yuzu-emu
/
yuzu-android
Archived
1
0
Fork 0

Merge pull request #1264 from bunnei/fragment-lighting-hw

Fragment lighting support in the HW renderer
This commit is contained in:
bunnei 2016-02-05 21:49:44 -05:00
commit f1d1049c4f
15 changed files with 1167 additions and 160 deletions

View File

@ -33,6 +33,7 @@ set(HEADERS
command_processor.h
gpu_debugger.h
pica.h
pica_types.h
primitive_assembly.h
rasterizer.h
rasterizer_interface.h

View File

@ -59,15 +59,17 @@ static void InitScreenCoordinates(OutputVertex& vtx)
} viewport;
const auto& regs = g_state.regs;
viewport.halfsize_x = float24::FromRawFloat24(regs.viewport_size_x);
viewport.halfsize_y = float24::FromRawFloat24(regs.viewport_size_y);
viewport.halfsize_x = float24::FromRaw(regs.viewport_size_x);
viewport.halfsize_y = float24::FromRaw(regs.viewport_size_y);
viewport.offset_x = float24::FromFloat32(static_cast<float>(regs.viewport_corner.x));
viewport.offset_y = float24::FromFloat32(static_cast<float>(regs.viewport_corner.y));
viewport.zscale = float24::FromRawFloat24(regs.viewport_depth_range);
viewport.offset_z = float24::FromRawFloat24(regs.viewport_depth_far_plane);
viewport.zscale = float24::FromRaw(regs.viewport_depth_range);
viewport.offset_z = float24::FromRaw(regs.viewport_depth_far_plane);
float24 inv_w = float24::FromFloat32(1.f) / vtx.pos.w;
vtx.color *= inv_w;
vtx.view *= inv_w;
vtx.quat *= inv_w;
vtx.tc0 *= inv_w;
vtx.tc1 *= inv_w;
vtx.tc2 *= inv_w;

View File

@ -98,10 +98,10 @@ static void WritePicaReg(u32 id, u32 value, u32 mask) {
Math::Vec4<float24>& attribute = g_state.vs.default_attributes[setup.index];
// NOTE: The destination component order indeed is "backwards"
attribute.w = float24::FromRawFloat24(default_attr_write_buffer[0] >> 8);
attribute.z = float24::FromRawFloat24(((default_attr_write_buffer[0] & 0xFF) << 16) | ((default_attr_write_buffer[1] >> 16) & 0xFFFF));
attribute.y = float24::FromRawFloat24(((default_attr_write_buffer[1] & 0xFFFF) << 8) | ((default_attr_write_buffer[2] >> 24) & 0xFF));
attribute.x = float24::FromRawFloat24(default_attr_write_buffer[2] & 0xFFFFFF);
attribute.w = float24::FromRaw(default_attr_write_buffer[0] >> 8);
attribute.z = float24::FromRaw(((default_attr_write_buffer[0] & 0xFF) << 16) | ((default_attr_write_buffer[1] >> 16) & 0xFFFF));
attribute.y = float24::FromRaw(((default_attr_write_buffer[1] & 0xFFFF) << 8) | ((default_attr_write_buffer[2] >> 24) & 0xFF));
attribute.x = float24::FromRaw(default_attr_write_buffer[2] & 0xFFFFFF);
LOG_TRACE(HW_GPU, "Set default VS attribute %x to (%f %f %f %f)", (int)setup.index,
attribute.x.ToFloat32(), attribute.y.ToFloat32(), attribute.z.ToFloat32(),
@ -418,10 +418,10 @@ static void WritePicaReg(u32 id, u32 value, u32 mask) {
uniform[3 - i] = float24::FromFloat32(*(float*)(&uniform_write_buffer[i]));
} else {
// TODO: Untested
uniform.w = float24::FromRawFloat24(uniform_write_buffer[0] >> 8);
uniform.z = float24::FromRawFloat24(((uniform_write_buffer[0] & 0xFF)<<16) | ((uniform_write_buffer[1] >> 16) & 0xFFFF));
uniform.y = float24::FromRawFloat24(((uniform_write_buffer[1] & 0xFFFF)<<8) | ((uniform_write_buffer[2] >> 24) & 0xFF));
uniform.x = float24::FromRawFloat24(uniform_write_buffer[2] & 0xFFFFFF);
uniform.w = float24::FromRaw(uniform_write_buffer[0] >> 8);
uniform.z = float24::FromRaw(((uniform_write_buffer[0] & 0xFF) << 16) | ((uniform_write_buffer[1] >> 16) & 0xFFFF));
uniform.y = float24::FromRaw(((uniform_write_buffer[1] & 0xFFFF) << 8) | ((uniform_write_buffer[2] >> 24) & 0xFF));
uniform.x = float24::FromRaw(uniform_write_buffer[2] & 0xFFFFFF);
}
LOG_TRACE(HW_GPU, "Set uniform %x to (%f %f %f %f)", (int)uniform_setup.index,
@ -464,6 +464,24 @@ static void WritePicaReg(u32 id, u32 value, u32 mask) {
break;
}
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[0], 0x1c8):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[1], 0x1c9):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[2], 0x1ca):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[3], 0x1cb):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[4], 0x1cc):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[5], 0x1cd):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[6], 0x1ce):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[7], 0x1cf):
{
auto& lut_config = regs.lighting.lut_config;
ASSERT_MSG(lut_config.index < 256, "lut_config.index exceeded maximum value of 255!");
g_state.lighting.luts[lut_config.type][lut_config.index].raw = value;
lut_config.index = lut_config.index + 1;
break;
}
default:
break;
}

View File

@ -16,6 +16,8 @@
#include "common/vector_math.h"
#include "common/logging/log.h"
#include "pica_types.h"
namespace Pica {
// Returns index corresponding to the Regs member labeled by field_name
@ -239,7 +241,8 @@ struct Regs {
TextureConfig texture0;
INSERT_PADDING_WORDS(0x8);
BitField<0, 4, TextureFormat> texture0_format;
INSERT_PADDING_WORDS(0x2);
BitField<0, 1, u32> fragment_lighting_enable;
INSERT_PADDING_WORDS(0x1);
TextureConfig texture1;
BitField<0, 4, TextureFormat> texture1_format;
INSERT_PADDING_WORDS(0x2);
@ -641,7 +644,268 @@ struct Regs {
}
}
INSERT_PADDING_WORDS(0xe0);
INSERT_PADDING_WORDS(0x20);
enum class LightingSampler {
Distribution0 = 0,
Distribution1 = 1,
Fresnel = 3,
ReflectBlue = 4,
ReflectGreen = 5,
ReflectRed = 6,
SpotlightAttenuation = 8,
DistanceAttenuation = 16,
};
/**
* Pica fragment lighting supports using different LUTs for each lighting component:
* Reflectance R, G, and B channels, distribution function for specular components 0 and 1,
* fresnel factor, and spotlight attenuation. Furthermore, which LUTs are used for each channel
* (or whether a channel is enabled at all) is specified by various pre-defined lighting
* configurations. With configurations that require more LUTs, more cycles are required on HW to
* perform lighting computations.
*/
enum class LightingConfig {
Config0 = 0, ///< Reflect Red, Distribution 0, Spotlight
Config1 = 1, ///< Reflect Red, Fresnel, Spotlight
Config2 = 2, ///< Reflect Red, Distribution 0/1
Config3 = 3, ///< Distribution 0/1, Fresnel
Config4 = 4, ///< Reflect Red/Green/Blue, Distribution 0/1, Spotlight
Config5 = 5, ///< Reflect Red/Green/Blue, Distribution 0, Fresnel, Spotlight
Config6 = 6, ///< Reflect Red, Distribution 0/1, Fresnel, Spotlight
Config7 = 8, ///< Reflect Red/Green/Blue, Distribution 0/1, Fresnel, Spotlight
///< NOTE: '8' is intentional, '7' does not appear to be a valid configuration
};
/// Selects which lighting components are affected by fresnel
enum class LightingFresnelSelector {
None = 0, ///< Fresnel is disabled
PrimaryAlpha = 1, ///< Primary (diffuse) lighting alpha is affected by fresnel
SecondaryAlpha = 2, ///< Secondary (specular) lighting alpha is affected by fresnel
Both = PrimaryAlpha | SecondaryAlpha, ///< Both primary and secondary lighting alphas are affected by fresnel
};
/// Factor used to scale the output of a lighting LUT
enum class LightingScale {
Scale1 = 0, ///< Scale is 1x
Scale2 = 1, ///< Scale is 2x
Scale4 = 2, ///< Scale is 4x
Scale8 = 3, ///< Scale is 8x
Scale1_4 = 6, ///< Scale is 0.25x
Scale1_2 = 7, ///< Scale is 0.5x
};
enum class LightingLutInput {
NH = 0, // Cosine of the angle between the normal and half-angle vectors
VH = 1, // Cosine of the angle between the view and half-angle vectors
NV = 2, // Cosine of the angle between the normal and the view vector
LN = 3, // Cosine of the angle between the light and the normal vectors
};
enum class LightingBumpMode : u32 {
None = 0,
NormalMap = 1,
TangentMap = 2,
};
union LightColor {
BitField< 0, 10, u32> b;
BitField<10, 10, u32> g;
BitField<20, 10, u32> r;
Math::Vec3f ToVec3f() const {
// These fields are 10 bits wide, however 255 corresponds to 1.0f for each color component
return Math::MakeVec((f32)r / 255.f, (f32)g / 255.f, (f32)b / 255.f);
}
};
/// Returns true if the specified lighting sampler is supported by the current Pica lighting configuration
static bool IsLightingSamplerSupported(LightingConfig config, LightingSampler sampler) {
switch (sampler) {
case LightingSampler::Distribution0:
return (config != LightingConfig::Config1);
case LightingSampler::Distribution1:
return (config != LightingConfig::Config0) && (config != LightingConfig::Config1) && (config != LightingConfig::Config5);
case LightingSampler::Fresnel:
return (config != LightingConfig::Config0) && (config != LightingConfig::Config2) && (config != LightingConfig::Config4);
case LightingSampler::ReflectRed:
return (config != LightingConfig::Config3);
case LightingSampler::ReflectGreen:
case LightingSampler::ReflectBlue:
return (config == LightingConfig::Config4) || (config == LightingConfig::Config5) || (config == LightingConfig::Config7);
}
return false;
}
struct {
struct LightSrc {
LightColor specular_0; // material.specular_0 * light.specular_0
LightColor specular_1; // material.specular_1 * light.specular_1
LightColor diffuse; // material.diffuse * light.diffuse
LightColor ambient; // material.ambient * light.ambient
struct {
// Encoded as 16-bit floating point
union {
BitField< 0, 16, u32> x;
BitField<16, 16, u32> y;
};
union {
BitField< 0, 16, u32> z;
};
INSERT_PADDING_WORDS(0x3);
union {
BitField<0, 1, u32> directional;
BitField<1, 1, u32> two_sided_diffuse; // When disabled, clamp dot-product to 0
};
};
BitField<0, 20, u32> dist_atten_bias;
BitField<0, 20, u32> dist_atten_scale;
INSERT_PADDING_WORDS(0x4);
};
static_assert(sizeof(LightSrc) == 0x10 * sizeof(u32), "LightSrc structure must be 0x10 words");
LightSrc light[8];
LightColor global_ambient; // Emission + (material.ambient * lighting.ambient)
INSERT_PADDING_WORDS(0x1);
BitField<0, 3, u32> num_lights; // Number of enabled lights - 1
union {
BitField< 2, 2, LightingFresnelSelector> fresnel_selector;
BitField< 4, 4, LightingConfig> config;
BitField<22, 2, u32> bump_selector; // 0: Texture 0, 1: Texture 1, 2: Texture 2
BitField<27, 1, u32> clamp_highlights;
BitField<28, 2, LightingBumpMode> bump_mode;
BitField<30, 1, u32> disable_bump_renorm;
};
union {
BitField<16, 1, u32> disable_lut_d0;
BitField<17, 1, u32> disable_lut_d1;
BitField<19, 1, u32> disable_lut_fr;
BitField<20, 1, u32> disable_lut_rr;
BitField<21, 1, u32> disable_lut_rg;
BitField<22, 1, u32> disable_lut_rb;
// Each bit specifies whether distance attenuation should be applied for the
// corresponding light
BitField<24, 1, u32> disable_dist_atten_light_0;
BitField<25, 1, u32> disable_dist_atten_light_1;
BitField<26, 1, u32> disable_dist_atten_light_2;
BitField<27, 1, u32> disable_dist_atten_light_3;
BitField<28, 1, u32> disable_dist_atten_light_4;
BitField<29, 1, u32> disable_dist_atten_light_5;
BitField<30, 1, u32> disable_dist_atten_light_6;
BitField<31, 1, u32> disable_dist_atten_light_7;
};
bool IsDistAttenDisabled(unsigned index) const {
const unsigned disable[] = { disable_dist_atten_light_0, disable_dist_atten_light_1,
disable_dist_atten_light_2, disable_dist_atten_light_3,
disable_dist_atten_light_4, disable_dist_atten_light_5,
disable_dist_atten_light_6, disable_dist_atten_light_7 };
return disable[index] != 0;
}
union {
BitField<0, 8, u32> index; ///< Index at which to set data in the LUT
BitField<8, 5, u32> type; ///< Type of LUT for which to set data
} lut_config;
BitField<0, 1, u32> disable;
INSERT_PADDING_WORDS(0x1);
// When data is written to any of these registers, it gets written to the lookup table of
// the selected type at the selected index, specified above in the `lut_config` register.
// With each write, `lut_config.index` is incremented. It does not matter which of these
// registers is written to, the behavior will be the same.
u32 lut_data[8];
// These are used to specify if absolute (abs) value should be used for each LUT index. When
// abs mode is disabled, LUT indexes are in the range of (-1.0, 1.0). Otherwise, they are in
// the range of (0.0, 1.0).
union {
BitField< 1, 1, u32> disable_d0;
BitField< 5, 1, u32> disable_d1;
BitField< 9, 1, u32> disable_sp;
BitField<13, 1, u32> disable_fr;
BitField<17, 1, u32> disable_rb;
BitField<21, 1, u32> disable_rg;
BitField<25, 1, u32> disable_rr;
} abs_lut_input;
union {
BitField< 0, 3, LightingLutInput> d0;
BitField< 4, 3, LightingLutInput> d1;
BitField< 8, 3, LightingLutInput> sp;
BitField<12, 3, LightingLutInput> fr;
BitField<16, 3, LightingLutInput> rb;
BitField<20, 3, LightingLutInput> rg;
BitField<24, 3, LightingLutInput> rr;
} lut_input;
union {
BitField< 0, 3, LightingScale> d0;
BitField< 4, 3, LightingScale> d1;
BitField< 8, 3, LightingScale> sp;
BitField<12, 3, LightingScale> fr;
BitField<16, 3, LightingScale> rb;
BitField<20, 3, LightingScale> rg;
BitField<24, 3, LightingScale> rr;
static float GetScale(LightingScale scale) {
switch (scale) {
case LightingScale::Scale1:
return 1.0f;
case LightingScale::Scale2:
return 2.0f;
case LightingScale::Scale4:
return 4.0f;
case LightingScale::Scale8:
return 8.0f;
case LightingScale::Scale1_4:
return 0.25f;
case LightingScale::Scale1_2:
return 0.5f;
}
return 0.0f;
}
} lut_scale;
INSERT_PADDING_WORDS(0x6);
union {
// There are 8 light enable "slots", corresponding to the total number of lights
// supported by Pica. For N enabled lights (specified by register 0x1c2, or 'src_num'
// above), the first N slots below will be set to integers within the range of 0-7,
// corresponding to the actual light that is enabled for each slot.
BitField< 0, 3, u32> slot_0;
BitField< 4, 3, u32> slot_1;
BitField< 8, 3, u32> slot_2;
BitField<12, 3, u32> slot_3;
BitField<16, 3, u32> slot_4;
BitField<20, 3, u32> slot_5;
BitField<24, 3, u32> slot_6;
BitField<28, 3, u32> slot_7;
unsigned GetNum(unsigned index) const {
const unsigned enable_slots[] = { slot_0, slot_1, slot_2, slot_3, slot_4, slot_5, slot_6, slot_7 };
return enable_slots[index];
}
} light_enable;
} lighting;
INSERT_PADDING_WORDS(0x26);
enum class VertexAttributeFormat : u64 {
BYTE = 0,
@ -990,6 +1254,7 @@ ASSERT_REG_POSITION(viewport_corner, 0x68);
ASSERT_REG_POSITION(texture0_enable, 0x80);
ASSERT_REG_POSITION(texture0, 0x81);
ASSERT_REG_POSITION(texture0_format, 0x8e);
ASSERT_REG_POSITION(fragment_lighting_enable, 0x8f);
ASSERT_REG_POSITION(texture1, 0x91);
ASSERT_REG_POSITION(texture1_format, 0x96);
ASSERT_REG_POSITION(texture2, 0x99);
@ -1004,6 +1269,7 @@ ASSERT_REG_POSITION(tev_stage5, 0xf8);
ASSERT_REG_POSITION(tev_combiner_buffer_color, 0xfd);
ASSERT_REG_POSITION(output_merger, 0x100);
ASSERT_REG_POSITION(framebuffer, 0x110);
ASSERT_REG_POSITION(lighting, 0x140);
ASSERT_REG_POSITION(vertex_attributes, 0x200);
ASSERT_REG_POSITION(index_array, 0x227);
ASSERT_REG_POSITION(num_vertices, 0x228);
@ -1026,118 +1292,6 @@ static_assert(sizeof(Regs::ShaderConfig) == 0x30 * sizeof(u32), "ShaderConfig st
static_assert(sizeof(Regs) <= 0x300 * sizeof(u32), "Register set structure larger than it should be");
static_assert(sizeof(Regs) >= 0x300 * sizeof(u32), "Register set structure smaller than it should be");
struct float24 {
static float24 FromFloat32(float val) {
float24 ret;
ret.value = val;
return ret;
}
// 16 bit mantissa, 7 bit exponent, 1 bit sign
// TODO: No idea if this works as intended
static float24 FromRawFloat24(u32 hex) {
float24 ret;
if ((hex & 0xFFFFFF) == 0) {
ret.value = 0;
} else {
u32 mantissa = hex & 0xFFFF;
u32 exponent = (hex >> 16) & 0x7F;
u32 sign = hex >> 23;
ret.value = std::pow(2.0f, (float)exponent-63.0f) * (1.0f + mantissa * std::pow(2.0f, -16.f));
if (sign)
ret.value = -ret.value;
}
return ret;
}
static float24 Zero() {
return FromFloat32(0.f);
}
// Not recommended for anything but logging
float ToFloat32() const {
return value;
}
float24 operator * (const float24& flt) const {
if ((this->value == 0.f && !std::isnan(flt.value)) ||
(flt.value == 0.f && !std::isnan(this->value)))
// PICA gives 0 instead of NaN when multiplying by inf
return Zero();
return float24::FromFloat32(ToFloat32() * flt.ToFloat32());
}
float24 operator / (const float24& flt) const {
return float24::FromFloat32(ToFloat32() / flt.ToFloat32());
}
float24 operator + (const float24& flt) const {
return float24::FromFloat32(ToFloat32() + flt.ToFloat32());
}
float24 operator - (const float24& flt) const {
return float24::FromFloat32(ToFloat32() - flt.ToFloat32());
}
float24& operator *= (const float24& flt) {
if ((this->value == 0.f && !std::isnan(flt.value)) ||
(flt.value == 0.f && !std::isnan(this->value)))
// PICA gives 0 instead of NaN when multiplying by inf
*this = Zero();
else value *= flt.ToFloat32();
return *this;
}
float24& operator /= (const float24& flt) {
value /= flt.ToFloat32();
return *this;
}
float24& operator += (const float24& flt) {
value += flt.ToFloat32();
return *this;
}
float24& operator -= (const float24& flt) {
value -= flt.ToFloat32();
return *this;
}
float24 operator - () const {
return float24::FromFloat32(-ToFloat32());
}
bool operator < (const float24& flt) const {
return ToFloat32() < flt.ToFloat32();
}
bool operator > (const float24& flt) const {
return ToFloat32() > flt.ToFloat32();
}
bool operator >= (const float24& flt) const {
return ToFloat32() >= flt.ToFloat32();
}
bool operator <= (const float24& flt) const {
return ToFloat32() <= flt.ToFloat32();
}
bool operator == (const float24& flt) const {
return ToFloat32() == flt.ToFloat32();
}
bool operator != (const float24& flt) const {
return ToFloat32() != flt.ToFloat32();
}
private:
// Stored as a regular float, merely for convenience
// TODO: Perform proper arithmetic on this!
float value;
};
static_assert(sizeof(float24) == sizeof(float), "Shader JIT assumes float24 is implemented as a 32-bit float");
/// Struct used to describe current Pica state
struct State {
/// Pica registers
@ -1163,6 +1317,25 @@ struct State {
ShaderSetup vs;
ShaderSetup gs;
struct {
union LutEntry {
// Used for raw access
u32 raw;
// LUT value, encoded as 12-bit fixed point, with 12 fraction bits
BitField< 0, 12, u32> value;
// Used by HW for efficient interpolation, Citra does not use these
BitField<12, 12, u32> difference;
float ToFloat() {
return static_cast<float>(value) / 4095.f;
}
};
std::array<std::array<LutEntry, 256>, 24> luts;
} lighting;
/// Current Pica command list
struct {
const u32* head_ptr;

146
src/video_core/pica_types.h Normal file
View File

@ -0,0 +1,146 @@
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <cstring>
#include "common/common_types.h"
namespace Pica {
/**
* Template class for converting arbitrary Pica float types to IEEE 754 32-bit single-precision
* floating point.
*
* When decoding, format is as follows:
* - The first `M` bits are the mantissa
* - The next `E` bits are the exponent
* - The last bit is the sign bit
*
* @todo Verify on HW if this conversion is sufficiently accurate.
*/
template<unsigned M, unsigned E>
struct Float {
public:
static Float<M, E> FromFloat32(float val) {
Float<M, E> ret;
ret.value = val;
return ret;
}
static Float<M, E> FromRaw(u32 hex) {
Float<M, E> res;
const int width = M + E + 1;
const int bias = 128 - (1 << (E - 1));
const int exponent = (hex >> M) & ((1 << E) - 1);
const unsigned mantissa = hex & ((1 << M) - 1);
if (hex & ((1 << (width - 1)) - 1))
hex = ((hex >> (E + M)) << 31) | (mantissa << (23 - M)) | ((exponent + bias) << 23);
else
hex = ((hex >> (E + M)) << 31);
std::memcpy(&res.value, &hex, sizeof(float));
return res;
}
static Float<M, E> Zero() {
return FromFloat32(0.f);
}
// Not recommended for anything but logging
float ToFloat32() const {
return value;
}
Float<M, E> operator * (const Float<M, E>& flt) const {
if ((this->value == 0.f && !std::isnan(flt.value)) ||
(flt.value == 0.f && !std::isnan(this->value)))
// PICA gives 0 instead of NaN when multiplying by inf
return Zero();
return Float<M, E>::FromFloat32(ToFloat32() * flt.ToFloat32());
}
Float<M, E> operator / (const Float<M, E>& flt) const {
return Float<M, E>::FromFloat32(ToFloat32() / flt.ToFloat32());
}
Float<M, E> operator + (const Float<M, E>& flt) const {
return Float<M, E>::FromFloat32(ToFloat32() + flt.ToFloat32());
}
Float<M, E> operator - (const Float<M, E>& flt) const {
return Float<M, E>::FromFloat32(ToFloat32() - flt.ToFloat32());
}
Float<M, E>& operator *= (const Float<M, E>& flt) {
if ((this->value == 0.f && !std::isnan(flt.value)) ||
(flt.value == 0.f && !std::isnan(this->value)))
// PICA gives 0 instead of NaN when multiplying by inf
*this = Zero();
else value *= flt.ToFloat32();
return *this;
}
Float<M, E>& operator /= (const Float<M, E>& flt) {
value /= flt.ToFloat32();
return *this;
}
Float<M, E>& operator += (const Float<M, E>& flt) {
value += flt.ToFloat32();
return *this;
}
Float<M, E>& operator -= (const Float<M, E>& flt) {
value -= flt.ToFloat32();
return *this;
}
Float<M, E> operator - () const {
return Float<M, E>::FromFloat32(-ToFloat32());
}
bool operator < (const Float<M, E>& flt) const {
return ToFloat32() < flt.ToFloat32();
}
bool operator > (const Float<M, E>& flt) const {
return ToFloat32() > flt.ToFloat32();
}
bool operator >= (const Float<M, E>& flt) const {
return ToFloat32() >= flt.ToFloat32();
}
bool operator <= (const Float<M, E>& flt) const {
return ToFloat32() <= flt.ToFloat32();
}
bool operator == (const Float<M, E>& flt) const {
return ToFloat32() == flt.ToFloat32();
}
bool operator != (const Float<M, E>& flt) const {
return ToFloat32() != flt.ToFloat32();
}
private:
static const unsigned MASK = (1 << (M + E + 1)) - 1;
static const unsigned MANTISSA_MASK = (1 << M) - 1;
static const unsigned EXPONENT_MASK = (1 << E) - 1;
// Stored as a regular float, merely for convenience
// TODO: Perform proper arithmetic on this!
float value;
};
using float24 = Float<16, 7>;
using float20 = Float<12, 7>;
using float16 = Float<10, 5>;
} // namespace Pica

View File

@ -75,6 +75,12 @@ void RasterizerOpenGL::InitObjects() {
glEnableVertexAttribArray(GLShader::ATTRIBUTE_TEXCOORD1);
glEnableVertexAttribArray(GLShader::ATTRIBUTE_TEXCOORD2);
glVertexAttribPointer(GLShader::ATTRIBUTE_NORMQUAT, 4, GL_FLOAT, GL_FALSE, sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, normquat));
glEnableVertexAttribArray(GLShader::ATTRIBUTE_NORMQUAT);
glVertexAttribPointer(GLShader::ATTRIBUTE_VIEW, 3, GL_FLOAT, GL_FALSE, sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, view));
glEnableVertexAttribArray(GLShader::ATTRIBUTE_VIEW);
SetShader();
// Create textures for OGL framebuffer that will be rendered to, initially 1x1 to succeed in framebuffer creation
@ -120,6 +126,19 @@ void RasterizerOpenGL::InitObjects() {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fb_color_texture.texture.handle, 0);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, fb_depth_texture.texture.handle, 0);
for (size_t i = 0; i < lighting_lut.size(); ++i) {
lighting_lut[i].Create();
state.lighting_lut[i].texture_1d = lighting_lut[i].handle;
glActiveTexture(GL_TEXTURE3 + i);
glBindTexture(GL_TEXTURE_1D, state.lighting_lut[i].texture_1d);
glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA32F, 256, 0, GL_RGBA, GL_FLOAT, nullptr);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
}
state.Apply();
ASSERT_MSG(glCheckFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE,
"OpenGL rasterizer framebuffer setup failed, status %X", glCheckFramebufferStatus(GL_FRAMEBUFFER));
}
@ -139,12 +158,34 @@ void RasterizerOpenGL::Reset() {
res_cache.InvalidateAll();
}
/**
* This is a helper function to resolve an issue with opposite quaternions being interpolated by
* OpenGL. See below for a detailed description of this issue (yuriks):
*
* For any rotation, there are two quaternions Q, and -Q, that represent the same rotation. If you
* interpolate two quaternions that are opposite, instead of going from one rotation to another
* using the shortest path, you'll go around the longest path. You can test if two quaternions are
* opposite by checking if Dot(Q1, W2) < 0. In that case, you can flip either of them, therefore
* making Dot(-Q1, W2) positive.
*
* NOTE: This solution corrects this issue per-vertex before passing the quaternions to OpenGL. This
* should be correct for nearly all cases, however a more correct implementation (but less trivial
* and perhaps unnecessary) would be to handle this per-fragment, by interpolating the quaternions
* manually using two Lerps, and doing this correction before each Lerp.
*/
static bool AreQuaternionsOpposite(Math::Vec4<Pica::float24> qa, Math::Vec4<Pica::float24> qb) {
Math::Vec4f a{ qa.x.ToFloat32(), qa.y.ToFloat32(), qa.z.ToFloat32(), qa.w.ToFloat32() };
Math::Vec4f b{ qb.x.ToFloat32(), qb.y.ToFloat32(), qb.z.ToFloat32(), qb.w.ToFloat32() };
return (Math::Dot(a, b) < 0.f);
}
void RasterizerOpenGL::AddTriangle(const Pica::Shader::OutputVertex& v0,
const Pica::Shader::OutputVertex& v1,
const Pica::Shader::OutputVertex& v2) {
vertex_batch.emplace_back(v0);
vertex_batch.emplace_back(v1);
vertex_batch.emplace_back(v2);
vertex_batch.emplace_back(v0, false);
vertex_batch.emplace_back(v1, AreQuaternionsOpposite(v0.quat, v1.quat));
vertex_batch.emplace_back(v2, AreQuaternionsOpposite(v0.quat, v2.quat));
}
void RasterizerOpenGL::DrawTriangles() {
@ -156,6 +197,13 @@ void RasterizerOpenGL::DrawTriangles() {
state.draw.shader_dirty = false;
}
for (unsigned index = 0; index < lighting_lut.size(); index++) {
if (uniform_block_data.lut_dirty[index]) {
SyncLightingLUT(index);
uniform_block_data.lut_dirty[index] = false;
}
}
if (uniform_block_data.dirty) {
glBufferData(GL_UNIFORM_BUFFER, sizeof(UniformData), &uniform_block_data.data, GL_STATIC_DRAW);
uniform_block_data.dirty = false;
@ -283,6 +331,165 @@ void RasterizerOpenGL::NotifyPicaRegisterChanged(u32 id) {
case PICA_REG_INDEX(tev_combiner_buffer_color):
SyncCombinerColor();
break;
// Fragment lighting specular 0 color
case PICA_REG_INDEX_WORKAROUND(lighting.light[0].specular_0, 0x140 + 0 * 0x10):
SyncLightSpecular0(0);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[1].specular_0, 0x140 + 1 * 0x10):
SyncLightSpecular0(1);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[2].specular_0, 0x140 + 2 * 0x10):
SyncLightSpecular0(2);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[3].specular_0, 0x140 + 3 * 0x10):
SyncLightSpecular0(3);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[4].specular_0, 0x140 + 4 * 0x10):
SyncLightSpecular0(4);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[5].specular_0, 0x140 + 5 * 0x10):
SyncLightSpecular0(5);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[6].specular_0, 0x140 + 6 * 0x10):
SyncLightSpecular0(6);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[7].specular_0, 0x140 + 7 * 0x10):
SyncLightSpecular0(7);
break;
// Fragment lighting specular 1 color
case PICA_REG_INDEX_WORKAROUND(lighting.light[0].specular_1, 0x141 + 0 * 0x10):
SyncLightSpecular1(0);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[1].specular_1, 0x141 + 1 * 0x10):
SyncLightSpecular1(1);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[2].specular_1, 0x141 + 2 * 0x10):
SyncLightSpecular1(2);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[3].specular_1, 0x141 + 3 * 0x10):
SyncLightSpecular1(3);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[4].specular_1, 0x141 + 4 * 0x10):
SyncLightSpecular1(4);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[5].specular_1, 0x141 + 5 * 0x10):
SyncLightSpecular1(5);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[6].specular_1, 0x141 + 6 * 0x10):
SyncLightSpecular1(6);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[7].specular_1, 0x141 + 7 * 0x10):
SyncLightSpecular1(7);
break;
// Fragment lighting diffuse color
case PICA_REG_INDEX_WORKAROUND(lighting.light[0].diffuse, 0x142 + 0 * 0x10):
SyncLightDiffuse(0);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[1].diffuse, 0x142 + 1 * 0x10):
SyncLightDiffuse(1);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[2].diffuse, 0x142 + 2 * 0x10):
SyncLightDiffuse(2);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[3].diffuse, 0x142 + 3 * 0x10):
SyncLightDiffuse(3);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[4].diffuse, 0x142 + 4 * 0x10):
SyncLightDiffuse(4);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[5].diffuse, 0x142 + 5 * 0x10):
SyncLightDiffuse(5);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[6].diffuse, 0x142 + 6 * 0x10):
SyncLightDiffuse(6);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[7].diffuse, 0x142 + 7 * 0x10):
SyncLightDiffuse(7);
break;
// Fragment lighting ambient color
case PICA_REG_INDEX_WORKAROUND(lighting.light[0].ambient, 0x143 + 0 * 0x10):
SyncLightAmbient(0);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[1].ambient, 0x143 + 1 * 0x10):
SyncLightAmbient(1);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[2].ambient, 0x143 + 2 * 0x10):
SyncLightAmbient(2);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[3].ambient, 0x143 + 3 * 0x10):
SyncLightAmbient(3);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[4].ambient, 0x143 + 4 * 0x10):
SyncLightAmbient(4);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[5].ambient, 0x143 + 5 * 0x10):
SyncLightAmbient(5);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[6].ambient, 0x143 + 6 * 0x10):
SyncLightAmbient(6);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[7].ambient, 0x143 + 7 * 0x10):
SyncLightAmbient(7);
break;
// Fragment lighting position
case PICA_REG_INDEX_WORKAROUND(lighting.light[0].x, 0x144 + 0 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[0].z, 0x145 + 0 * 0x10):
SyncLightPosition(0);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[1].x, 0x144 + 1 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[1].z, 0x145 + 1 * 0x10):
SyncLightPosition(1);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[2].x, 0x144 + 2 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[2].z, 0x145 + 2 * 0x10):
SyncLightPosition(2);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[3].x, 0x144 + 3 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[3].z, 0x145 + 3 * 0x10):
SyncLightPosition(3);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[4].x, 0x144 + 4 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[4].z, 0x145 + 4 * 0x10):
SyncLightPosition(4);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[5].x, 0x144 + 5 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[5].z, 0x145 + 5 * 0x10):
SyncLightPosition(5);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[6].x, 0x144 + 6 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[6].z, 0x145 + 6 * 0x10):
SyncLightPosition(6);
break;
case PICA_REG_INDEX_WORKAROUND(lighting.light[7].x, 0x144 + 7 * 0x10):
case PICA_REG_INDEX_WORKAROUND(lighting.light[7].z, 0x145 + 7 * 0x10):
SyncLightPosition(7);
break;
// Fragment lighting global ambient color (emission + ambient * ambient)
case PICA_REG_INDEX_WORKAROUND(lighting.global_ambient, 0x1c0):
SyncGlobalAmbient();
break;
// Fragment lighting lookup tables
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[0], 0x1c8):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[1], 0x1c9):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[2], 0x1ca):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[3], 0x1cb):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[4], 0x1cc):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[5], 0x1cd):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[6], 0x1ce):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[7], 0x1cf):
{
auto& lut_config = regs.lighting.lut_config;
uniform_block_data.lut_dirty[lut_config.type / 4] = true;
break;
}
}
}
@ -491,18 +698,39 @@ void RasterizerOpenGL::SetShader() {
uniform_tex = glGetUniformLocation(shader->shader.handle, "tex[2]");
if (uniform_tex != -1) { glUniform1i(uniform_tex, 2); }
// Set the texture samplers to correspond to different lookup table texture units
GLuint uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[0]");
if (uniform_lut != -1) { glUniform1i(uniform_lut, 3); }
uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[1]");
if (uniform_lut != -1) { glUniform1i(uniform_lut, 4); }
uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[2]");
if (uniform_lut != -1) { glUniform1i(uniform_lut, 5); }
uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[3]");
if (uniform_lut != -1) { glUniform1i(uniform_lut, 6); }
uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[4]");
if (uniform_lut != -1) { glUniform1i(uniform_lut, 7); }
uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[5]");
if (uniform_lut != -1) { glUniform1i(uniform_lut, 8); }
current_shader = shader_cache.emplace(config, std::move(shader)).first->second.get();
unsigned int block_index = glGetUniformBlockIndex(current_shader->shader.handle, "shader_data");
glUniformBlockBinding(current_shader->shader.handle, block_index, 0);
}
// Update uniforms
SyncAlphaTest();
SyncCombinerColor();
auto& tev_stages = Pica::g_state.regs.GetTevStages();
for (int index = 0; index < tev_stages.size(); ++index)
SyncTevConstColor(index, tev_stages[index]);
// Update uniforms
SyncAlphaTest();
SyncCombinerColor();
auto& tev_stages = Pica::g_state.regs.GetTevStages();
for (int index = 0; index < tev_stages.size(); ++index)
SyncTevConstColor(index, tev_stages[index]);
SyncGlobalAmbient();
for (int light_index = 0; light_index < 8; light_index++) {
SyncLightDiffuse(light_index);
SyncLightAmbient(light_index);
SyncLightPosition(light_index);
}
}
}
void RasterizerOpenGL::SyncFramebuffer() {
@ -604,8 +832,8 @@ void RasterizerOpenGL::SyncCullMode() {
}
void RasterizerOpenGL::SyncDepthModifiers() {
float depth_scale = -Pica::float24::FromRawFloat24(Pica::g_state.regs.viewport_depth_range).ToFloat32();
float depth_offset = Pica::float24::FromRawFloat24(Pica::g_state.regs.viewport_depth_far_plane).ToFloat32() / 2.0f;
float depth_scale = -Pica::float24::FromRaw(Pica::g_state.regs.viewport_depth_range).ToFloat32();
float depth_offset = Pica::float24::FromRaw(Pica::g_state.regs.viewport_depth_far_plane).ToFloat32() / 2.0f;
// TODO: Implement scale modifier
uniform_block_data.data.depth_offset = depth_offset;
@ -683,12 +911,81 @@ void RasterizerOpenGL::SyncTevConstColor(int stage_index, const Pica::Regs::TevS
}
}
void RasterizerOpenGL::SyncGlobalAmbient() {
auto color = PicaToGL::LightColor(Pica::g_state.regs.lighting.global_ambient);
if (color != uniform_block_data.data.lighting_global_ambient) {
uniform_block_data.data.lighting_global_ambient = color;
uniform_block_data.dirty = true;
}
}
void RasterizerOpenGL::SyncLightingLUT(unsigned lut_index) {
std::array<GLvec4, 256> new_data;
for (unsigned offset = 0; offset < new_data.size(); ++offset) {
new_data[offset][0] = Pica::g_state.lighting.luts[(lut_index * 4) + 0][offset].ToFloat();
new_data[offset][1] = Pica::g_state.lighting.luts[(lut_index * 4) + 1][offset].ToFloat();
new_data[offset][2] = Pica::g_state.lighting.luts[(lut_index * 4) + 2][offset].ToFloat();
new_data[offset][3] = Pica::g_state.lighting.luts[(lut_index * 4) + 3][offset].ToFloat();
}
if (new_data != lighting_lut_data[lut_index]) {
lighting_lut_data[lut_index] = new_data;
glActiveTexture(GL_TEXTURE3 + lut_index);
glTexSubImage1D(GL_TEXTURE_1D, 0, 0, 256, GL_RGBA, GL_FLOAT, lighting_lut_data[lut_index].data());
}
}
void RasterizerOpenGL::SyncLightSpecular0(int light_index) {
auto color = PicaToGL::LightColor(Pica::g_state.regs.lighting.light[light_index].specular_0);
if (color != uniform_block_data.data.light_src[light_index].specular_0) {
uniform_block_data.data.light_src[light_index].specular_0 = color;
uniform_block_data.dirty = true;
}
}
void RasterizerOpenGL::SyncLightSpecular1(int light_index) {
auto color = PicaToGL::LightColor(Pica::g_state.regs.lighting.light[light_index].specular_1);
if (color != uniform_block_data.data.light_src[light_index].specular_1) {
uniform_block_data.data.light_src[light_index].specular_1 = color;
uniform_block_data.dirty = true;
}
}
void RasterizerOpenGL::SyncLightDiffuse(int light_index) {
auto color = PicaToGL::LightColor(Pica::g_state.regs.lighting.light[light_index].diffuse);
if (color != uniform_block_data.data.light_src[light_index].diffuse) {
uniform_block_data.data.light_src[light_index].diffuse = color;
uniform_block_data.dirty = true;
}
}
void RasterizerOpenGL::SyncLightAmbient(int light_index) {
auto color = PicaToGL::LightColor(Pica::g_state.regs.lighting.light[light_index].ambient);
if (color != uniform_block_data.data.light_src[light_index].ambient) {
uniform_block_data.data.light_src[light_index].ambient = color;
uniform_block_data.dirty = true;
}
}
void RasterizerOpenGL::SyncLightPosition(int light_index) {
GLvec3 position = {
Pica::float16::FromRaw(Pica::g_state.regs.lighting.light[light_index].x).ToFloat32(),
Pica::float16::FromRaw(Pica::g_state.regs.lighting.light[light_index].y).ToFloat32(),
Pica::float16::FromRaw(Pica::g_state.regs.lighting.light[light_index].z).ToFloat32() };
if (position != uniform_block_data.data.light_src[light_index].position) {
uniform_block_data.data.light_src[light_index].position = position;
uniform_block_data.dirty = true;
}
}
void RasterizerOpenGL::SyncDrawState() {
const auto& regs = Pica::g_state.regs;
// Sync the viewport
GLsizei viewport_width = (GLsizei)Pica::float24::FromRawFloat24(regs.viewport_size_x).ToFloat32() * 2;
GLsizei viewport_height = (GLsizei)Pica::float24::FromRawFloat24(regs.viewport_size_y).ToFloat32() * 2;
GLsizei viewport_width = (GLsizei)Pica::float24::FromRaw(regs.viewport_size_x).ToFloat32() * 2;
GLsizei viewport_height = (GLsizei)Pica::float24::FromRaw(regs.viewport_size_y).ToFloat32() * 2;
// OpenGL uses different y coordinates, so negate corner offset and flip origin
// TODO: Ensure viewport_corner.x should not be negated or origin flipped

View File

@ -17,6 +17,7 @@
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_opengl/gl_rasterizer_cache.h"
#include "video_core/renderer_opengl/gl_state.h"
#include "video_core/renderer_opengl/pica_to_gl.h"
#include "video_core/shader/shader_interpreter.h"
/**
@ -71,6 +72,59 @@ struct PicaShaderConfig {
regs.tev_combiner_buffer_input.update_mask_rgb.Value() |
regs.tev_combiner_buffer_input.update_mask_a.Value() << 4;
// Fragment lighting
res.lighting.enable = !regs.lighting.disable;
res.lighting.src_num = regs.lighting.num_lights + 1;
for (unsigned light_index = 0; light_index < res.lighting.src_num; ++light_index) {
unsigned num = regs.lighting.light_enable.GetNum(light_index);
const auto& light = regs.lighting.light[num];
res.lighting.light[light_index].num = num;
res.lighting.light[light_index].directional = light.directional != 0;
res.lighting.light[light_index].two_sided_diffuse = light.two_sided_diffuse != 0;
res.lighting.light[light_index].dist_atten_enable = !regs.lighting.IsDistAttenDisabled(num);
res.lighting.light[light_index].dist_atten_bias = Pica::float20::FromRaw(light.dist_atten_bias).ToFloat32();
res.lighting.light[light_index].dist_atten_scale = Pica::float20::FromRaw(light.dist_atten_scale).ToFloat32();
}
res.lighting.lut_d0.enable = regs.lighting.disable_lut_d0 == 0;
res.lighting.lut_d0.abs_input = regs.lighting.abs_lut_input.disable_d0 == 0;
res.lighting.lut_d0.type = regs.lighting.lut_input.d0.Value();
res.lighting.lut_d0.scale = regs.lighting.lut_scale.GetScale(regs.lighting.lut_scale.d0);
res.lighting.lut_d1.enable = regs.lighting.disable_lut_d1 == 0;
res.lighting.lut_d1.abs_input = regs.lighting.abs_lut_input.disable_d1 == 0;
res.lighting.lut_d1.type = regs.lighting.lut_input.d1.Value();
res.lighting.lut_d1.scale = regs.lighting.lut_scale.GetScale(regs.lighting.lut_scale.d1);
res.lighting.lut_fr.enable = regs.lighting.disable_lut_fr == 0;
res.lighting.lut_fr.abs_input = regs.lighting.abs_lut_input.disable_fr == 0;
res.lighting.lut_fr.type = regs.lighting.lut_input.fr.Value();
res.lighting.lut_fr.scale = regs.lighting.lut_scale.GetScale(regs.lighting.lut_scale.fr);
res.lighting.lut_rr.enable = regs.lighting.disable_lut_rr == 0;
res.lighting.lut_rr.abs_input = regs.lighting.abs_lut_input.disable_rr == 0;
res.lighting.lut_rr.type = regs.lighting.lut_input.rr.Value();
res.lighting.lut_rr.scale = regs.lighting.lut_scale.GetScale(regs.lighting.lut_scale.rr);
res.lighting.lut_rg.enable = regs.lighting.disable_lut_rg == 0;
res.lighting.lut_rg.abs_input = regs.lighting.abs_lut_input.disable_rg == 0;
res.lighting.lut_rg.type = regs.lighting.lut_input.rg.Value();
res.lighting.lut_rg.scale = regs.lighting.lut_scale.GetScale(regs.lighting.lut_scale.rg);
res.lighting.lut_rb.enable = regs.lighting.disable_lut_rb == 0;
res.lighting.lut_rb.abs_input = regs.lighting.abs_lut_input.disable_rb == 0;
res.lighting.lut_rb.type = regs.lighting.lut_input.rb.Value();
res.lighting.lut_rb.scale = regs.lighting.lut_scale.GetScale(regs.lighting.lut_scale.rb);
res.lighting.config = regs.lighting.config;
res.lighting.fresnel_selector = regs.lighting.fresnel_selector;
res.lighting.bump_mode = regs.lighting.bump_mode;
res.lighting.bump_selector = regs.lighting.bump_selector;
res.lighting.bump_renorm = regs.lighting.disable_bump_renorm == 0;
res.lighting.clamp_highlights = regs.lighting.clamp_highlights != 0;
return res;
}
@ -86,9 +140,37 @@ struct PicaShaderConfig {
return std::memcmp(this, &o, sizeof(PicaShaderConfig)) == 0;
};
Pica::Regs::CompareFunc alpha_test_func;
Pica::Regs::CompareFunc alpha_test_func = Pica::Regs::CompareFunc::Never;
std::array<Pica::Regs::TevStageConfig, 6> tev_stages = {};
u8 combiner_buffer_input;
u8 combiner_buffer_input = 0;
struct {
struct {
unsigned num = 0;
bool directional = false;
bool two_sided_diffuse = false;
bool dist_atten_enable = false;
GLfloat dist_atten_scale = 0.0f;
GLfloat dist_atten_bias = 0.0f;
} light[8];
bool enable = false;
unsigned src_num = 0;
Pica::Regs::LightingBumpMode bump_mode = Pica::Regs::LightingBumpMode::None;
unsigned bump_selector = 0;
bool bump_renorm = false;
bool clamp_highlights = false;
Pica::Regs::LightingConfig config = Pica::Regs::LightingConfig::Config0;
Pica::Regs::LightingFresnelSelector fresnel_selector = Pica::Regs::LightingFresnelSelector::None;
struct {
bool enable = false;
bool abs_input = false;
Pica::Regs::LightingLutInput type = Pica::Regs::LightingLutInput::NH;
float scale = 1.0f;
} lut_d0, lut_d1, lut_fr, lut_rr, lut_rg, lut_rb;
} lighting;
};
namespace std {
@ -167,7 +249,7 @@ private:
/// Structure that the hardware rendered vertices are composed of
struct HardwareVertex {
HardwareVertex(const Pica::Shader::OutputVertex& v) {
HardwareVertex(const Pica::Shader::OutputVertex& v, bool flip_quaternion) {
position[0] = v.pos.x.ToFloat32();
position[1] = v.pos.y.ToFloat32();
position[2] = v.pos.z.ToFloat32();
@ -182,6 +264,19 @@ private:
tex_coord1[1] = v.tc1.y.ToFloat32();
tex_coord2[0] = v.tc2.x.ToFloat32();
tex_coord2[1] = v.tc2.y.ToFloat32();
normquat[0] = v.quat.x.ToFloat32();
normquat[1] = v.quat.y.ToFloat32();
normquat[2] = v.quat.z.ToFloat32();
normquat[3] = v.quat.w.ToFloat32();
view[0] = v.view.x.ToFloat32();
view[1] = v.view.y.ToFloat32();
view[2] = v.view.z.ToFloat32();
if (flip_quaternion) {
for (float& x : normquat) {
x = -x;
}
}
}
GLfloat position[4];
@ -189,20 +284,31 @@ private:
GLfloat tex_coord0[2];
GLfloat tex_coord1[2];
GLfloat tex_coord2[2];
GLfloat normquat[4];
GLfloat view[3];
};
struct LightSrc {
alignas(16) GLvec3 specular_0;
alignas(16) GLvec3 specular_1;
alignas(16) GLvec3 diffuse;
alignas(16) GLvec3 ambient;
alignas(16) GLvec3 position;
};
/// Uniform structure for the Uniform Buffer Object, all members must be 16-byte aligned
struct UniformData {
// A vec4 color for each of the six tev stages
std::array<GLfloat, 4> const_color[6];
std::array<GLfloat, 4> tev_combiner_buffer_color;
GLvec4 const_color[6];
GLvec4 tev_combiner_buffer_color;
GLint alphatest_ref;
GLfloat depth_offset;
INSERT_PADDING_BYTES(8);
alignas(16) GLvec3 lighting_global_ambient;
LightSrc light_src[8];
};
static_assert(sizeof(UniformData) == 0x80, "The size of the UniformData structure has changed, update the structure in the shader");
static_assert(sizeof(UniformData) < 16000, "UniformData structure must be less than 16kb as per the OpenGL spec");
static_assert(sizeof(UniformData) == 0x310, "The size of the UniformData structure has changed, update the structure in the shader");
static_assert(sizeof(UniformData) < 16384, "UniformData structure must be less than 16kb as per the OpenGL spec");
/// Reconfigure the OpenGL color texture to use the given format and dimensions
void ReconfigureColorTexture(TextureInfo& texture, Pica::Regs::ColorFormat format, u32 width, u32 height);
@ -249,6 +355,27 @@ private:
/// Syncs the TEV combiner color buffer to match the PICA register
void SyncCombinerColor();
/// Syncs the lighting global ambient color to match the PICA register
void SyncGlobalAmbient();
/// Syncs the lighting lookup tables
void SyncLightingLUT(unsigned index);
/// Syncs the specified light's diffuse color to match the PICA register
void SyncLightDiffuse(int light_index);
/// Syncs the specified light's ambient color to match the PICA register
void SyncLightAmbient(int light_index);
/// Syncs the specified light's position to match the PICA register
void SyncLightPosition(int light_index);
/// Syncs the specified light's specular 0 color to match the PICA register
void SyncLightSpecular0(int light_index);
/// Syncs the specified light's specular 1 color to match the PICA register
void SyncLightSpecular1(int light_index);
/// Syncs the remaining OpenGL drawing state to match the current PICA state
void SyncDrawState();
@ -291,6 +418,7 @@ private:
struct {
UniformData data;
bool lut_dirty[6];
bool dirty;
} uniform_block_data;
@ -298,4 +426,7 @@ private:
OGLBuffer vertex_buffer;
OGLBuffer uniform_buffer;
OGLFramebuffer framebuffer;
std::array<OGLTexture, 6> lighting_lut;
std::array<std::array<GLvec4, 256>, 6> lighting_lut_data;
};

View File

@ -32,12 +32,10 @@ static void AppendSource(std::string& out, TevStageConfig::Source source,
out += "primary_color";
break;
case Source::PrimaryFragmentColor:
// HACK: Until we implement fragment lighting, use primary_color
out += "primary_color";
out += "primary_fragment_color";
break;
case Source::SecondaryFragmentColor:
// HACK: Until we implement fragment lighting, use zero
out += "vec4(0.0)";
out += "secondary_fragment_color";
break;
case Source::Texture0:
out += "texture(tex[0], texcoord[0])";
@ -320,26 +318,229 @@ static void WriteTevStage(std::string& out, const PicaShaderConfig& config, unsi
out += "next_combiner_buffer.a = last_tex_env_out.a;\n";
}
/// Writes the code to emulate fragment lighting
static void WriteLighting(std::string& out, const PicaShaderConfig& config) {
// Define lighting globals
out += "vec4 diffuse_sum = vec4(0.0, 0.0, 0.0, 1.0);\n"
"vec4 specular_sum = vec4(0.0, 0.0, 0.0, 1.0);\n"
"vec3 light_vector = vec3(0.0);\n"
"vec3 refl_value = vec3(0.0);\n";
// Compute fragment normals
if (config.lighting.bump_mode == Pica::Regs::LightingBumpMode::NormalMap) {
// Bump mapping is enabled using a normal map, read perturbation vector from the selected texture
std::string bump_selector = std::to_string(config.lighting.bump_selector);
out += "vec3 surface_normal = 2.0 * texture(tex[" + bump_selector + "], texcoord[" + bump_selector + "]).rgb - 1.0;\n";
// Recompute Z-component of perturbation if 'renorm' is enabled, this provides a higher precision result
if (config.lighting.bump_renorm) {
std::string val = "(1.0 - (surface_normal.x*surface_normal.x + surface_normal.y*surface_normal.y))";
out += "surface_normal.z = sqrt(max(" + val + ", 0.0));\n";
}
} else if (config.lighting.bump_mode == Pica::Regs::LightingBumpMode::TangentMap) {
// Bump mapping is enabled using a tangent map
LOG_CRITICAL(HW_GPU, "unimplemented bump mapping mode (tangent mapping)");
UNIMPLEMENTED();
} else {
// No bump mapping - surface local normal is just a unit normal
out += "vec3 surface_normal = vec3(0.0, 0.0, 1.0);\n";
}
// Rotate the surface-local normal by the interpolated normal quaternion to convert it to eyespace
out += "vec3 normal = normalize(quaternion_rotate(normquat, surface_normal));\n";
// Gets the index into the specified lookup table for specular lighting
auto GetLutIndex = [config](unsigned light_num, Regs::LightingLutInput input, bool abs) {
const std::string half_angle = "normalize(normalize(view) + light_vector)";
std::string index;
switch (input) {
case Regs::LightingLutInput::NH:
index = "dot(normal, " + half_angle + ")";
break;
case Regs::LightingLutInput::VH:
index = std::string("dot(normalize(view), " + half_angle + ")");
break;
case Regs::LightingLutInput::NV:
index = std::string("dot(normal, normalize(view))");
break;
case Regs::LightingLutInput::LN:
index = std::string("dot(light_vector, normal)");
break;
default:
LOG_CRITICAL(HW_GPU, "Unknown lighting LUT input %d\n", (int)input);
UNIMPLEMENTED();
break;
}
if (abs) {
// LUT index is in the range of (0.0, 1.0)
index = config.lighting.light[light_num].two_sided_diffuse ? "abs(" + index + ")" : "max(" + index + ", 0.f)";
return "(FLOAT_255 * clamp(" + index + ", 0.0, 1.0))";
} else {
// LUT index is in the range of (-1.0, 1.0)
index = "clamp(" + index + ", -1.0, 1.0)";
return "(FLOAT_255 * ((" + index + " < 0) ? " + index + " + 2.0 : " + index + ") / 2.0)";
}
return std::string();
};
// Gets the lighting lookup table value given the specified sampler and index
auto GetLutValue = [](Regs::LightingSampler sampler, std::string lut_index) {
return std::string("texture(lut[" + std::to_string((unsigned)sampler / 4) + "], " +
lut_index + ")[" + std::to_string((unsigned)sampler & 3) + "]");
};
// Write the code to emulate each enabled light
for (unsigned light_index = 0; light_index < config.lighting.src_num; ++light_index) {
const auto& light_config = config.lighting.light[light_index];
std::string light_src = "light_src[" + std::to_string(light_config.num) + "]";
// Compute light vector (directional or positional)
if (light_config.directional)
out += "light_vector = normalize(" + light_src + ".position);\n";
else
out += "light_vector = normalize(" + light_src + ".position + view);\n";
// Compute dot product of light_vector and normal, adjust if lighting is one-sided or two-sided
std::string dot_product = light_config.two_sided_diffuse ? "abs(dot(light_vector, normal))" : "max(dot(light_vector, normal), 0.0)";
// If enabled, compute distance attenuation value
std::string dist_atten = "1.0";
if (light_config.dist_atten_enable) {
std::string scale = std::to_string(light_config.dist_atten_scale);
std::string bias = std::to_string(light_config.dist_atten_bias);
std::string index = "(" + scale + " * length(-view - " + light_src + ".position) + " + bias + ")";
index = "((clamp(" + index + ", 0.0, FLOAT_255)))";
const unsigned lut_num = ((unsigned)Regs::LightingSampler::DistanceAttenuation + light_config.num);
dist_atten = GetLutValue((Regs::LightingSampler)lut_num, index);
}
// If enabled, clamp specular component if lighting result is negative
std::string clamp_highlights = config.lighting.clamp_highlights ? "(dot(light_vector, normal) <= 0.0 ? 0.0 : 1.0)" : "1.0";
// Specular 0 component
std::string d0_lut_value = "1.0";
if (config.lighting.lut_d0.enable && Pica::Regs::IsLightingSamplerSupported(config.lighting.config, Pica::Regs::LightingSampler::Distribution0)) {
// Lookup specular "distribution 0" LUT value
std::string index = GetLutIndex(light_config.num, config.lighting.lut_d0.type, config.lighting.lut_d0.abs_input);
d0_lut_value = "(" + std::to_string(config.lighting.lut_d0.scale) + " * " + GetLutValue(Regs::LightingSampler::Distribution0, index) + ")";
}
std::string specular_0 = "(" + d0_lut_value + " * " + light_src + ".specular_0)";
// If enabled, lookup ReflectRed value, otherwise, 1.0 is used
if (config.lighting.lut_rr.enable && Pica::Regs::IsLightingSamplerSupported(config.lighting.config, Pica::Regs::LightingSampler::ReflectRed)) {
std::string index = GetLutIndex(light_config.num, config.lighting.lut_rr.type, config.lighting.lut_rr.abs_input);
std::string value = "(" + std::to_string(config.lighting.lut_rr.scale) + " * " + GetLutValue(Regs::LightingSampler::ReflectRed, index) + ")";
out += "refl_value.r = " + value + ";\n";
} else {
out += "refl_value.r = 1.0;\n";
}
// If enabled, lookup ReflectGreen value, otherwise, ReflectRed value is used
if (config.lighting.lut_rg.enable && Pica::Regs::IsLightingSamplerSupported(config.lighting.config, Pica::Regs::LightingSampler::ReflectGreen)) {
std::string index = GetLutIndex(light_config.num, config.lighting.lut_rg.type, config.lighting.lut_rg.abs_input);
std::string value = "(" + std::to_string(config.lighting.lut_rg.scale) + " * " + GetLutValue(Regs::LightingSampler::ReflectGreen, index) + ")";
out += "refl_value.g = " + value + ";\n";
} else {
out += "refl_value.g = refl_value.r;\n";
}
// If enabled, lookup ReflectBlue value, otherwise, ReflectRed value is used
if (config.lighting.lut_rb.enable && Pica::Regs::IsLightingSamplerSupported(config.lighting.config, Pica::Regs::LightingSampler::ReflectBlue)) {
std::string index = GetLutIndex(light_config.num, config.lighting.lut_rb.type, config.lighting.lut_rb.abs_input);
std::string value = "(" + std::to_string(config.lighting.lut_rb.scale) + " * " + GetLutValue(Regs::LightingSampler::ReflectBlue, index) + ")";
out += "refl_value.b = " + value + ";\n";
} else {
out += "refl_value.b = refl_value.r;\n";
}
// Specular 1 component
std::string d1_lut_value = "1.0";
if (config.lighting.lut_d1.enable && Pica::Regs::IsLightingSamplerSupported(config.lighting.config, Pica::Regs::LightingSampler::Distribution1)) {
// Lookup specular "distribution 1" LUT value
std::string index = GetLutIndex(light_config.num, config.lighting.lut_d1.type, config.lighting.lut_d1.abs_input);
d1_lut_value = "(" + std::to_string(config.lighting.lut_d1.scale) + " * " + GetLutValue(Regs::LightingSampler::Distribution1, index) + ")";
}
std::string specular_1 = "(" + d1_lut_value + " * refl_value * " + light_src + ".specular_1)";
// Fresnel
if (config.lighting.lut_fr.enable && Pica::Regs::IsLightingSamplerSupported(config.lighting.config, Pica::Regs::LightingSampler::Fresnel)) {
// Lookup fresnel LUT value
std::string index = GetLutIndex(light_config.num, config.lighting.lut_fr.type, config.lighting.lut_fr.abs_input);
std::string value = "(" + std::to_string(config.lighting.lut_fr.scale) + " * " + GetLutValue(Regs::LightingSampler::Fresnel, index) + ")";
// Enabled for difffuse lighting alpha component
if (config.lighting.fresnel_selector == Pica::Regs::LightingFresnelSelector::PrimaryAlpha ||
config.lighting.fresnel_selector == Pica::Regs::LightingFresnelSelector::Both)
out += "diffuse_sum.a *= " + value + ";\n";
// Enabled for the specular lighting alpha component
if (config.lighting.fresnel_selector == Pica::Regs::LightingFresnelSelector::SecondaryAlpha ||
config.lighting.fresnel_selector == Pica::Regs::LightingFresnelSelector::Both)
out += "specular_sum.a *= " + value + ";\n";
}
// Compute primary fragment color (diffuse lighting) function
out += "diffuse_sum.rgb += ((" + light_src + ".diffuse * " + dot_product + ") + " + light_src + ".ambient) * " + dist_atten + ";\n";
// Compute secondary fragment color (specular lighting) function
out += "specular_sum.rgb += (" + specular_0 + " + " + specular_1 + ") * " + clamp_highlights + " * " + dist_atten + ";\n";
}
// Sum final lighting result
out += "diffuse_sum.rgb += lighting_global_ambient;\n";
out += "primary_fragment_color = clamp(diffuse_sum, vec4(0.0), vec4(1.0));\n";
out += "secondary_fragment_color = clamp(specular_sum, vec4(0.0), vec4(1.0));\n";
}
std::string GenerateFragmentShader(const PicaShaderConfig& config) {
std::string out = R"(
#version 330 core
#define NUM_TEV_STAGES 6
#define NUM_LIGHTS 8
#define LIGHTING_LUT_SIZE 256
#define FLOAT_255 (255.0 / 256.0)
in vec4 primary_color;
in vec2 texcoord[3];
in vec4 normquat;
in vec3 view;
out vec4 color;
struct LightSrc {
vec3 specular_0;
vec3 specular_1;
vec3 diffuse;
vec3 ambient;
vec3 position;
};
layout (std140) uniform shader_data {
vec4 const_color[NUM_TEV_STAGES];
vec4 tev_combiner_buffer_color;
int alphatest_ref;
float depth_offset;
vec3 lighting_global_ambient;
LightSrc light_src[NUM_LIGHTS];
};
uniform sampler2D tex[3];
uniform sampler1D lut[6];
// Rotate the vector v by the quaternion q
vec3 quaternion_rotate(vec4 q, vec3 v) {
return v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);
}
void main() {
vec4 primary_fragment_color = vec4(0.0);
vec4 secondary_fragment_color = vec4(0.0);
)";
// Do not do any sort of processing if it's obvious we're not going to pass the alpha test
@ -348,6 +549,9 @@ void main() {
return out;
}
if (config.lighting.enable)
WriteLighting(out, config);
out += "vec4 combiner_buffer = vec4(0.0);\n";
out += "vec4 next_combiner_buffer = tev_combiner_buffer_color;\n";
out += "vec4 last_tex_env_out = vec4(0.0);\n";
@ -369,21 +573,28 @@ void main() {
std::string GenerateVertexShader() {
std::string out = "#version 330 core\n";
out += "layout(location = " + std::to_string((int)ATTRIBUTE_POSITION) + ") in vec4 vert_position;\n";
out += "layout(location = " + std::to_string((int)ATTRIBUTE_COLOR) + ") in vec4 vert_color;\n";
out += "layout(location = " + std::to_string((int)ATTRIBUTE_TEXCOORD0) + ") in vec2 vert_texcoord0;\n";
out += "layout(location = " + std::to_string((int)ATTRIBUTE_TEXCOORD1) + ") in vec2 vert_texcoord1;\n";
out += "layout(location = " + std::to_string((int)ATTRIBUTE_TEXCOORD2) + ") in vec2 vert_texcoord2;\n";
out += "layout(location = " + std::to_string((int)ATTRIBUTE_NORMQUAT) + ") in vec4 vert_normquat;\n";
out += "layout(location = " + std::to_string((int)ATTRIBUTE_VIEW) + ") in vec3 vert_view;\n";
out += R"(
out vec4 primary_color;
out vec2 texcoord[3];
out vec4 normquat;
out vec3 view;
void main() {
primary_color = vert_color;
texcoord[0] = vert_texcoord0;
texcoord[1] = vert_texcoord1;
texcoord[2] = vert_texcoord2;
normquat = vert_normquat;
view = vert_view;
gl_Position = vec4(vert_position.x, vert_position.y, -vert_position.z, vert_position.w);
}
)";

View File

@ -14,6 +14,8 @@ enum Attributes {
ATTRIBUTE_TEXCOORD0,
ATTRIBUTE_TEXCOORD1,
ATTRIBUTE_TEXCOORD2,
ATTRIBUTE_NORMQUAT,
ATTRIBUTE_VIEW,
};
/**

View File

@ -170,6 +170,14 @@ void OpenGLState::Apply() {
}
}
// Lighting LUTs
for (unsigned i = 0; i < ARRAY_SIZE(lighting_lut); ++i) {
if (lighting_lut[i].texture_1d != cur_state.lighting_lut[i].texture_1d) {
glActiveTexture(GL_TEXTURE3 + i);
glBindTexture(GL_TEXTURE_1D, lighting_lut[i].texture_1d);
}
}
// Framebuffer
if (draw.framebuffer != cur_state.draw.framebuffer) {
glBindFramebuffer(GL_FRAMEBUFFER, draw.framebuffer);

View File

@ -61,6 +61,10 @@ public:
GLuint sampler; // GL_SAMPLER_BINDING
} texture_units[3];
struct {
GLuint texture_1d; // GL_TEXTURE_BINDING_1D
} lighting_lut[6];
struct {
GLuint framebuffer; // GL_DRAW_FRAMEBUFFER_BINDING
GLuint vertex_array; // GL_VERTEX_ARRAY_BINDING

View File

@ -10,6 +10,9 @@
#include "video_core/pica.h"
using GLvec3 = std::array<GLfloat, 3>;
using GLvec4 = std::array<GLfloat, 4>;
namespace PicaToGL {
inline GLenum TextureFilterMode(Pica::Regs::TextureConfig::TextureFilter mode) {
@ -175,7 +178,7 @@ inline GLenum StencilOp(Pica::Regs::StencilAction action) {
return stencil_op_table[(unsigned)action];
}
inline std::array<GLfloat, 4> ColorRGBA8(const u32 color) {
inline GLvec4 ColorRGBA8(const u32 color) {
return { { (color >> 0 & 0xFF) / 255.0f,
(color >> 8 & 0xFF) / 255.0f,
(color >> 16 & 0xFF) / 255.0f,
@ -183,4 +186,11 @@ inline std::array<GLfloat, 4> ColorRGBA8(const u32 color) {
} };
}
inline std::array<GLfloat, 3> LightColor(const Pica::Regs::LightColor& color) {
return { { color.r / 255.0f,
color.g / 255.0f,
color.b / 255.0f
} };
}
} // namespace

View File

@ -81,8 +81,8 @@ struct ScreenRectVertex {
* The projection part of the matrix is trivial, hence these operations are represented
* by a 3x2 matrix.
*/
static std::array<GLfloat, 3*2> MakeOrthographicMatrix(const float width, const float height) {
std::array<GLfloat, 3*2> matrix;
static std::array<GLfloat, 3 * 2> MakeOrthographicMatrix(const float width, const float height) {
std::array<GLfloat, 3 * 2> matrix;
matrix[0] = 2.f / width; matrix[2] = 0.f; matrix[4] = -1.f;
matrix[1] = 0.f; matrix[3] = -2.f / height; matrix[5] = 1.f;

View File

@ -134,11 +134,13 @@ OutputVertex Run(UnitState<false>& state, const InputVertex& input, int num_attr
std::fmin(std::fabs(ret.color[i].ToFloat32()), 1.0f));
}
LOG_TRACE(Render_Software, "Output vertex: pos (%.2f, %.2f, %.2f, %.2f), quat (%.2f, %.2f, %.2f, %.2f), col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f)",
LOG_TRACE(Render_Software, "Output vertex: pos(%.2f, %.2f, %.2f, %.2f), quat(%.2f, %.2f, %.2f, %.2f), "
"col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f), view(%.2f, %.2f, %.2f)",
ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(), ret.pos.w.ToFloat32(),
ret.quat.x.ToFloat32(), ret.quat.y.ToFloat32(), ret.quat.z.ToFloat32(), ret.quat.w.ToFloat32(),
ret.color.x.ToFloat32(), ret.color.y.ToFloat32(), ret.color.z.ToFloat32(), ret.color.w.ToFloat32(),
ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32());
ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32(),
ret.view.x.ToFloat32(), ret.view.y.ToFloat32(), ret.view.z.ToFloat32());
return ret;
}

View File

@ -37,17 +37,19 @@ struct OutputVertex {
Math::Vec4<float24> color;
Math::Vec2<float24> tc0;
Math::Vec2<float24> tc1;
float24 pad[6];
INSERT_PADDING_WORDS(2);
Math::Vec3<float24> view;
INSERT_PADDING_WORDS(1);
Math::Vec2<float24> tc2;
// Padding for optimal alignment
float24 pad2[4];
INSERT_PADDING_WORDS(4);
// Attributes used to store intermediate results
// position after perspective divide
Math::Vec3<float24> screenpos;
float24 pad3;
INSERT_PADDING_WORDS(1);
// Linear interpolation
// factor: 0=this, 1=vtx