yuzu-emu
/
yuzu-android
Archived
1
0
Fork 0

Merge pull request #3700 from ReinUsesLisp/stream-buffer-sizes

vk_stream_buffer: Fix out of memory on boot on recent Nvidia drivers
This commit is contained in:
Fernando Sahmkow 2020-04-20 09:37:42 -04:00 committed by GitHub
commit ec2f8f4272
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 47 additions and 32 deletions

View File

@ -3,6 +3,7 @@
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <algorithm> #include <algorithm>
#include <limits>
#include <optional> #include <optional>
#include <tuple> #include <tuple>
#include <vector> #include <vector>
@ -22,22 +23,38 @@ namespace {
constexpr u64 WATCHES_INITIAL_RESERVE = 0x4000; constexpr u64 WATCHES_INITIAL_RESERVE = 0x4000;
constexpr u64 WATCHES_RESERVE_CHUNK = 0x1000; constexpr u64 WATCHES_RESERVE_CHUNK = 0x1000;
constexpr u64 STREAM_BUFFER_SIZE = 256 * 1024 * 1024; constexpr u64 PREFERRED_STREAM_BUFFER_SIZE = 256 * 1024 * 1024;
std::optional<u32> FindMemoryType(const VKDevice& device, u32 filter, /// Find a memory type with the passed requirements
VkMemoryPropertyFlags wanted) { std::optional<u32> FindMemoryType(const VkPhysicalDeviceMemoryProperties& properties,
const auto properties = device.GetPhysical().GetMemoryProperties(); VkMemoryPropertyFlags wanted,
for (u32 i = 0; i < properties.memoryTypeCount; i++) { u32 filter = std::numeric_limits<u32>::max()) {
if (!(filter & (1 << i))) { for (u32 i = 0; i < properties.memoryTypeCount; ++i) {
continue; const auto flags = properties.memoryTypes[i].propertyFlags;
} if ((flags & wanted) == wanted && (filter & (1U << i)) != 0) {
if ((properties.memoryTypes[i].propertyFlags & wanted) == wanted) {
return i; return i;
} }
} }
return std::nullopt; return std::nullopt;
} }
/// Get the preferred host visible memory type.
u32 GetMemoryType(const VkPhysicalDeviceMemoryProperties& properties,
u32 filter = std::numeric_limits<u32>::max()) {
// Prefer device local host visible allocations. Both AMD and Nvidia now provide one.
// Otherwise search for a host visible allocation.
static constexpr auto HOST_MEMORY =
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
static constexpr auto DYNAMIC_MEMORY = HOST_MEMORY | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
std::optional preferred_type = FindMemoryType(properties, DYNAMIC_MEMORY);
if (!preferred_type) {
preferred_type = FindMemoryType(properties, HOST_MEMORY);
ASSERT_MSG(preferred_type, "No host visible and coherent memory type found");
}
return preferred_type.value_or(0);
}
} // Anonymous namespace } // Anonymous namespace
VKStreamBuffer::VKStreamBuffer(const VKDevice& device, VKScheduler& scheduler, VKStreamBuffer::VKStreamBuffer(const VKDevice& device, VKScheduler& scheduler,
@ -51,7 +68,7 @@ VKStreamBuffer::VKStreamBuffer(const VKDevice& device, VKScheduler& scheduler,
VKStreamBuffer::~VKStreamBuffer() = default; VKStreamBuffer::~VKStreamBuffer() = default;
std::tuple<u8*, u64, bool> VKStreamBuffer::Map(u64 size, u64 alignment) { std::tuple<u8*, u64, bool> VKStreamBuffer::Map(u64 size, u64 alignment) {
ASSERT(size <= STREAM_BUFFER_SIZE); ASSERT(size <= stream_buffer_size);
mapped_size = size; mapped_size = size;
if (alignment > 0) { if (alignment > 0) {
@ -61,7 +78,7 @@ std::tuple<u8*, u64, bool> VKStreamBuffer::Map(u64 size, u64 alignment) {
WaitPendingOperations(offset); WaitPendingOperations(offset);
bool invalidated = false; bool invalidated = false;
if (offset + size > STREAM_BUFFER_SIZE) { if (offset + size > stream_buffer_size) {
// The buffer would overflow, save the amount of used watches and reset the state. // The buffer would overflow, save the amount of used watches and reset the state.
invalidation_mark = current_watch_cursor; invalidation_mark = current_watch_cursor;
current_watch_cursor = 0; current_watch_cursor = 0;
@ -98,40 +115,37 @@ void VKStreamBuffer::Unmap(u64 size) {
} }
void VKStreamBuffer::CreateBuffers(VkBufferUsageFlags usage) { void VKStreamBuffer::CreateBuffers(VkBufferUsageFlags usage) {
const auto memory_properties = device.GetPhysical().GetMemoryProperties();
const u32 preferred_type = GetMemoryType(memory_properties);
const u32 preferred_heap = memory_properties.memoryTypes[preferred_type].heapIndex;
// Substract from the preferred heap size some bytes to avoid getting out of memory.
const VkDeviceSize heap_size = memory_properties.memoryHeaps[preferred_heap].size;
const VkDeviceSize allocable_size = heap_size - 4 * 1024 * 1024;
VkBufferCreateInfo buffer_ci; VkBufferCreateInfo buffer_ci;
buffer_ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; buffer_ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_ci.pNext = nullptr; buffer_ci.pNext = nullptr;
buffer_ci.flags = 0; buffer_ci.flags = 0;
buffer_ci.size = STREAM_BUFFER_SIZE; buffer_ci.size = std::min(PREFERRED_STREAM_BUFFER_SIZE, allocable_size);
buffer_ci.usage = usage; buffer_ci.usage = usage;
buffer_ci.sharingMode = VK_SHARING_MODE_EXCLUSIVE; buffer_ci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
buffer_ci.queueFamilyIndexCount = 0; buffer_ci.queueFamilyIndexCount = 0;
buffer_ci.pQueueFamilyIndices = nullptr; buffer_ci.pQueueFamilyIndices = nullptr;
const auto& dev = device.GetLogical(); buffer = device.GetLogical().CreateBuffer(buffer_ci);
buffer = dev.CreateBuffer(buffer_ci);
const auto requirements = device.GetLogical().GetBufferMemoryRequirements(*buffer);
const u32 required_flags = requirements.memoryTypeBits;
stream_buffer_size = static_cast<u64>(requirements.size);
const auto& dld = device.GetDispatchLoader();
const auto requirements = dev.GetBufferMemoryRequirements(*buffer);
// Prefer device local host visible allocations (this should hit AMD's pinned memory).
auto type =
FindMemoryType(device, requirements.memoryTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
if (!type) {
// Otherwise search for a host visible allocation.
type = FindMemoryType(device, requirements.memoryTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
ASSERT_MSG(type, "No host visible and coherent memory type found");
}
VkMemoryAllocateInfo memory_ai; VkMemoryAllocateInfo memory_ai;
memory_ai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; memory_ai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memory_ai.pNext = nullptr; memory_ai.pNext = nullptr;
memory_ai.allocationSize = requirements.size; memory_ai.allocationSize = requirements.size;
memory_ai.memoryTypeIndex = *type; memory_ai.memoryTypeIndex = GetMemoryType(memory_properties, required_flags);
memory = dev.AllocateMemory(memory_ai); memory = device.GetLogical().AllocateMemory(memory_ai);
buffer.BindMemory(*memory, 0); buffer.BindMemory(*memory, 0);
} }

View File

@ -56,8 +56,9 @@ private:
const VKDevice& device; ///< Vulkan device manager. const VKDevice& device; ///< Vulkan device manager.
VKScheduler& scheduler; ///< Command scheduler. VKScheduler& scheduler; ///< Command scheduler.
vk::Buffer buffer; ///< Mapped buffer. vk::Buffer buffer; ///< Mapped buffer.
vk::DeviceMemory memory; ///< Memory allocation. vk::DeviceMemory memory; ///< Memory allocation.
u64 stream_buffer_size{}; ///< Stream buffer size.
u64 offset{}; ///< Buffer iterator. u64 offset{}; ///< Buffer iterator.
u64 mapped_size{}; ///< Size reserved for the current copy. u64 mapped_size{}; ///< Size reserved for the current copy.