read_fb_handle,
@ -362,6 +411,9 @@ public:
Surface GetSurface(const SurfaceParams& params, ScaleMatch match_res_scale, Surface GetSurface(const SurfaceParams& params, ScaleMatch match_res_scale,
bool load_if_create); bool load_if_create);
/// Tries to find a framebuffer GPU address based on the provided CPU address
boost::optional<Tegra::GPUVAddr> TryFindFramebufferGpuAddress(VAddr cpu_addr) const;
/// Attempt to find a subrect (resolution scaled) of a surface, otherwise loads a texture from /// Attempt to find a subrect (resolution scaled) of a surface, otherwise loads a texture from
/// Switch memory to OpenGL and caches it (if not already cached) /// Switch memory to OpenGL and caches it (if not already cached)
SurfaceRect_Tuple GetSurfaceSubRect(const SurfaceParams& params, ScaleMatch match_res_scale, SurfaceRect_Tuple GetSurfaceSubRect(const SurfaceParams& params, ScaleMatch match_res_scale,
@ -381,10 +433,10 @@ public:
SurfaceRect_Tuple GetTexCopySurface(const SurfaceParams& params); SurfaceRect_Tuple GetTexCopySurface(const SurfaceParams& params);
/// Write any cached resources overlapping the region back to memory (if dirty) /// Write any cached resources overlapping the region back to memory (if dirty)
void FlushRegion(VAddr addr, u64 size, Surface flush_surface = nullptr); void FlushRegion(Tegra::GPUVAddr addr, u64 size, Surface flush_surface = nullptr);
/// Mark region as being invalidated by region_owner (nullptr if Switch memory) /// Mark region as being invalidated by region_owner (nullptr if Switch memory)
void InvalidateRegion(VAddr addr, u64 size, const Surface& region_owner); void InvalidateRegion(Tegra::GPUVAddr addr, u64 size, const Surface& region_owner);
/// Flush all cached resources tracked by this cache manager /// Flush all cached resources tracked by this cache manager
void FlushAll(); void FlushAll();
@ -393,7 +445,7 @@ private:
void DuplicateSurface(const Surface& src_surface, const Surface& dest_surface); void DuplicateSurface(const Surface& src_surface, const Surface& dest_surface);
/// Update surface's texture for given region when necessary /// Update surface's texture for given region when necessary
void ValidateSurface(const Surface& surface, VAddr addr, u64 size); void ValidateSurface(const Surface& surface, Tegra::GPUVAddr addr, u64 size);
/// Create a new surface /// Create a new surface
Surface CreateSurface(const SurfaceParams& params); Surface CreateSurface(const SurfaceParams& params);
@ -405,7 +457,7 @@ private:
void UnregisterSurface(const Surface& surface); void UnregisterSurface(const Surface& surface);
/// Increase/decrease the number of surface in pages touching the specified region /// Increase/decrease the number of surface in pages touching the specified region
void UpdatePagesCachedCount(VAddr addr, u64 size, int delta); void UpdatePagesCachedCount(Tegra::GPUVAddr addr, u64 size, int delta);
SurfaceCache surface_cache; SurfaceCache surface_cache;
PageMap cached_pages; PageMap cached_pages;

View File

@ -152,7 +152,8 @@ void RendererOpenGL::LoadFBToScreenInfo(const Tegra::FramebufferConfig& framebuf
screen_info.display_texture = screen_info.texture.resource.handle; screen_info.display_texture = screen_info.texture.resource.handle;
screen_info.display_texcoords = MathUtil::Rectangle<float>(0.f, 0.f, 1.f, 1.f); screen_info.display_texcoords = MathUtil::Rectangle<float>(0.f, 0.f, 1.f, 1.f);
Rasterizer()->FlushRegion(framebuffer_addr, size_in_bytes); Memory::RasterizerFlushVirtualRegion(framebuffer_addr, size_in_bytes,
Memory::FlushMode::Flush);
VideoCore::MortonCopyPixels128(framebuffer.width, framebuffer.height, bytes_per_pixel, 4, VideoCore::MortonCopyPixels128(framebuffer.width, framebuffer.height, bytes_per_pixel, 4,
Memory::GetPointer(framebuffer_addr), Memory::GetPointer(framebuffer_addr),
@ -269,10 +270,9 @@ void RendererOpenGL::ConfigureFramebufferTexture(TextureInfo& texture,
GLint internal_format; GLint internal_format;
switch (framebuffer.pixel_format) { switch (framebuffer.pixel_format) {
case Tegra::FramebufferConfig::PixelFormat::ABGR8: case Tegra::FramebufferConfig::PixelFormat::ABGR8:
// Use RGBA8 and swap in the fragment shader
internal_format = GL_RGBA; internal_format = GL_RGBA;
texture.gl_format = GL_RGBA; texture.gl_format = GL_RGBA;
texture.gl_type = GL_UNSIGNED_INT_8_8_8_8; texture.gl_type = GL_UNSIGNED_INT_8_8_8_8_REV;
gl_framebuffer_data.resize(texture.width * texture.height * 4); gl_framebuffer_data.resize(texture.width * texture.height * 4);
break; break;
default: default:

View File

@ -4,6 +4,7 @@
#include <cstring> #include <cstring>
#include "common/assert.h" #include "common/assert.h"
#include "core/memory.h"
#include "video_core/textures/decoders.h" #include "video_core/textures/decoders.h"
#include "video_core/textures/texture.h" #include "video_core/textures/texture.h"

View File

@ -378,10 +378,10 @@ void GraphicsSurfaceWidget::OnUpdate() {
// TODO: Implement a good way to visualize alpha components! // TODO: Implement a good way to visualize alpha components!
QImage decoded_image(surface_width, surface_height, QImage::Format_ARGB32); QImage decoded_image(surface_width, surface_height, QImage::Format_ARGB32);
VAddr address = gpu.memory_manager->PhysicalToVirtualAddress(surface_address); boost::optional<VAddr> address = gpu.memory_manager->GpuToCpuAddress(surface_address);
auto unswizzled_data = auto unswizzled_data =
Tegra::Texture::UnswizzleTexture(address, surface_format, surface_width, surface_height); Tegra::Texture::UnswizzleTexture(*address, surface_format, surface_width, surface_height);
auto texture_data = Tegra::Texture::DecodeTexture(unswizzled_data, surface_format, auto texture_data = Tegra::Texture::DecodeTexture(unswizzled_data, surface_format,
surface_width, surface_height); surface_width, surface_height);
@ -437,9 +437,9 @@ void GraphicsSurfaceWidget::SaveSurface() {
pixmap->save(&file, "PNG"); pixmap->save(&file, "PNG");
} else if (selectedFilter == bin_filter) { } else if (selectedFilter == bin_filter) {
auto& gpu = Core::System::GetInstance().GPU(); auto& gpu = Core::System::GetInstance().GPU();
VAddr address = gpu.memory_manager->PhysicalToVirtualAddress(surface_address); boost::optional<VAddr> address = gpu.memory_manager->GpuToCpuAddress(surface_address);
const u8* buffer = Memory::GetPointer(address); const u8* buffer = Memory::GetPointer(*address);
ASSERT_MSG(buffer != nullptr, "Memory not accessible"); ASSERT_MSG(buffer != nullptr, "Memory not accessible");
QFile file(filename); QFile file(filename);