yuzu-emu
/
yuzu-android
Archived
1
0
Fork 0

core: core_timing_util: Optimize core timing math.

- Avoids a lot of unnecessary 128-bit math for imperceptible accuracy.
This commit is contained in:
bunnei 2021-02-15 14:54:06 -08:00
parent 592a649918
commit f3345e84ad
3 changed files with 47 additions and 97 deletions

View File

@ -19,7 +19,6 @@ add_library(core STATIC
core.h core.h
core_timing.cpp core_timing.cpp
core_timing.h core_timing.h
core_timing_util.cpp
core_timing_util.h core_timing_util.h
cpu_manager.cpp cpu_manager.cpp
cpu_manager.h cpu_manager.h

View File

@ -1,84 +0,0 @@
// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "core/core_timing_util.h"
#include <cinttypes>
#include <limits>
#include "common/logging/log.h"
#include "common/uint128.h"
#include "core/hardware_properties.h"
namespace Core::Timing {
constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / Hardware::BASE_CLOCK_RATE;
s64 msToCycles(std::chrono::milliseconds ms) {
if (static_cast<u64>(ms.count() / 1000) > MAX_VALUE_TO_MULTIPLY) {
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (static_cast<u64>(ms.count()) > MAX_VALUE_TO_MULTIPLY) {
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return Hardware::BASE_CLOCK_RATE * (ms.count() / 1000);
}
return (Hardware::BASE_CLOCK_RATE * ms.count()) / 1000;
}
s64 usToCycles(std::chrono::microseconds us) {
if (static_cast<u64>(us.count() / 1000000) > MAX_VALUE_TO_MULTIPLY) {
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (static_cast<u64>(us.count()) > MAX_VALUE_TO_MULTIPLY) {
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return Hardware::BASE_CLOCK_RATE * (us.count() / 1000000);
}
return (Hardware::BASE_CLOCK_RATE * us.count()) / 1000000;
}
s64 nsToCycles(std::chrono::nanoseconds ns) {
const u128 temporal = Common::Multiply64Into128(ns.count(), Hardware::BASE_CLOCK_RATE);
return Common::Divide128On32(temporal, static_cast<u32>(1000000000)).first;
}
u64 msToClockCycles(std::chrono::milliseconds ns) {
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
return Common::Divide128On32(temp, 1000).first;
}
u64 usToClockCycles(std::chrono::microseconds ns) {
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
return Common::Divide128On32(temp, 1000000).first;
}
u64 nsToClockCycles(std::chrono::nanoseconds ns) {
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
return Common::Divide128On32(temp, 1000000000).first;
}
u64 CpuCyclesToClockCycles(u64 ticks) {
const u128 temporal = Common::Multiply64Into128(ticks, Hardware::CNTFREQ);
return Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
}
std::chrono::milliseconds CyclesToMs(s64 cycles) {
const u128 temporal = Common::Multiply64Into128(cycles, 1000);
u64 ms = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
return std::chrono::milliseconds(ms);
}
std::chrono::nanoseconds CyclesToNs(s64 cycles) {
const u128 temporal = Common::Multiply64Into128(cycles, 1000000000);
u64 ns = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
return std::chrono::nanoseconds(ns);
}
std::chrono::microseconds CyclesToUs(s64 cycles) {
const u128 temporal = Common::Multiply64Into128(cycles, 1000000);
u64 us = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
return std::chrono::microseconds(us);
}
} // namespace Core::Timing

View File

@ -1,24 +1,59 @@
// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project // Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2+ // Licensed under GPLv2 or any later version
// Refer to the license.txt file included. // Refer to the license.txt file included.
#pragma once #pragma once
#include <chrono> #include <chrono>
#include "common/common_types.h" #include "common/common_types.h"
#include "core/hardware_properties.h"
namespace Core::Timing { namespace Core::Timing {
s64 msToCycles(std::chrono::milliseconds ms); namespace detail {
s64 usToCycles(std::chrono::microseconds us); constexpr u64 CNTFREQ_ADJUSTED = Hardware::CNTFREQ / 1000;
s64 nsToCycles(std::chrono::nanoseconds ns); constexpr u64 BASE_CLOCK_RATE_ADJUSTED = Hardware::BASE_CLOCK_RATE / 1000;
u64 msToClockCycles(std::chrono::milliseconds ns); } // namespace detail
u64 usToClockCycles(std::chrono::microseconds ns);
u64 nsToClockCycles(std::chrono::nanoseconds ns);
std::chrono::milliseconds CyclesToMs(s64 cycles);
std::chrono::nanoseconds CyclesToNs(s64 cycles);
std::chrono::microseconds CyclesToUs(s64 cycles);
u64 CpuCyclesToClockCycles(u64 ticks); [[nodiscard]] constexpr s64 msToCycles(std::chrono::milliseconds ms) {
return ms.count() * detail::BASE_CLOCK_RATE_ADJUSTED;
}
[[nodiscard]] constexpr s64 usToCycles(std::chrono::microseconds us) {
return us.count() * detail::BASE_CLOCK_RATE_ADJUSTED / 1000;
}
[[nodiscard]] constexpr s64 nsToCycles(std::chrono::nanoseconds ns) {
return ns.count() * detail::BASE_CLOCK_RATE_ADJUSTED / 1000000;
}
[[nodiscard]] constexpr u64 msToClockCycles(std::chrono::milliseconds ms) {
return static_cast<u64>(ms.count()) * detail::CNTFREQ_ADJUSTED;
}
[[nodiscard]] constexpr u64 usToClockCycles(std::chrono::microseconds us) {
return us.count() * detail::CNTFREQ_ADJUSTED / 1000;
}
[[nodiscard]] constexpr u64 nsToClockCycles(std::chrono::nanoseconds ns) {
return ns.count() * detail::CNTFREQ_ADJUSTED / 1000000;
}
[[nodiscard]] constexpr u64 CpuCyclesToClockCycles(u64 ticks) {
return ticks * detail::CNTFREQ_ADJUSTED / detail::BASE_CLOCK_RATE_ADJUSTED;
}
[[nodiscard]] constexpr std::chrono::milliseconds CyclesToMs(s64 cycles) {
return std::chrono::milliseconds(cycles / detail::BASE_CLOCK_RATE_ADJUSTED);
}
[[nodiscard]] constexpr std::chrono::nanoseconds CyclesToNs(s64 cycles) {
return std::chrono::nanoseconds(cycles * 1000000 / detail::BASE_CLOCK_RATE_ADJUSTED);
}
[[nodiscard]] constexpr std::chrono::microseconds CyclesToUs(s64 cycles) {
return std::chrono::microseconds(cycles * 1000 / detail::BASE_CLOCK_RATE_ADJUSTED);
}
} // namespace Core::Timing } // namespace Core::Timing