yuzu-emu
/
yuzu-mainline
Archived
1
0
Fork 0

kernel: memory: Add PageHeap class, to manage a heap of pages.

This commit is contained in:
bunnei 2020-04-05 15:14:26 -04:00
parent dc720311cc
commit 3927012734
3 changed files with 483 additions and 0 deletions

View File

@ -159,6 +159,8 @@ add_library(core STATIC
hle/kernel/memory/memory_block.h hle/kernel/memory/memory_block.h
hle/kernel/memory/memory_types.h hle/kernel/memory/memory_types.h
hle/kernel/memory/page_linked_list.h hle/kernel/memory/page_linked_list.h
hle/kernel/memory/page_heap.cpp
hle/kernel/memory/page_heap.h
hle/kernel/memory/slab_heap.h hle/kernel/memory/slab_heap.h
hle/kernel/memory/system_control.cpp hle/kernel/memory/system_control.cpp
hle/kernel/memory/system_control.h hle/kernel/memory/system_control.h

View File

@ -0,0 +1,116 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "core/core.h"
#include "core/hle/kernel/memory/page_heap.h"
#include "core/memory.h"
namespace Kernel::Memory {
void PageHeap::Initialize(VAddr address, std::size_t size, std::size_t metadata_size) {
// Check our assumptions
ASSERT(Common::IsAligned((address), PageSize));
ASSERT(Common::IsAligned(size, PageSize));
// Set our members
heap_address = address;
heap_size = size;
// Setup bitmaps
metadata.resize(metadata_size / sizeof(u64));
u64* cur_bitmap_storage{metadata.data()};
for (std::size_t i = 0; i < MemoryBlockPageShifts.size(); i++) {
const std::size_t cur_block_shift{MemoryBlockPageShifts[i]};
const std::size_t next_block_shift{
(i != MemoryBlockPageShifts.size() - 1) ? MemoryBlockPageShifts[i + 1] : 0};
cur_bitmap_storage = blocks[i].Initialize(heap_address, heap_size, cur_block_shift,
next_block_shift, cur_bitmap_storage);
}
}
VAddr PageHeap::AllocateBlock(s32 index) {
const std::size_t needed_size{blocks[index].GetSize()};
for (s32 i{index}; i < static_cast<s32>(MemoryBlockPageShifts.size()); i++) {
if (const VAddr addr{blocks[i].PopBlock()}; addr) {
if (const std::size_t allocated_size{blocks[i].GetSize()};
allocated_size > needed_size) {
Free(addr + needed_size, (allocated_size - needed_size) / PageSize);
}
return addr;
}
}
return 0;
}
void PageHeap::FreeBlock(VAddr block, s32 index) {
do {
block = blocks[index++].PushBlock(block);
} while (block != 0);
}
void PageHeap::Free(VAddr addr, std::size_t num_pages) {
// Freeing no pages is a no-op
if (num_pages == 0) {
return;
}
// Find the largest block size that we can free, and free as many as possible
s32 big_index{static_cast<s32>(MemoryBlockPageShifts.size()) - 1};
const VAddr start{addr};
const VAddr end{(num_pages * PageSize) + addr};
VAddr before_start{start};
VAddr before_end{start};
VAddr after_start{end};
VAddr after_end{end};
while (big_index >= 0) {
const std::size_t block_size{blocks[big_index].GetSize()};
const VAddr big_start{Common::AlignUp((start), block_size)};
const VAddr big_end{Common::AlignDown((end), block_size)};
if (big_start < big_end) {
// Free as many big blocks as we can
for (auto block{big_start}; block < big_end; block += block_size) {
FreeBlock(block, big_index);
}
before_end = big_start;
after_start = big_end;
break;
}
big_index--;
}
ASSERT(big_index >= 0);
// Free space before the big blocks
for (s32 i{big_index - 1}; i >= 0; i--) {
const std::size_t block_size{blocks[i].GetSize()};
while (before_start + block_size <= before_end) {
before_end -= block_size;
FreeBlock(before_end, i);
}
}
// Free space after the big blocks
for (s32 i{big_index - 1}; i >= 0; i--) {
const std::size_t block_size{blocks[i].GetSize()};
while (after_start + block_size <= after_end) {
FreeBlock(after_start, i);
after_start += block_size;
}
}
}
std::size_t PageHeap::CalculateMetadataOverheadSize(std::size_t region_size) {
std::size_t overhead_size = 0;
for (std::size_t i = 0; i < MemoryBlockPageShifts.size(); i++) {
const std::size_t cur_block_shift{MemoryBlockPageShifts[i]};
const std::size_t next_block_shift{
(i != MemoryBlockPageShifts.size() - 1) ? MemoryBlockPageShifts[i + 1] : 0};
overhead_size += PageHeap::Block::CalculateMetadataOverheadSize(
region_size, cur_block_shift, next_block_shift);
}
return Common::AlignUp(overhead_size, PageSize);
}
} // namespace Kernel::Memory

View File

@ -0,0 +1,365 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <vector>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "core/hle/kernel/memory/memory_types.h"
namespace Kernel::Memory {
class PageHeap final : NonCopyable {
public:
static constexpr s32 GetAlignedBlockIndex(std::size_t num_pages, std::size_t align_pages) {
const std::size_t target_pages{std::max(num_pages, align_pages)};
for (std::size_t i = 0; i < NumMemoryBlockPageShifts; i++) {
if (target_pages <= (std::size_t(1) << MemoryBlockPageShifts[i]) / PageSize) {
return static_cast<s32>(i);
}
}
return -1;
}
static constexpr s32 GetBlockIndex(std::size_t num_pages) {
for (s32 i{static_cast<s32>(NumMemoryBlockPageShifts) - 1}; i >= 0; i--) {
if (num_pages >= (std::size_t(1) << MemoryBlockPageShifts[i]) / PageSize) {
return i;
}
}
return -1;
}
static constexpr std::size_t GetBlockSize(std::size_t index) {
return std::size_t(1) << MemoryBlockPageShifts[index];
}
static constexpr std::size_t GetBlockNumPages(std::size_t index) {
return GetBlockSize(index) / PageSize;
}
private:
static constexpr std::size_t NumMemoryBlockPageShifts{7};
static constexpr std::array<std::size_t, NumMemoryBlockPageShifts> MemoryBlockPageShifts{
0xC, 0x10, 0x15, 0x16, 0x19, 0x1D, 0x1E};
class Block final : NonCopyable {
private:
class Bitmap final : NonCopyable {
public:
static constexpr std::size_t MaxDepth{4};
private:
std::array<u64*, MaxDepth> bit_storages{};
std::size_t num_bits{};
std::size_t used_depths{};
public:
constexpr Bitmap() = default;
constexpr std::size_t GetNumBits() const {
return num_bits;
}
constexpr s32 GetHighestDepthIndex() const {
return static_cast<s32>(used_depths) - 1;
}
constexpr u64* Initialize(u64* storage, std::size_t size) {
//* Initially, everything is un-set
num_bits = 0;
// Calculate the needed bitmap depth
used_depths = static_cast<std::size_t>(GetRequiredDepth(size));
ASSERT(used_depths <= MaxDepth);
// Set the bitmap pointers
for (s32 depth{GetHighestDepthIndex()}; depth >= 0; depth--) {
bit_storages[depth] = storage;
size = Common::AlignUp(size, 64) / 64;
storage += size;
}
return storage;
}
s64 FindFreeBlock() const {
uintptr_t offset{};
s32 depth{};
do {
const u64 v{bit_storages[depth][offset]};
if (v == 0) {
// Non-zero depth indicates that a previous level had a free block
ASSERT(depth == 0);
return -1;
}
offset = offset * 64 + Common::CountTrailingZeroes64(v);
++depth;
} while (depth < static_cast<s32>(used_depths));
return static_cast<s64>(offset);
}
constexpr void SetBit(std::size_t offset) {
SetBit(GetHighestDepthIndex(), offset);
num_bits++;
}
constexpr void ClearBit(std::size_t offset) {
ClearBit(GetHighestDepthIndex(), offset);
num_bits--;
}
constexpr bool ClearRange(std::size_t offset, std::size_t count) {
const s32 depth{GetHighestDepthIndex()};
const std::size_t bit_ind{offset / 64};
u64* bits{bit_storages[depth]};
if (count < 64) {
const std::size_t shift{offset % 64};
ASSERT(shift + count <= 64);
// Check that all the bits are set
const u64 mask{((u64(1) << count) - 1) << shift};
u64 v{bits[bit_ind]};
if ((v & mask) != mask) {
return false;
}
// Clear the bits
v &= ~mask;
bits[bit_ind] = v;
if (v == 0) {
ClearBit(depth - 1, bit_ind);
}
} else {
ASSERT(offset % 64 == 0);
ASSERT(count % 64 == 0);
// Check that all the bits are set
std::size_t remaining{count};
std::size_t i = 0;
do {
if (bits[bit_ind + i++] != ~u64(0)) {
return false;
}
remaining -= 64;
} while (remaining > 0);
// Clear the bits
remaining = count;
i = 0;
do {
bits[bit_ind + i] = 0;
ClearBit(depth - 1, bit_ind + i);
i++;
remaining -= 64;
} while (remaining > 0);
}
num_bits -= count;
return true;
}
private:
constexpr void SetBit(s32 depth, std::size_t offset) {
while (depth >= 0) {
const std::size_t ind{offset / 64};
const std::size_t which{offset % 64};
const u64 mask{u64(1) << which};
u64* bit{std::addressof(bit_storages[depth][ind])};
const u64 v{*bit};
ASSERT((v & mask) == 0);
*bit = v | mask;
if (v) {
break;
}
offset = ind;
depth--;
}
}
constexpr void ClearBit(s32 depth, std::size_t offset) {
while (depth >= 0) {
const std::size_t ind{offset / 64};
const std::size_t which{offset % 64};
const u64 mask{u64(1) << which};
u64* bit{std::addressof(bit_storages[depth][ind])};
u64 v{*bit};
ASSERT((v & mask) != 0);
v &= ~mask;
*bit = v;
if (v) {
break;
}
offset = ind;
depth--;
}
}
private:
static constexpr s32 GetRequiredDepth(std::size_t region_size) {
s32 depth = 0;
while (true) {
region_size /= 64;
depth++;
if (region_size == 0) {
return depth;
}
}
}
public:
static constexpr std::size_t CalculateMetadataOverheadSize(std::size_t region_size) {
std::size_t overhead_bits = 0;
for (s32 depth{GetRequiredDepth(region_size) - 1}; depth >= 0; depth--) {
region_size = Common::AlignUp(region_size, 64) / 64;
overhead_bits += region_size;
}
return overhead_bits * sizeof(u64);
}
};
private:
Bitmap bitmap;
VAddr heap_address{};
uintptr_t end_offset{};
std::size_t block_shift{};
std::size_t next_block_shift{};
public:
constexpr Block() = default;
constexpr std::size_t GetShift() const {
return block_shift;
}
constexpr std::size_t GetNextShift() const {
return next_block_shift;
}
constexpr std::size_t GetSize() const {
return std::size_t(1) << GetShift();
}
constexpr std::size_t GetNumPages() const {
return GetSize() / PageSize;
}
constexpr std::size_t GetNumFreeBlocks() const {
return bitmap.GetNumBits();
}
constexpr std::size_t GetNumFreePages() const {
return GetNumFreeBlocks() * GetNumPages();
}
constexpr u64* Initialize(VAddr addr, std::size_t size, std::size_t bs, std::size_t nbs,
u64* bit_storage) {
// Set shifts
block_shift = bs;
next_block_shift = nbs;
// Align up the address
VAddr end{addr + size};
const std::size_t align{(next_block_shift != 0) ? (u64(1) << next_block_shift)
: (u64(1) << block_shift)};
addr = Common::AlignDown((addr), align);
end = Common::AlignUp((end), align);
heap_address = addr;
end_offset = (end - addr) / (u64(1) << block_shift);
return bitmap.Initialize(bit_storage, end_offset);
}
constexpr VAddr PushBlock(VAddr address) {
// Set the bit for the free block
std::size_t offset{(address - heap_address) >> GetShift()};
bitmap.SetBit(offset);
// If we have a next shift, try to clear the blocks below and return the address
if (GetNextShift()) {
const std::size_t diff{u64(1) << (GetNextShift() - GetShift())};
offset = Common::AlignDown(offset, diff);
if (bitmap.ClearRange(offset, diff)) {
return heap_address + (offset << GetShift());
}
}
// We couldn't coalesce, or we're already as big as possible
return 0;
}
VAddr PopBlock() {
// Find a free block
const s64 soffset{bitmap.FindFreeBlock()};
if (soffset < 0) {
return 0;
}
const std::size_t offset{static_cast<std::size_t>(soffset)};
// Update our tracking and return it
bitmap.ClearBit(offset);
return heap_address + (offset << GetShift());
}
public:
static constexpr std::size_t CalculateMetadataOverheadSize(std::size_t region_size,
std::size_t cur_block_shift,
std::size_t next_block_shift) {
const std::size_t cur_block_size{(u64(1) << cur_block_shift)};
const std::size_t next_block_size{(u64(1) << next_block_shift)};
const std::size_t align{(next_block_shift != 0) ? next_block_size : cur_block_size};
return Bitmap::CalculateMetadataOverheadSize(
(align * 2 + Common::AlignUp(region_size, align)) / cur_block_size);
}
};
public:
PageHeap() = default;
constexpr VAddr GetAddress() const {
return heap_address;
}
constexpr std::size_t GetSize() const {
return heap_size;
}
constexpr VAddr GetEndAddress() const {
return GetAddress() + GetSize();
}
constexpr std::size_t GetPageOffset(VAddr block) const {
return (block - GetAddress()) / PageSize;
}
void Initialize(VAddr heap_address, std::size_t heap_size, std::size_t metadata_size);
VAddr AllocateBlock(s32 index);
void Free(VAddr addr, std::size_t num_pages);
void UpdateUsedSize() {
used_size = heap_size - (GetNumFreePages() * PageSize);
}
static std::size_t CalculateMetadataOverheadSize(std::size_t region_size);
private:
constexpr std::size_t GetNumFreePages() const {
std::size_t num_free{};
for (const auto& block : blocks) {
num_free += block.GetNumFreePages();
}
return num_free;
}
void FreeBlock(VAddr block, s32 index);
VAddr heap_address{};
std::size_t heap_size{};
std::size_t used_size{};
std::array<Block, NumMemoryBlockPageShifts> blocks{};
std::vector<u64> metadata;
};
} // namespace Kernel::Memory