yuzu-emu
/
yuzu-mainline
Archived
1
0
Fork 0

vk_graphics_pipeline: Initial implementation

This abstractio represents the state of the 3D engine at a given draw.
Instead of changing individual bits of the pipeline how it's done in
APIs like D3D11, OpenGL and NVN; on Vulkan we are forced to put
everything together into a single, immutable object.

It takes advantage of the few dynamic states Vulkan offers.
This commit is contained in:
ReinUsesLisp 2020-01-06 21:29:13 -03:00
parent dc96a59fa0
commit 2effdeb924
4 changed files with 395 additions and 0 deletions

View File

@ -161,6 +161,8 @@ if (ENABLE_VULKAN)
renderer_vulkan/vk_descriptor_pool.h
renderer_vulkan/vk_device.cpp
renderer_vulkan/vk_device.h
renderer_vulkan/vk_graphics_pipeline.cpp
renderer_vulkan/vk_graphics_pipeline.h
renderer_vulkan/vk_image.cpp
renderer_vulkan/vk_image.h
renderer_vulkan/vk_memory_manager.cpp

View File

@ -0,0 +1,271 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <vector>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/microprofile.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/fixed_pipeline_state.h"
#include "video_core/renderer_vulkan/maxwell_to_vk.h"
#include "video_core/renderer_vulkan/vk_descriptor_pool.h"
#include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_graphics_pipeline.h"
#include "video_core/renderer_vulkan/vk_pipeline_cache.h"
#include "video_core/renderer_vulkan/vk_renderpass_cache.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_update_descriptor.h"
namespace Vulkan {
MICROPROFILE_DECLARE(Vulkan_PipelineCache);
namespace {
vk::StencilOpState GetStencilFaceState(const FixedPipelineState::StencilFace& face) {
return vk::StencilOpState(MaxwellToVK::StencilOp(face.action_stencil_fail),
MaxwellToVK::StencilOp(face.action_depth_pass),
MaxwellToVK::StencilOp(face.action_depth_fail),
MaxwellToVK::ComparisonOp(face.test_func), 0, 0, 0);
}
bool SupportsPrimitiveRestart(vk::PrimitiveTopology topology) {
static constexpr std::array unsupported_topologies = {
vk::PrimitiveTopology::ePointList,
vk::PrimitiveTopology::eLineList,
vk::PrimitiveTopology::eTriangleList,
vk::PrimitiveTopology::eLineListWithAdjacency,
vk::PrimitiveTopology::eTriangleListWithAdjacency,
vk::PrimitiveTopology::ePatchList};
return std::find(std::begin(unsupported_topologies), std::end(unsupported_topologies),
topology) == std::end(unsupported_topologies);
}
} // Anonymous namespace
VKGraphicsPipeline::VKGraphicsPipeline(const VKDevice& device, VKScheduler& scheduler,
VKDescriptorPool& descriptor_pool,
VKUpdateDescriptorQueue& update_descriptor_queue,
VKRenderPassCache& renderpass_cache,
const GraphicsPipelineCacheKey& key,
const std::vector<vk::DescriptorSetLayoutBinding>& bindings,
const SPIRVProgram& program)
: device{device}, scheduler{scheduler}, fixed_state{key.fixed_state}, hash{key.Hash()},
descriptor_set_layout{CreateDescriptorSetLayout(bindings)},
descriptor_allocator{descriptor_pool, *descriptor_set_layout},
update_descriptor_queue{update_descriptor_queue}, layout{CreatePipelineLayout()},
descriptor_template{CreateDescriptorUpdateTemplate(program)}, modules{CreateShaderModules(
program)},
renderpass{renderpass_cache.GetRenderPass(key.renderpass_params)}, pipeline{CreatePipeline(
key.renderpass_params,
program)} {}
VKGraphicsPipeline::~VKGraphicsPipeline() = default;
vk::DescriptorSet VKGraphicsPipeline::CommitDescriptorSet() {
if (!descriptor_template) {
return {};
}
const auto set = descriptor_allocator.Commit(scheduler.GetFence());
update_descriptor_queue.Send(*descriptor_template, set);
return set;
}
UniqueDescriptorSetLayout VKGraphicsPipeline::CreateDescriptorSetLayout(
const std::vector<vk::DescriptorSetLayoutBinding>& bindings) const {
const vk::DescriptorSetLayoutCreateInfo descriptor_set_layout_ci(
{}, static_cast<u32>(bindings.size()), bindings.data());
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
return dev.createDescriptorSetLayoutUnique(descriptor_set_layout_ci, nullptr, dld);
}
UniquePipelineLayout VKGraphicsPipeline::CreatePipelineLayout() const {
const vk::PipelineLayoutCreateInfo pipeline_layout_ci({}, 1, &*descriptor_set_layout, 0,
nullptr);
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
return dev.createPipelineLayoutUnique(pipeline_layout_ci, nullptr, dld);
}
UniqueDescriptorUpdateTemplate VKGraphicsPipeline::CreateDescriptorUpdateTemplate(
const SPIRVProgram& program) const {
std::vector<vk::DescriptorUpdateTemplateEntry> template_entries;
u32 binding = 0;
u32 offset = 0;
for (const auto& stage : program) {
if (stage) {
FillDescriptorUpdateTemplateEntries(device, stage->entries, binding, offset,
template_entries);
}
}
if (template_entries.empty()) {
// If the shader doesn't use descriptor sets, skip template creation.
return UniqueDescriptorUpdateTemplate{};
}
const vk::DescriptorUpdateTemplateCreateInfo template_ci(
{}, static_cast<u32>(template_entries.size()), template_entries.data(),
vk::DescriptorUpdateTemplateType::eDescriptorSet, *descriptor_set_layout,
vk::PipelineBindPoint::eGraphics, *layout, DESCRIPTOR_SET);
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
return dev.createDescriptorUpdateTemplateUnique(template_ci, nullptr, dld);
}
std::vector<UniqueShaderModule> VKGraphicsPipeline::CreateShaderModules(
const SPIRVProgram& program) const {
std::vector<UniqueShaderModule> modules;
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
for (std::size_t i = 0; i < Maxwell::MaxShaderStage; ++i) {
const auto& stage = program[i];
if (!stage) {
continue;
}
const vk::ShaderModuleCreateInfo module_ci({}, stage->code.size() * sizeof(u32),
stage->code.data());
modules.emplace_back(dev.createShaderModuleUnique(module_ci, nullptr, dld));
}
return modules;
}
UniquePipeline VKGraphicsPipeline::CreatePipeline(const RenderPassParams& renderpass_params,
const SPIRVProgram& program) const {
const auto& vi = fixed_state.vertex_input;
const auto& ia = fixed_state.input_assembly;
const auto& ds = fixed_state.depth_stencil;
const auto& cd = fixed_state.color_blending;
const auto& ts = fixed_state.tessellation;
const auto& rs = fixed_state.rasterizer;
std::vector<vk::VertexInputBindingDescription> vertex_bindings;
std::vector<vk::VertexInputBindingDivisorDescriptionEXT> vertex_binding_divisors;
for (std::size_t i = 0; i < vi.num_bindings; ++i) {
const auto& binding = vi.bindings[i];
const bool instanced = binding.divisor != 0;
const auto rate = instanced ? vk::VertexInputRate::eInstance : vk::VertexInputRate::eVertex;
vertex_bindings.emplace_back(binding.index, binding.stride, rate);
if (instanced) {
vertex_binding_divisors.emplace_back(binding.index, binding.divisor);
}
}
std::vector<vk::VertexInputAttributeDescription> vertex_attributes;
const auto& input_attributes = program[0]->entries.attributes;
for (std::size_t i = 0; i < vi.num_attributes; ++i) {
const auto& attribute = vi.attributes[i];
if (input_attributes.find(attribute.index) == input_attributes.end()) {
// Skip attributes not used by the vertex shaders.
continue;
}
vertex_attributes.emplace_back(attribute.index, attribute.buffer,
MaxwellToVK::VertexFormat(attribute.type, attribute.size),
attribute.offset);
}
vk::PipelineVertexInputStateCreateInfo vertex_input_ci(
{}, static_cast<u32>(vertex_bindings.size()), vertex_bindings.data(),
static_cast<u32>(vertex_attributes.size()), vertex_attributes.data());
const vk::PipelineVertexInputDivisorStateCreateInfoEXT vertex_input_divisor_ci(
static_cast<u32>(vertex_binding_divisors.size()), vertex_binding_divisors.data());
if (!vertex_binding_divisors.empty()) {
vertex_input_ci.pNext = &vertex_input_divisor_ci;
}
const auto primitive_topology = MaxwellToVK::PrimitiveTopology(device, ia.topology);
const vk::PipelineInputAssemblyStateCreateInfo input_assembly_ci(
{}, primitive_topology,
ia.primitive_restart_enable && SupportsPrimitiveRestart(primitive_topology));
const vk::PipelineTessellationStateCreateInfo tessellation_ci({}, ts.patch_control_points);
const vk::PipelineViewportStateCreateInfo viewport_ci({}, Maxwell::NumViewports, nullptr,
Maxwell::NumViewports, nullptr);
// TODO(Rodrigo): Find out what's the default register value for front face
const vk::PipelineRasterizationStateCreateInfo rasterizer_ci(
{}, rs.depth_clamp_enable, false, vk::PolygonMode::eFill,
rs.cull_enable ? MaxwellToVK::CullFace(rs.cull_face) : vk::CullModeFlagBits::eNone,
rs.cull_enable ? MaxwellToVK::FrontFace(rs.front_face) : vk::FrontFace::eCounterClockwise,
rs.depth_bias_enable, 0.0f, 0.0f, 0.0f, 1.0f);
const vk::PipelineMultisampleStateCreateInfo multisampling_ci(
{}, vk::SampleCountFlagBits::e1, false, 0.0f, nullptr, false, false);
const vk::CompareOp depth_test_compare = ds.depth_test_enable
? MaxwellToVK::ComparisonOp(ds.depth_test_function)
: vk::CompareOp::eAlways;
const vk::PipelineDepthStencilStateCreateInfo depth_stencil_ci(
{}, ds.depth_test_enable, ds.depth_write_enable, depth_test_compare, ds.depth_bounds_enable,
ds.stencil_enable, GetStencilFaceState(ds.front_stencil),
GetStencilFaceState(ds.back_stencil), 0.0f, 0.0f);
std::array<vk::PipelineColorBlendAttachmentState, Maxwell::NumRenderTargets> cb_attachments;
const std::size_t num_attachments =
std::min(cd.attachments_count, renderpass_params.color_attachments.size());
for (std::size_t i = 0; i < num_attachments; ++i) {
constexpr std::array component_table{
vk::ColorComponentFlagBits::eR, vk::ColorComponentFlagBits::eG,
vk::ColorComponentFlagBits::eB, vk::ColorComponentFlagBits::eA};
const auto& blend = cd.attachments[i];
vk::ColorComponentFlags color_components{};
for (std::size_t j = 0; j < component_table.size(); ++j) {
if (blend.components[j])
color_components |= component_table[j];
}
cb_attachments[i] = vk::PipelineColorBlendAttachmentState(
blend.enable, MaxwellToVK::BlendFactor(blend.src_rgb_func),
MaxwellToVK::BlendFactor(blend.dst_rgb_func),
MaxwellToVK::BlendEquation(blend.rgb_equation),
MaxwellToVK::BlendFactor(blend.src_a_func), MaxwellToVK::BlendFactor(blend.dst_a_func),
MaxwellToVK::BlendEquation(blend.a_equation), color_components);
}
const vk::PipelineColorBlendStateCreateInfo color_blending_ci({}, false, vk::LogicOp::eCopy,
static_cast<u32>(num_attachments),
cb_attachments.data(), {});
constexpr std::array dynamic_states = {
vk::DynamicState::eViewport, vk::DynamicState::eScissor,
vk::DynamicState::eDepthBias, vk::DynamicState::eBlendConstants,
vk::DynamicState::eDepthBounds, vk::DynamicState::eStencilCompareMask,
vk::DynamicState::eStencilWriteMask, vk::DynamicState::eStencilReference};
const vk::PipelineDynamicStateCreateInfo dynamic_state_ci(
{}, static_cast<u32>(dynamic_states.size()), dynamic_states.data());
vk::PipelineShaderStageRequiredSubgroupSizeCreateInfoEXT subgroup_size_ci;
subgroup_size_ci.requiredSubgroupSize = GuestWarpSize;
std::vector<vk::PipelineShaderStageCreateInfo> shader_stages;
std::size_t module_index = 0;
for (std::size_t stage = 0; stage < Maxwell::MaxShaderStage; ++stage) {
if (!program[stage]) {
continue;
}
const auto stage_enum = static_cast<Tegra::Engines::ShaderType>(stage);
const auto vk_stage = MaxwellToVK::ShaderStage(stage_enum);
auto& stage_ci = shader_stages.emplace_back(vk::PipelineShaderStageCreateFlags{}, vk_stage,
*modules[module_index++], "main", nullptr);
if (program[stage]->entries.uses_warps && device.IsGuestWarpSizeSupported(vk_stage)) {
stage_ci.pNext = &subgroup_size_ci;
}
}
const vk::GraphicsPipelineCreateInfo create_info(
{}, static_cast<u32>(shader_stages.size()), shader_stages.data(), &vertex_input_ci,
&input_assembly_ci, &tessellation_ci, &viewport_ci, &rasterizer_ci, &multisampling_ci,
&depth_stencil_ci, &color_blending_ci, &dynamic_state_ci, *layout, renderpass, 0, {}, 0);
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
return dev.createGraphicsPipelineUnique(nullptr, create_info, nullptr, dld);
}
} // namespace Vulkan

View File

@ -0,0 +1,90 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <memory>
#include <optional>
#include <unordered_map>
#include <vector>
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/fixed_pipeline_state.h"
#include "video_core/renderer_vulkan/vk_descriptor_pool.h"
#include "video_core/renderer_vulkan/vk_renderpass_cache.h"
#include "video_core/renderer_vulkan/vk_resource_manager.h"
#include "video_core/renderer_vulkan/vk_shader_decompiler.h"
namespace Vulkan {
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
struct GraphicsPipelineCacheKey;
class VKDescriptorPool;
class VKDevice;
class VKRenderPassCache;
class VKScheduler;
class VKUpdateDescriptorQueue;
using SPIRVProgram = std::array<std::optional<SPIRVShader>, Maxwell::MaxShaderStage>;
class VKGraphicsPipeline final {
public:
explicit VKGraphicsPipeline(const VKDevice& device, VKScheduler& scheduler,
VKDescriptorPool& descriptor_pool,
VKUpdateDescriptorQueue& update_descriptor_queue,
VKRenderPassCache& renderpass_cache,
const GraphicsPipelineCacheKey& key,
const std::vector<vk::DescriptorSetLayoutBinding>& bindings,
const SPIRVProgram& program);
~VKGraphicsPipeline();
vk::DescriptorSet CommitDescriptorSet();
vk::Pipeline GetHandle() const {
return *pipeline;
}
vk::PipelineLayout GetLayout() const {
return *layout;
}
vk::RenderPass GetRenderPass() const {
return renderpass;
}
private:
UniqueDescriptorSetLayout CreateDescriptorSetLayout(
const std::vector<vk::DescriptorSetLayoutBinding>& bindings) const;
UniquePipelineLayout CreatePipelineLayout() const;
UniqueDescriptorUpdateTemplate CreateDescriptorUpdateTemplate(
const SPIRVProgram& program) const;
std::vector<UniqueShaderModule> CreateShaderModules(const SPIRVProgram& program) const;
UniquePipeline CreatePipeline(const RenderPassParams& renderpass_params,
const SPIRVProgram& program) const;
const VKDevice& device;
VKScheduler& scheduler;
const FixedPipelineState fixed_state;
const u64 hash;
UniqueDescriptorSetLayout descriptor_set_layout;
DescriptorAllocator descriptor_allocator;
VKUpdateDescriptorQueue& update_descriptor_queue;
UniquePipelineLayout layout;
UniqueDescriptorUpdateTemplate descriptor_template;
std::vector<UniqueShaderModule> modules;
vk::RenderPass renderpass;
UniquePipeline pipeline;
};
} // namespace Vulkan

View File

@ -8,9 +8,12 @@
#include <cstddef>
#include <vector>
#include <boost/functional/hash.hpp>
#include "common/common_types.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/fixed_pipeline_state.h"
#include "video_core/renderer_vulkan/vk_shader_decompiler.h"
#include "video_core/shader/shader_ir.h"
@ -18,6 +21,28 @@ namespace Vulkan {
class VKDevice;
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
struct GraphicsPipelineCacheKey {
FixedPipelineState fixed_state;
std::array<GPUVAddr, Maxwell::MaxShaderProgram> shaders;
RenderPassParams renderpass_params;
std::size_t Hash() const noexcept {
std::size_t hash = fixed_state.Hash();
for (const auto& shader : shaders) {
boost::hash_combine(hash, shader);
}
boost::hash_combine(hash, renderpass_params.Hash());
return hash;
}
bool operator==(const GraphicsPipelineCacheKey& rhs) const noexcept {
return std::tie(fixed_state, shaders, renderpass_params) ==
std::tie(rhs.fixed_state, rhs.shaders, rhs.renderpass_params);
}
};
struct ComputePipelineCacheKey {
GPUVAddr shader{};
u32 shared_memory_size{};
@ -41,6 +66,13 @@ struct ComputePipelineCacheKey {
namespace std {
template <>
struct hash<Vulkan::GraphicsPipelineCacheKey> {
std::size_t operator()(const Vulkan::GraphicsPipelineCacheKey& k) const noexcept {
return k.Hash();
}
};
template <>
struct hash<Vulkan::ComputePipelineCacheKey> {
std::size_t operator()(const Vulkan::ComputePipelineCacheKey& k) const noexcept {