yuzu-emu
/
yuzu-mainline
Archived
1
0
Fork 0

Implement MapPhysicalMemory/UnmapPhysicalMemory

This implements svcMapPhysicalMemory/svcUnmapPhysicalMemory for Yuzu,
which can be used to map memory at a desired address by games since
3.0.0.

It also properly parses SystemResourceSize from NPDM, and makes
information available via svcGetInfo.

This is needed for games like Super Smash Bros. and Diablo 3 -- this
PR's implementation does not run into the "ASCII reads" issue mentioned
in the comments of #2626, which was caused by the following bugs in
Yuzu's memory management that this PR also addresses:
* Yuzu's memory coalescing does not properly merge blocks. This results
  in a polluted address space/svcQueryMemory results that would be
  impossible to replicate on hardware, which can lead to game code making
  the wrong assumptions about memory layout.
  * This implements better merging for AllocatedMemoryBlocks.
* Yuzu's implementation of svcMirrorMemory unprotected the entire
  virtual memory range containing the range being mirrored. This could
  lead to games attempting to map data at that unprotected
  range/attempting to access that range after yuzu improperly unmapped
  it.
  * This PR fixes it by simply calling ReprotectRange instead of
    Reprotect.
This commit is contained in:
Michael Scire 2019-07-07 09:42:54 -07:00
parent 9e689a81f8
commit 13a8fde3ad
8 changed files with 475 additions and 21 deletions

View File

@ -94,6 +94,10 @@ u64 ProgramMetadata::GetFilesystemPermissions() const {
return aci_file_access.permissions; return aci_file_access.permissions;
} }
u32 ProgramMetadata::GetSystemResourceSize() const {
return npdm_header.system_resource_size;
}
const ProgramMetadata::KernelCapabilityDescriptors& ProgramMetadata::GetKernelCapabilities() const { const ProgramMetadata::KernelCapabilityDescriptors& ProgramMetadata::GetKernelCapabilities() const {
return aci_kernel_capabilities; return aci_kernel_capabilities;
} }

View File

@ -58,6 +58,7 @@ public:
u32 GetMainThreadStackSize() const; u32 GetMainThreadStackSize() const;
u64 GetTitleID() const; u64 GetTitleID() const;
u64 GetFilesystemPermissions() const; u64 GetFilesystemPermissions() const;
u32 GetSystemResourceSize() const;
const KernelCapabilityDescriptors& GetKernelCapabilities() const; const KernelCapabilityDescriptors& GetKernelCapabilities() const;
void Print() const; void Print() const;
@ -76,7 +77,8 @@ private:
u8 reserved_3; u8 reserved_3;
u8 main_thread_priority; u8 main_thread_priority;
u8 main_thread_cpu; u8 main_thread_cpu;
std::array<u8, 8> reserved_4; std::array<u8, 4> reserved_4;
u32_le system_resource_size;
u32_le process_category; u32_le process_category;
u32_le main_stack_size; u32_le main_stack_size;
std::array<u8, 0x10> application_name; std::array<u8, 0x10> application_name;

View File

@ -172,6 +172,7 @@ ResultCode Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata) {
program_id = metadata.GetTitleID(); program_id = metadata.GetTitleID();
ideal_core = metadata.GetMainThreadCore(); ideal_core = metadata.GetMainThreadCore();
is_64bit_process = metadata.Is64BitProgram(); is_64bit_process = metadata.Is64BitProgram();
system_resource_size = metadata.GetSystemResourceSize();
vm_manager.Reset(metadata.GetAddressSpaceType()); vm_manager.Reset(metadata.GetAddressSpaceType());

View File

@ -168,8 +168,9 @@ public:
return capabilities.GetPriorityMask(); return capabilities.GetPriorityMask();
} }
u32 IsVirtualMemoryEnabled() const { /// Gets the amount of secure memory to allocate for memory management.
return is_virtual_address_memory_enabled; u32 GetSystemResourceSize() const {
return system_resource_size;
} }
/// Whether this process is an AArch64 or AArch32 process. /// Whether this process is an AArch64 or AArch32 process.
@ -298,12 +299,16 @@ private:
/// Title ID corresponding to the process /// Title ID corresponding to the process
u64 program_id = 0; u64 program_id = 0;
/// Specifies additional memory to be reserved for the process's memory management by the
/// system. When this is non-zero, secure memory is allocated and used for page table allocation
/// instead of using the normal global page tables/memory block management.
u32 system_resource_size = 0;
/// Resource limit descriptor for this process /// Resource limit descriptor for this process
SharedPtr<ResourceLimit> resource_limit; SharedPtr<ResourceLimit> resource_limit;
/// The ideal CPU core for this process, threads are scheduled on this core by default. /// The ideal CPU core for this process, threads are scheduled on this core by default.
u8 ideal_core = 0; u8 ideal_core = 0;
u32 is_virtual_address_memory_enabled = 0;
/// The Thread Local Storage area is allocated as processes create threads, /// The Thread Local Storage area is allocated as processes create threads,
/// each TLS area is 0x200 bytes, so one page (0x1000) is split up in 8 parts, and each part /// each TLS area is 0x200 bytes, so one page (0x1000) is split up in 8 parts, and each part

View File

@ -729,8 +729,8 @@ static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, u64 ha
StackRegionBaseAddr = 14, StackRegionBaseAddr = 14,
StackRegionSize = 15, StackRegionSize = 15,
// 3.0.0+ // 3.0.0+
IsVirtualAddressMemoryEnabled = 16, SystemResourceSize = 16,
PersonalMmHeapUsage = 17, SystemResourceUsage = 17,
TitleId = 18, TitleId = 18,
// 4.0.0+ // 4.0.0+
PrivilegedProcessId = 19, PrivilegedProcessId = 19,
@ -756,8 +756,8 @@ static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, u64 ha
case GetInfoType::StackRegionSize: case GetInfoType::StackRegionSize:
case GetInfoType::TotalPhysicalMemoryAvailable: case GetInfoType::TotalPhysicalMemoryAvailable:
case GetInfoType::TotalPhysicalMemoryUsed: case GetInfoType::TotalPhysicalMemoryUsed:
case GetInfoType::IsVirtualAddressMemoryEnabled: case GetInfoType::SystemResourceSize:
case GetInfoType::PersonalMmHeapUsage: case GetInfoType::SystemResourceUsage:
case GetInfoType::TitleId: case GetInfoType::TitleId:
case GetInfoType::UserExceptionContextAddr: case GetInfoType::UserExceptionContextAddr:
case GetInfoType::TotalPhysicalMemoryAvailableWithoutMmHeap: case GetInfoType::TotalPhysicalMemoryAvailableWithoutMmHeap:
@ -822,8 +822,22 @@ static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, u64 ha
*result = process->GetTotalPhysicalMemoryUsed(); *result = process->GetTotalPhysicalMemoryUsed();
return RESULT_SUCCESS; return RESULT_SUCCESS;
case GetInfoType::IsVirtualAddressMemoryEnabled: case GetInfoType::SystemResourceSize:
*result = process->IsVirtualMemoryEnabled(); *result = process->GetSystemResourceSize();
return RESULT_SUCCESS;
case GetInfoType::SystemResourceUsage:
// On hardware, this returns the amount of system resource memory that has
// been used by the kernel. This is problematic for Yuzu to emulate, because
// system resource memory is used for page tables -- and yuzu doesn't really
// have a way to calculate how much memory is required for page tables for
// the current process at any given time.
// TODO: Is this even worth implementing? No game should ever use it, since
// the amount of remaining page table space should never be relevant except
// for diagnostics. Is returning a value other than zero wise?
LOG_WARNING(Kernel_SVC,
"(STUBBED) Attempted to query system resource usage, returned 0");
*result = 0;
return RESULT_SUCCESS; return RESULT_SUCCESS;
case GetInfoType::TitleId: case GetInfoType::TitleId:
@ -946,6 +960,86 @@ static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, u64 ha
} }
} }
/// Maps memory at a desired address
static ResultCode MapPhysicalMemory(Core::System& system, VAddr addr, u64 size) {
LOG_DEBUG(Kernel_SVC, "called, addr=0x{:016X}, size=0x{:X}", addr, size);
if (!Common::Is4KBAligned(addr)) {
LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, 0x{:016X}", addr);
return ERR_INVALID_ADDRESS;
}
if (!Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:X}", size);
return ERR_INVALID_SIZE;
}
if (size == 0) {
LOG_ERROR(Kernel_SVC, "Size is zero");
return ERR_INVALID_SIZE;
}
if (!(addr < addr + size)) {
LOG_ERROR(Kernel_SVC, "Size causes 64-bit overflow of address");
return ERR_INVALID_MEMORY_RANGE;
}
auto* const current_process = Core::CurrentProcess();
auto& vm_manager = current_process->VMManager();
if (current_process->GetSystemResourceSize() == 0) {
LOG_ERROR(Kernel_SVC, "System Resource Size is zero");
return ERR_INVALID_STATE;
}
if (!vm_manager.IsWithinMapRegion(addr, size)) {
LOG_ERROR(Kernel_SVC, "Range not within map region");
return ERR_INVALID_MEMORY_RANGE;
}
return vm_manager.MapPhysicalMemory(addr, size);
}
/// Unmaps memory previously mapped via MapPhysicalMemory
static ResultCode UnmapPhysicalMemory(Core::System& system, VAddr addr, u64 size) {
LOG_DEBUG(Kernel_SVC, "called, addr=0x{:016X}, size=0x{:X}", addr, size);
if (!Common::Is4KBAligned(addr)) {
LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, 0x{:016X}", addr);
return ERR_INVALID_ADDRESS;
}
if (!Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:X}", size);
return ERR_INVALID_SIZE;
}
if (size == 0) {
LOG_ERROR(Kernel_SVC, "Size is zero");
return ERR_INVALID_SIZE;
}
if (!(addr < addr + size)) {
LOG_ERROR(Kernel_SVC, "Size causes 64-bit overflow of address");
return ERR_INVALID_MEMORY_RANGE;
}
auto* const current_process = Core::CurrentProcess();
auto& vm_manager = current_process->VMManager();
if (current_process->GetSystemResourceSize() == 0) {
LOG_ERROR(Kernel_SVC, "System Resource Size is zero");
return ERR_INVALID_STATE;
}
if (!vm_manager.IsWithinMapRegion(addr, size)) {
LOG_ERROR(Kernel_SVC, "Range not within map region");
return ERR_INVALID_MEMORY_RANGE;
}
return vm_manager.UnmapPhysicalMemory(addr, size);
}
/// Sets the thread activity /// Sets the thread activity
static ResultCode SetThreadActivity(Core::System& system, Handle handle, u32 activity) { static ResultCode SetThreadActivity(Core::System& system, Handle handle, u32 activity) {
LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, activity=0x{:08X}", handle, activity); LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, activity=0x{:08X}", handle, activity);
@ -2303,8 +2397,8 @@ static const FunctionDef SVC_Table[] = {
{0x29, SvcWrap<GetInfo>, "GetInfo"}, {0x29, SvcWrap<GetInfo>, "GetInfo"},
{0x2A, nullptr, "FlushEntireDataCache"}, {0x2A, nullptr, "FlushEntireDataCache"},
{0x2B, nullptr, "FlushDataCache"}, {0x2B, nullptr, "FlushDataCache"},
{0x2C, nullptr, "MapPhysicalMemory"}, {0x2C, SvcWrap<MapPhysicalMemory>, "MapPhysicalMemory"},
{0x2D, nullptr, "UnmapPhysicalMemory"}, {0x2D, SvcWrap<UnmapPhysicalMemory>, "UnmapPhysicalMemory"},
{0x2E, nullptr, "GetFutureThreadInfo"}, {0x2E, nullptr, "GetFutureThreadInfo"},
{0x2F, nullptr, "GetLastThreadInfo"}, {0x2F, nullptr, "GetLastThreadInfo"},
{0x30, SvcWrap<GetResourceLimitLimitValue>, "GetResourceLimitLimitValue"}, {0x30, SvcWrap<GetResourceLimitLimitValue>, "GetResourceLimitLimitValue"},

View File

@ -32,6 +32,11 @@ void SvcWrap(Core::System& system) {
FuncReturn(system, func(system, Param(system, 0)).raw); FuncReturn(system, func(system, Param(system, 0)).raw);
} }
template <ResultCode func(Core::System&, u64, u64)>
void SvcWrap(Core::System& system) {
FuncReturn(system, func(system, Param(system, 0), Param(system, 1)).raw);
}
template <ResultCode func(Core::System&, u32)> template <ResultCode func(Core::System&, u32)>
void SvcWrap(Core::System& system) { void SvcWrap(Core::System& system) {
FuncReturn(system, func(system, static_cast<u32>(Param(system, 0))).raw); FuncReturn(system, func(system, static_cast<u32>(Param(system, 0))).raw);

View File

@ -12,6 +12,8 @@
#include "core/core.h" #include "core/core.h"
#include "core/file_sys/program_metadata.h" #include "core/file_sys/program_metadata.h"
#include "core/hle/kernel/errors.h" #include "core/hle/kernel/errors.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/vm_manager.h" #include "core/hle/kernel/vm_manager.h"
#include "core/memory.h" #include "core/memory.h"
#include "core/memory_setup.h" #include "core/memory_setup.h"
@ -49,9 +51,8 @@ bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
type != next.type) { type != next.type) {
return false; return false;
} }
if (type == VMAType::AllocatedMemoryBlock && if (type == VMAType::AllocatedMemoryBlock) {
(backing_block != next.backing_block || offset + size != next.offset)) { return true;
return false;
} }
if (type == VMAType::BackingMemory && backing_memory + size != next.backing_memory) { if (type == VMAType::BackingMemory && backing_memory + size != next.backing_memory) {
return false; return false;
@ -100,7 +101,7 @@ bool VMManager::IsValidHandle(VMAHandle handle) const {
ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target, ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
std::shared_ptr<std::vector<u8>> block, std::shared_ptr<std::vector<u8>> block,
std::size_t offset, u64 size, std::size_t offset, u64 size,
MemoryState state) { MemoryState state, VMAPermission perm) {
ASSERT(block != nullptr); ASSERT(block != nullptr);
ASSERT(offset + size <= block->size()); ASSERT(offset + size <= block->size());
@ -119,7 +120,7 @@ ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
VMAPermission::ReadWriteExecute); VMAPermission::ReadWriteExecute);
final_vma.type = VMAType::AllocatedMemoryBlock; final_vma.type = VMAType::AllocatedMemoryBlock;
final_vma.permissions = VMAPermission::ReadWrite; final_vma.permissions = perm;
final_vma.state = state; final_vma.state = state;
final_vma.backing_block = std::move(block); final_vma.backing_block = std::move(block);
final_vma.offset = offset; final_vma.offset = offset;
@ -308,6 +309,258 @@ ResultVal<VAddr> VMManager::SetHeapSize(u64 size) {
return MakeResult<VAddr>(heap_region_base); return MakeResult<VAddr>(heap_region_base);
} }
ResultCode VMManager::MapPhysicalMemory(VAddr target, u64 size) {
const auto last_addr = target + size - 1;
VAddr cur_addr = target;
std::size_t mapped_size = 0;
ResultCode result = RESULT_SUCCESS;
// Check whether we've already mapped the desired memory.
{
auto vma = FindVMA(target);
ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end");
while (true) {
const auto vma_start = vma->second.base;
const auto vma_size = vma->second.size;
const auto state = vma->second.state;
// Handle last block.
if (last_addr <= (vma_start + vma_size - 1)) {
if (state != MemoryState::Unmapped) {
mapped_size += last_addr - cur_addr + 1;
}
break;
}
if (state != MemoryState::Unmapped) {
mapped_size += vma_start + vma_size - cur_addr;
}
cur_addr = vma_start + vma_size;
vma++;
ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end");
}
// If we already have the desired amount mapped, we're done.
if (mapped_size == size) {
return RESULT_SUCCESS;
}
}
// Check that we can map the memory we want.
const auto res_limit = Core::CurrentProcess()->GetResourceLimit();
const u64 physmem_remaining = res_limit->GetMaxResourceValue(ResourceType::PhysicalMemory) -
res_limit->GetCurrentResourceValue(ResourceType::PhysicalMemory);
if (physmem_remaining < (size - mapped_size)) {
return ERR_RESOURCE_LIMIT_EXCEEDED;
}
// Keep track of the memory regions we unmap.
std::vector<std::pair<u64, u64>> mapped_regions;
// Iterate, trying to map memory.
// Map initially with VMAPermission::None.
{
cur_addr = target;
auto vma = FindVMA(target);
ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end");
while (true) {
const auto vma_start = vma->second.base;
const auto vma_size = vma->second.size;
const auto state = vma->second.state;
// Handle last block.
if (last_addr <= (vma_start + vma_size - 1)) {
if (state == MemoryState::Unmapped) {
const auto map_res = MapMemoryBlock(
cur_addr, std::make_shared<std::vector<u8>>(last_addr - cur_addr + 1, 0), 0,
last_addr - cur_addr + 1, MemoryState::Heap, VMAPermission::None);
result = map_res.Code();
if (result.IsSuccess()) {
mapped_regions.push_back(
std::make_pair(cur_addr, last_addr - cur_addr + 1));
}
}
break;
}
if (state == MemoryState::Unmapped) {
const auto map_res = MapMemoryBlock(
cur_addr, std::make_shared<std::vector<u8>>(vma_start + vma_size - cur_addr, 0),
0, vma_start + vma_size - cur_addr, MemoryState::Heap, VMAPermission::None);
result = map_res.Code();
if (result.IsSuccess()) {
mapped_regions.push_back(
std::make_pair(cur_addr, vma_start + vma_size - cur_addr));
} else {
break;
}
}
cur_addr = vma_start + vma_size;
vma = FindVMA(cur_addr);
ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end");
}
}
// If we failed, unmap memory.
if (result.IsError()) {
for (const auto& it : mapped_regions) {
const auto unmap_res = UnmapRange(it.first, it.second);
ASSERT_MSG(unmap_res.IsSuccess(), "MapPhysicalMemory un-map on error");
}
return result;
}
// We didn't fail, so reprotect all the memory to ReadWrite.
{
cur_addr = target;
auto vma = FindVMA(target);
ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end");
while (true) {
const auto vma_start = vma->second.base;
const auto vma_size = vma->second.size;
const auto state = vma->second.state;
const auto perm = vma->second.permissions;
// Handle last block.
if (last_addr <= (vma_start + vma_size - 1)) {
if (state == MemoryState::Heap && perm == VMAPermission::None) {
ASSERT_MSG(
ReprotectRange(cur_addr, last_addr - cur_addr + 1, VMAPermission::ReadWrite)
.IsSuccess(),
"MapPhysicalMemory reprotect");
}
break;
}
if (state == MemoryState::Heap && perm == VMAPermission::None) {
ASSERT_MSG(ReprotectRange(cur_addr, vma_start + vma_size - cur_addr,
VMAPermission::ReadWrite)
.IsSuccess(),
"MapPhysicalMemory reprotect");
}
cur_addr = vma_start + vma_size;
vma = FindVMA(cur_addr);
ASSERT_MSG(vma != vma_map.end(), "MapPhysicalMemory vma != end");
}
}
// Update amount of mapped physical memory.
physical_memory_mapped += size - mapped_size;
return RESULT_SUCCESS;
}
ResultCode VMManager::UnmapPhysicalMemory(VAddr target, u64 size) {
auto last_addr = target + size - 1;
VAddr cur_addr = target;
std::size_t mapped_size = 0;
ResultCode result = RESULT_SUCCESS;
// Check how much of the memory is currently mapped.
{
auto vma = FindVMA(target);
ASSERT_MSG(vma != vma_map.end(), "UnmapPhysicalMemory vma != end");
while (true) {
const auto vma_start = vma->second.base;
const auto vma_size = vma->second.size;
const auto state = vma->second.state;
const auto attr = vma->second.attribute;
// Memory within region must be free or mapped heap.
if (!((state == MemoryState::Heap && attr == MemoryAttribute::None) ||
(state == MemoryState::Unmapped))) {
return ERR_INVALID_ADDRESS_STATE;
}
// If this is the last block and it's mapped, update mapped size.
if (last_addr <= (vma_start + vma_size - 1)) {
if (state == MemoryState::Heap) {
mapped_size += last_addr - cur_addr + 1;
}
break;
}
if (state == MemoryState::Heap) {
mapped_size += vma_start + vma_size - cur_addr;
}
cur_addr = vma_start + vma_size;
vma++;
ASSERT_MSG(vma != vma_map.end(), "UnmapPhysicalMemory vma != end");
}
// If memory is already unmapped, we're done.
if (mapped_size == 0) {
return RESULT_SUCCESS;
}
}
// Keep track of the memory regions we unmap.
std::vector<std::pair<u64, u64>> unmapped_regions;
// Try to unmap regions.
{
cur_addr = target;
auto vma = FindVMA(target);
ASSERT_MSG(vma != vma_map.end(), "UnmapPhysicalMemory vma != end");
while (true) {
const auto vma_start = vma->second.base;
const auto vma_size = vma->second.size;
const auto state = vma->second.state;
const auto perm = vma->second.permissions;
// Handle last block.
if (last_addr <= (vma_start + vma_size - 1)) {
if (state == MemoryState::Heap) {
result = UnmapRange(cur_addr, last_addr - cur_addr + 1);
if (result.IsSuccess()) {
unmapped_regions.push_back(
std::make_pair(cur_addr, last_addr - cur_addr + 1));
}
}
break;
}
if (state == MemoryState::Heap) {
result = UnmapRange(cur_addr, vma_start + vma_size - cur_addr);
if (result.IsSuccess()) {
unmapped_regions.push_back(
std::make_pair(cur_addr, vma_start + vma_size - cur_addr));
} else {
break;
}
}
cur_addr = vma_start + vma_size;
vma = FindVMA(cur_addr);
ASSERT_MSG(vma != vma_map.end(), "UnmapPhysicalMemory vma != end");
}
}
// If we failed, re-map regions.
// TODO: Preserve memory contents?
if (result.IsError()) {
for (const auto& it : unmapped_regions) {
const auto remap_res =
MapMemoryBlock(it.first, std::make_shared<std::vector<u8>>(it.second, 0), 0,
it.second, MemoryState::Heap, VMAPermission::None);
ASSERT_MSG(remap_res.Succeeded(), "UnmapPhysicalMemory re-map on error");
}
}
return RESULT_SUCCESS;
}
ResultCode VMManager::MapCodeMemory(VAddr dst_address, VAddr src_address, u64 size) { ResultCode VMManager::MapCodeMemory(VAddr dst_address, VAddr src_address, u64 size) {
constexpr auto ignore_attribute = MemoryAttribute::LockedForIPC | MemoryAttribute::DeviceMapped; constexpr auto ignore_attribute = MemoryAttribute::LockedForIPC | MemoryAttribute::DeviceMapped;
const auto src_check_result = CheckRangeState( const auto src_check_result = CheckRangeState(
@ -455,7 +708,7 @@ ResultCode VMManager::MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size, Mem
// Protect mirror with permissions from old region // Protect mirror with permissions from old region
Reprotect(new_vma, vma->second.permissions); Reprotect(new_vma, vma->second.permissions);
// Remove permissions from old region // Remove permissions from old region
Reprotect(vma, VMAPermission::None); ReprotectRange(src_addr, size, VMAPermission::None);
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
@ -588,14 +841,14 @@ VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) { VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) {
const VMAIter next_vma = std::next(iter); const VMAIter next_vma = std::next(iter);
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) { if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
iter->second.size += next_vma->second.size; MergeAdjacentVMA(iter->second, next_vma->second);
vma_map.erase(next_vma); vma_map.erase(next_vma);
} }
if (iter != vma_map.begin()) { if (iter != vma_map.begin()) {
VMAIter prev_vma = std::prev(iter); VMAIter prev_vma = std::prev(iter);
if (prev_vma->second.CanBeMergedWith(iter->second)) { if (prev_vma->second.CanBeMergedWith(iter->second)) {
prev_vma->second.size += iter->second.size; MergeAdjacentVMA(prev_vma->second, iter->second);
vma_map.erase(iter); vma_map.erase(iter);
iter = prev_vma; iter = prev_vma;
} }
@ -604,6 +857,57 @@ VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) {
return iter; return iter;
} }
void VMManager::MergeAdjacentVMA(VirtualMemoryArea& left, const VirtualMemoryArea& right) {
ASSERT(left.CanBeMergedWith(right));
// Always merge allocated memory blocks, even when they don't share the same backing block.
if (left.type == VMAType::AllocatedMemoryBlock &&
(left.backing_block != right.backing_block || left.offset + left.size != right.offset)) {
// Check if we can save work.
if (left.offset == 0 && left.size == left.backing_block->size()) {
// Fast case: left is an entire backing block.
left.backing_block->insert(left.backing_block->end(),
right.backing_block->begin() + right.offset,
right.backing_block->begin() + right.offset + right.size);
} else {
// Slow case: make a new memory block for left and right.
auto new_memory = std::make_shared<std::vector<u8>>();
new_memory->insert(new_memory->end(), left.backing_block->begin() + left.offset,
left.backing_block->begin() + left.offset + left.size);
new_memory->insert(new_memory->end(), right.backing_block->begin() + right.offset,
right.backing_block->begin() + right.offset + right.size);
left.backing_block = new_memory;
left.offset = 0;
}
// Page table update is needed, because backing memory changed.
left.size += right.size;
UpdatePageTableForVMA(left);
// Update mappings for unicorn.
system.ArmInterface(0).UnmapMemory(left.base, left.size);
system.ArmInterface(1).UnmapMemory(left.base, left.size);
system.ArmInterface(2).UnmapMemory(left.base, left.size);
system.ArmInterface(3).UnmapMemory(left.base, left.size);
system.ArmInterface(0).MapBackingMemory(left.base, left.size,
left.backing_block->data() + left.offset,
VMAPermission::ReadWriteExecute);
system.ArmInterface(1).MapBackingMemory(left.base, left.size,
left.backing_block->data() + left.offset,
VMAPermission::ReadWriteExecute);
system.ArmInterface(2).MapBackingMemory(left.base, left.size,
left.backing_block->data() + left.offset,
VMAPermission::ReadWriteExecute);
system.ArmInterface(3).MapBackingMemory(left.base, left.size,
left.backing_block->data() + left.offset,
VMAPermission::ReadWriteExecute);
} else {
// Just update the size.
left.size += right.size;
}
}
void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) { void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
switch (vma.type) { switch (vma.type) {
case VMAType::Free: case VMAType::Free:

View File

@ -349,7 +349,8 @@ public:
* @param state MemoryState tag to attach to the VMA. * @param state MemoryState tag to attach to the VMA.
*/ */
ResultVal<VMAHandle> MapMemoryBlock(VAddr target, std::shared_ptr<std::vector<u8>> block, ResultVal<VMAHandle> MapMemoryBlock(VAddr target, std::shared_ptr<std::vector<u8>> block,
std::size_t offset, u64 size, MemoryState state); std::size_t offset, u64 size, MemoryState state,
VMAPermission perm = VMAPermission::ReadWrite);
/** /**
* Maps an unmanaged host memory pointer at a given address. * Maps an unmanaged host memory pointer at a given address.
@ -450,6 +451,34 @@ public:
/// ///
ResultVal<VAddr> SetHeapSize(u64 size); ResultVal<VAddr> SetHeapSize(u64 size);
/// Maps memory at a given address.
///
/// @param addr The virtual address to map memory at.
/// @param size The amount of memory to map.
///
/// @note The destination address must lie within the Map region.
///
/// @note This function requires SystemResourceSize is non-zero,
/// however, this is just because if it were not then the
/// resulting page tables could be exploited on hardware by
/// a malicious program. SystemResource usage does not need
/// to be explicitly checked or updated here.
ResultCode MapPhysicalMemory(VAddr target, u64 size);
/// Unmaps memory at a given address.
///
/// @param addr The virtual address to unmap memory at.
/// @param size The amount of memory to unmap.
///
/// @note The destination address must lie within the Map region.
///
/// @note This function requires SystemResourceSize is non-zero,
/// however, this is just because if it were not then the
/// resulting page tables could be exploited on hardware by
/// a malicious program. SystemResource usage does not need
/// to be explicitly checked or updated here.
ResultCode UnmapPhysicalMemory(VAddr target, u64 size);
/// Maps a region of memory as code memory. /// Maps a region of memory as code memory.
/// ///
/// @param dst_address The base address of the region to create the aliasing memory region. /// @param dst_address The base address of the region to create the aliasing memory region.
@ -657,6 +686,11 @@ private:
*/ */
VMAIter MergeAdjacent(VMAIter vma); VMAIter MergeAdjacent(VMAIter vma);
/**
* Merges two adjacent VMAs.
*/
void MergeAdjacentVMA(VirtualMemoryArea& left, const VirtualMemoryArea& right);
/// Updates the pages corresponding to this VMA so they match the VMA's attributes. /// Updates the pages corresponding to this VMA so they match the VMA's attributes.
void UpdatePageTableForVMA(const VirtualMemoryArea& vma); void UpdatePageTableForVMA(const VirtualMemoryArea& vma);
@ -742,6 +776,11 @@ private:
// end of the range. This is essentially 'base_address + current_size'. // end of the range. This is essentially 'base_address + current_size'.
VAddr heap_end = 0; VAddr heap_end = 0;
// The current amount of memory mapped via MapPhysicalMemory.
// This is used here (and in Nintendo's kernel) only for debugging, and does not impact
// any behavior.
u64 physical_memory_mapped = 0;
Core::System& system; Core::System& system;
}; };
} // namespace Kernel } // namespace Kernel