yuzu-emu
/
yuzu-mainline
Archived
1
0
Fork 0

common/vector_math: Move Vec[x] types into the Common namespace

These types are within the common library, so they should be using the
Common namespace.
This commit is contained in:
Lioncash 2019-02-26 22:38:34 -05:00
parent a1574aabd5
commit 1b855efd5e
6 changed files with 38 additions and 38 deletions

View File

@ -55,36 +55,36 @@ constexpr u8 Convert8To6(u8 value) {
/**
* Decode a color stored in RGBA8 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Math::Vec4<u8>
* @return Result color decoded as Common::Vec4<u8>
*/
inline Math::Vec4<u8> DecodeRGBA8(const u8* bytes) {
inline Common::Vec4<u8> DecodeRGBA8(const u8* bytes) {
return {bytes[3], bytes[2], bytes[1], bytes[0]};
}
/**
* Decode a color stored in RGB8 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Math::Vec4<u8>
* @return Result color decoded as Common::Vec4<u8>
*/
inline Math::Vec4<u8> DecodeRGB8(const u8* bytes) {
inline Common::Vec4<u8> DecodeRGB8(const u8* bytes) {
return {bytes[2], bytes[1], bytes[0], 255};
}
/**
* Decode a color stored in RG8 (aka HILO8) format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Math::Vec4<u8>
* @return Result color decoded as Common::Vec4<u8>
*/
inline Math::Vec4<u8> DecodeRG8(const u8* bytes) {
inline Common::Vec4<u8> DecodeRG8(const u8* bytes) {
return {bytes[1], bytes[0], 0, 255};
}
/**
* Decode a color stored in RGB565 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Math::Vec4<u8>
* @return Result color decoded as Common::Vec4<u8>
*/
inline Math::Vec4<u8> DecodeRGB565(const u8* bytes) {
inline Common::Vec4<u8> DecodeRGB565(const u8* bytes) {
u16_le pixel;
std::memcpy(&pixel, bytes, sizeof(pixel));
return {Convert5To8((pixel >> 11) & 0x1F), Convert6To8((pixel >> 5) & 0x3F),
@ -94,9 +94,9 @@ inline Math::Vec4<u8> DecodeRGB565(const u8* bytes) {
/**
* Decode a color stored in RGB5A1 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Math::Vec4<u8>
* @return Result color decoded as Common::Vec4<u8>
*/
inline Math::Vec4<u8> DecodeRGB5A1(const u8* bytes) {
inline Common::Vec4<u8> DecodeRGB5A1(const u8* bytes) {
u16_le pixel;
std::memcpy(&pixel, bytes, sizeof(pixel));
return {Convert5To8((pixel >> 11) & 0x1F), Convert5To8((pixel >> 6) & 0x1F),
@ -106,9 +106,9 @@ inline Math::Vec4<u8> DecodeRGB5A1(const u8* bytes) {
/**
* Decode a color stored in RGBA4 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Math::Vec4<u8>
* @return Result color decoded as Common::Vec4<u8>
*/
inline Math::Vec4<u8> DecodeRGBA4(const u8* bytes) {
inline Common::Vec4<u8> DecodeRGBA4(const u8* bytes) {
u16_le pixel;
std::memcpy(&pixel, bytes, sizeof(pixel));
return {Convert4To8((pixel >> 12) & 0xF), Convert4To8((pixel >> 8) & 0xF),
@ -138,9 +138,9 @@ inline u32 DecodeD24(const u8* bytes) {
/**
* Decode a depth value and a stencil value stored in D24S8 format
* @param bytes Pointer to encoded source values
* @return Resulting values stored as a Math::Vec2
* @return Resulting values stored as a Common::Vec2
*/
inline Math::Vec2<u32> DecodeD24S8(const u8* bytes) {
inline Common::Vec2<u32> DecodeD24S8(const u8* bytes) {
return {static_cast<u32>((bytes[2] << 16) | (bytes[1] << 8) | bytes[0]), bytes[3]};
}
@ -149,7 +149,7 @@ inline Math::Vec2<u32> DecodeD24S8(const u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRGBA8(const Math::Vec4<u8>& color, u8* bytes) {
inline void EncodeRGBA8(const Common::Vec4<u8>& color, u8* bytes) {
bytes[3] = color.r();
bytes[2] = color.g();
bytes[1] = color.b();
@ -161,7 +161,7 @@ inline void EncodeRGBA8(const Math::Vec4<u8>& color, u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRGB8(const Math::Vec4<u8>& color, u8* bytes) {
inline void EncodeRGB8(const Common::Vec4<u8>& color, u8* bytes) {
bytes[2] = color.r();
bytes[1] = color.g();
bytes[0] = color.b();
@ -172,7 +172,7 @@ inline void EncodeRGB8(const Math::Vec4<u8>& color, u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRG8(const Math::Vec4<u8>& color, u8* bytes) {
inline void EncodeRG8(const Common::Vec4<u8>& color, u8* bytes) {
bytes[1] = color.r();
bytes[0] = color.g();
}
@ -181,7 +181,7 @@ inline void EncodeRG8(const Math::Vec4<u8>& color, u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRGB565(const Math::Vec4<u8>& color, u8* bytes) {
inline void EncodeRGB565(const Common::Vec4<u8>& color, u8* bytes) {
const u16_le data =
(Convert8To5(color.r()) << 11) | (Convert8To6(color.g()) << 5) | Convert8To5(color.b());
@ -193,7 +193,7 @@ inline void EncodeRGB565(const Math::Vec4<u8>& color, u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRGB5A1(const Math::Vec4<u8>& color, u8* bytes) {
inline void EncodeRGB5A1(const Common::Vec4<u8>& color, u8* bytes) {
const u16_le data = (Convert8To5(color.r()) << 11) | (Convert8To5(color.g()) << 6) |
(Convert8To5(color.b()) << 1) | Convert8To1(color.a());
@ -205,7 +205,7 @@ inline void EncodeRGB5A1(const Math::Vec4<u8>& color, u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRGBA4(const Math::Vec4<u8>& color, u8* bytes) {
inline void EncodeRGBA4(const Common::Vec4<u8>& color, u8* bytes) {
const u16 data = (Convert8To4(color.r()) << 12) | (Convert8To4(color.g()) << 8) |
(Convert8To4(color.b()) << 4) | Convert8To4(color.a());

View File

@ -11,7 +11,7 @@ namespace Common {
template <typename T>
class Quaternion {
public:
Math::Vec3<T> xyz;
Vec3<T> xyz;
T w{};
Quaternion<decltype(-T{})> Inverse() const {
@ -38,11 +38,11 @@ public:
};
template <typename T>
auto QuaternionRotate(const Quaternion<T>& q, const Math::Vec3<T>& v) {
auto QuaternionRotate(const Quaternion<T>& q, const Vec3<T>& v) {
return v + 2 * Cross(q.xyz, Cross(q.xyz, v) + v * q.w);
}
inline Quaternion<float> MakeQuaternion(const Math::Vec3<float>& axis, float angle) {
inline Quaternion<float> MakeQuaternion(const Vec3<float>& axis, float angle) {
return {axis * std::sin(angle / 2), std::cos(angle / 2)};
}

View File

@ -33,7 +33,7 @@
#include <cmath>
#include <type_traits>
namespace Math {
namespace Common {
template <typename T>
class Vec2;
@ -690,4 +690,4 @@ constexpr Vec4<T> MakeVec(const T& x, const Vec3<T>& yzw) {
return MakeVec(x, yzw[0], yzw[1], yzw[2]);
}
} // namespace Math
} // namespace Common

View File

@ -124,7 +124,7 @@ using AnalogDevice = InputDevice<std::tuple<float, float>>;
* Orientation is determined by right-hand rule.
* Units: deg/sec
*/
using MotionDevice = InputDevice<std::tuple<Math::Vec3<float>, Math::Vec3<float>>>;
using MotionDevice = InputDevice<std::tuple<Common::Vec3<float>, Common::Vec3<float>>>;
/**
* A touch device is an input device that returns a tuple of two floats and a bool. The floats are

View File

@ -32,12 +32,12 @@ public:
}
void BeginTilt(int x, int y) {
mouse_origin = Math::MakeVec(x, y);
mouse_origin = Common::MakeVec(x, y);
is_tilting = true;
}
void Tilt(int x, int y) {
auto mouse_move = Math::MakeVec(x, y) - mouse_origin;
auto mouse_move = Common::MakeVec(x, y) - mouse_origin;
if (is_tilting) {
std::lock_guard<std::mutex> guard(tilt_mutex);
if (mouse_move.x == 0 && mouse_move.y == 0) {
@ -56,7 +56,7 @@ public:
is_tilting = false;
}
std::tuple<Math::Vec3<float>, Math::Vec3<float>> GetStatus() {
std::tuple<Common::Vec3<float>, Common::Vec3<float>> GetStatus() {
std::lock_guard<std::mutex> guard(status_mutex);
return status;
}
@ -66,17 +66,17 @@ private:
const std::chrono::steady_clock::duration update_duration;
const float sensitivity;
Math::Vec2<int> mouse_origin;
Common::Vec2<int> mouse_origin;
std::mutex tilt_mutex;
Math::Vec2<float> tilt_direction;
Common::Vec2<float> tilt_direction;
float tilt_angle = 0;
bool is_tilting = false;
Common::Event shutdown_event;
std::tuple<Math::Vec3<float>, Math::Vec3<float>> status;
std::tuple<Common::Vec3<float>, Common::Vec3<float>> status;
std::mutex status_mutex;
// Note: always keep the thread declaration at the end so that other objects are initialized
@ -85,7 +85,7 @@ private:
void MotionEmuThread() {
auto update_time = std::chrono::steady_clock::now();
Common::Quaternion<float> q = Common::MakeQuaternion(Math::Vec3<float>(), 0);
Common::Quaternion<float> q = Common::MakeQuaternion(Common::Vec3<float>(), 0);
Common::Quaternion<float> old_q;
while (!shutdown_event.WaitUntil(update_time)) {
@ -96,14 +96,14 @@ private:
std::lock_guard<std::mutex> guard(tilt_mutex);
// Find the quaternion describing current 3DS tilting
q = Common::MakeQuaternion(Math::MakeVec(-tilt_direction.y, 0.0f, tilt_direction.x),
tilt_angle);
q = Common::MakeQuaternion(
Common::MakeVec(-tilt_direction.y, 0.0f, tilt_direction.x), tilt_angle);
}
auto inv_q = q.Inverse();
// Set the gravity vector in world space
auto gravity = Math::MakeVec(0.0f, -1.0f, 0.0f);
auto gravity = Common::MakeVec(0.0f, -1.0f, 0.0f);
// Find the angular rate vector in world space
auto angular_rate = ((q - old_q) * inv_q).xyz * 2;
@ -131,7 +131,7 @@ public:
device = std::make_shared<MotionEmuDevice>(update_millisecond, sensitivity);
}
std::tuple<Math::Vec3<float>, Math::Vec3<float>> GetStatus() const override {
std::tuple<Common::Vec3<float>, Common::Vec3<float>> GetStatus() const override {
return device->GetStatus();
}

View File

@ -398,7 +398,7 @@ void GraphicsSurfaceWidget::OnUpdate() {
for (unsigned int y = 0; y < surface_height; ++y) {
for (unsigned int x = 0; x < surface_width; ++x) {
Math::Vec4<u8> color;
Common::Vec4<u8> color;
color[0] = texture_data[x + y * surface_width + 0];
color[1] = texture_data[x + y * surface_width + 1];
color[2] = texture_data[x + y * surface_width + 2];