yuzu-emu
/
yuzu-mainline
Archived
1
0
Fork 0

Merge pull request #2090 from FearlessTobi/port-4599

Port citra-emu/citra#4244 and citra-emu/citra#4599: Changes to BitField
This commit is contained in:
bunnei 2019-03-20 23:44:20 -04:00 committed by GitHub
commit 3e930304fe
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 345 additions and 142 deletions

View File

@ -34,6 +34,7 @@
#include <limits> #include <limits>
#include <type_traits> #include <type_traits>
#include "common/common_funcs.h" #include "common/common_funcs.h"
#include "common/swap.h"
/* /*
* Abstract bitfield class * Abstract bitfield class
@ -108,7 +109,7 @@
* symptoms. * symptoms.
*/ */
#pragma pack(1) #pragma pack(1)
template <std::size_t Position, std::size_t Bits, typename T> template <std::size_t Position, std::size_t Bits, typename T, typename EndianTag = LETag>
struct BitField { struct BitField {
private: private:
// UnderlyingType is T for non-enum types and the underlying type of T if // UnderlyingType is T for non-enum types and the underlying type of T if
@ -121,7 +122,11 @@ private:
// We store the value as the unsigned type to avoid undefined behaviour on value shifting // We store the value as the unsigned type to avoid undefined behaviour on value shifting
using StorageType = std::make_unsigned_t<UnderlyingType>; using StorageType = std::make_unsigned_t<UnderlyingType>;
using StorageTypeWithEndian = typename AddEndian<StorageType, EndianTag>::type;
public: public:
BitField& operator=(const BitField&) = default;
/// Constants to allow limited introspection of fields if needed /// Constants to allow limited introspection of fields if needed
static constexpr std::size_t position = Position; static constexpr std::size_t position = Position;
static constexpr std::size_t bits = Bits; static constexpr std::size_t bits = Bits;
@ -170,7 +175,7 @@ public:
} }
constexpr FORCE_INLINE void Assign(const T& value) { constexpr FORCE_INLINE void Assign(const T& value) {
storage = (storage & ~mask) | FormatValue(value); storage = (static_cast<StorageType>(storage) & ~mask) | FormatValue(value);
} }
constexpr T Value() const { constexpr T Value() const {
@ -182,7 +187,7 @@ public:
} }
private: private:
StorageType storage; StorageTypeWithEndian storage;
static_assert(bits + position <= 8 * sizeof(T), "Bitfield out of range"); static_assert(bits + position <= 8 * sizeof(T), "Bitfield out of range");
@ -193,3 +198,6 @@ private:
static_assert(std::is_trivially_copyable_v<T>, "T must be trivially copyable in a BitField"); static_assert(std::is_trivially_copyable_v<T>, "T must be trivially copyable in a BitField");
}; };
#pragma pack() #pragma pack()
template <std::size_t Position, std::size_t Bits, typename T>
using BitFieldBE = BitField<Position, Bits, T, BETag>;

View File

@ -17,6 +17,8 @@
#pragma once #pragma once
#include <type_traits>
#if defined(_MSC_VER) #if defined(_MSC_VER)
#include <cstdlib> #include <cstdlib>
#elif defined(__linux__) #elif defined(__linux__)
@ -170,7 +172,7 @@ struct swap_struct_t {
using swapped_t = swap_struct_t; using swapped_t = swap_struct_t;
protected: protected:
T value = T(); T value;
static T swap(T v) { static T swap(T v) {
return F::swap(v); return F::swap(v);
@ -605,52 +607,154 @@ struct swap_double_t {
} }
}; };
template <typename T>
struct swap_enum_t {
static_assert(std::is_enum_v<T>);
using base = std::underlying_type_t<T>;
public:
swap_enum_t() = default;
swap_enum_t(const T& v) : value(swap(v)) {}
swap_enum_t& operator=(const T& v) {
value = swap(v);
return *this;
}
operator T() const {
return swap(value);
}
explicit operator base() const {
return static_cast<base>(swap(value));
}
protected:
T value{};
// clang-format off
using swap_t = std::conditional_t<
std::is_same_v<base, u16>, swap_16_t<u16>, std::conditional_t<
std::is_same_v<base, s16>, swap_16_t<s16>, std::conditional_t<
std::is_same_v<base, u32>, swap_32_t<u32>, std::conditional_t<
std::is_same_v<base, s32>, swap_32_t<s32>, std::conditional_t<
std::is_same_v<base, u64>, swap_64_t<u64>, std::conditional_t<
std::is_same_v<base, s64>, swap_64_t<s64>, void>>>>>>;
// clang-format on
static T swap(T x) {
return static_cast<T>(swap_t::swap(static_cast<base>(x)));
}
};
struct SwapTag {}; // Use the different endianness from the system
struct KeepTag {}; // Use the same endianness as the system
template <typename T, typename Tag>
struct AddEndian;
// KeepTag specializations
template <typename T>
struct AddEndian<T, KeepTag> {
using type = T;
};
// SwapTag specializations
template <>
struct AddEndian<u8, SwapTag> {
using type = u8;
};
template <>
struct AddEndian<u16, SwapTag> {
using type = swap_struct_t<u16, swap_16_t<u16>>;
};
template <>
struct AddEndian<u32, SwapTag> {
using type = swap_struct_t<u32, swap_32_t<u32>>;
};
template <>
struct AddEndian<u64, SwapTag> {
using type = swap_struct_t<u64, swap_64_t<u64>>;
};
template <>
struct AddEndian<s8, SwapTag> {
using type = s8;
};
template <>
struct AddEndian<s16, SwapTag> {
using type = swap_struct_t<s16, swap_16_t<s16>>;
};
template <>
struct AddEndian<s32, SwapTag> {
using type = swap_struct_t<s32, swap_32_t<s32>>;
};
template <>
struct AddEndian<s64, SwapTag> {
using type = swap_struct_t<s64, swap_64_t<s64>>;
};
template <>
struct AddEndian<float, SwapTag> {
using type = swap_struct_t<float, swap_float_t<float>>;
};
template <>
struct AddEndian<double, SwapTag> {
using type = swap_struct_t<double, swap_double_t<double>>;
};
template <typename T>
struct AddEndian<T, SwapTag> {
static_assert(std::is_enum_v<T>);
using type = swap_enum_t<T>;
};
// Alias LETag/BETag as KeepTag/SwapTag depending on the system
#if COMMON_LITTLE_ENDIAN #if COMMON_LITTLE_ENDIAN
using u16_le = u16;
using u32_le = u32;
using u64_le = u64;
using s16_le = s16; using LETag = KeepTag;
using s32_le = s32; using BETag = SwapTag;
using s64_le = s64;
using float_le = float;
using double_le = double;
using u64_be = swap_struct_t<u64, swap_64_t<u64>>;
using s64_be = swap_struct_t<s64, swap_64_t<s64>>;
using u32_be = swap_struct_t<u32, swap_32_t<u32>>;
using s32_be = swap_struct_t<s32, swap_32_t<s32>>;
using u16_be = swap_struct_t<u16, swap_16_t<u16>>;
using s16_be = swap_struct_t<s16, swap_16_t<s16>>;
using float_be = swap_struct_t<float, swap_float_t<float>>;
using double_be = swap_struct_t<double, swap_double_t<double>>;
#else #else
using u64_le = swap_struct_t<u64, swap_64_t<u64>>; using BETag = KeepTag;
using s64_le = swap_struct_t<s64, swap_64_t<s64>>; using LETag = SwapTag;
using u32_le = swap_struct_t<u32, swap_32_t<u32>>;
using s32_le = swap_struct_t<s32, swap_32_t<s32>>;
using u16_le = swap_struct_t<u16, swap_16_t<u16>>;
using s16_le = swap_struct_t<s16, swap_16_t<s16>>;
using float_le = swap_struct_t<float, swap_float_t<float>>;
using double_le = swap_struct_t<double, swap_double_t<double>>;
using u16_be = u16;
using u32_be = u32;
using u64_be = u64;
using s16_be = s16;
using s32_be = s32;
using s64_be = s64;
using float_be = float;
using double_be = double;
#endif #endif
// Aliases for LE types
using u16_le = AddEndian<u16, LETag>::type;
using u32_le = AddEndian<u32, LETag>::type;
using u64_le = AddEndian<u64, LETag>::type;
using s16_le = AddEndian<s16, LETag>::type;
using s32_le = AddEndian<s32, LETag>::type;
using s64_le = AddEndian<s64, LETag>::type;
template <typename T>
using enum_le = std::enable_if_t<std::is_enum_v<T>, typename AddEndian<T, LETag>::type>;
using float_le = AddEndian<float, LETag>::type;
using double_le = AddEndian<double, LETag>::type;
// Aliases for BE types
using u16_be = AddEndian<u16, BETag>::type;
using u32_be = AddEndian<u32, BETag>::type;
using u64_be = AddEndian<u64, BETag>::type;
using s16_be = AddEndian<s16, BETag>::type;
using s32_be = AddEndian<s32, BETag>::type;
using s64_be = AddEndian<s64, BETag>::type;
template <typename T>
using enum_be = std::enable_if_t<std::is_enum_v<T>, typename AddEndian<T, BETag>::type>;
using float_be = AddEndian<float, BETag>::type;
using double_be = AddEndian<double, BETag>::type;

View File

@ -39,10 +39,10 @@ struct CommandHeader {
union { union {
u32_le raw_low; u32_le raw_low;
BitField<0, 16, CommandType> type; BitField<0, 16, CommandType> type;
BitField<16, 4, u32_le> num_buf_x_descriptors; BitField<16, 4, u32> num_buf_x_descriptors;
BitField<20, 4, u32_le> num_buf_a_descriptors; BitField<20, 4, u32> num_buf_a_descriptors;
BitField<24, 4, u32_le> num_buf_b_descriptors; BitField<24, 4, u32> num_buf_b_descriptors;
BitField<28, 4, u32_le> num_buf_w_descriptors; BitField<28, 4, u32> num_buf_w_descriptors;
}; };
enum class BufferDescriptorCFlag : u32 { enum class BufferDescriptorCFlag : u32 {
@ -53,28 +53,28 @@ struct CommandHeader {
union { union {
u32_le raw_high; u32_le raw_high;
BitField<0, 10, u32_le> data_size; BitField<0, 10, u32> data_size;
BitField<10, 4, BufferDescriptorCFlag> buf_c_descriptor_flags; BitField<10, 4, BufferDescriptorCFlag> buf_c_descriptor_flags;
BitField<31, 1, u32_le> enable_handle_descriptor; BitField<31, 1, u32> enable_handle_descriptor;
}; };
}; };
static_assert(sizeof(CommandHeader) == 8, "CommandHeader size is incorrect"); static_assert(sizeof(CommandHeader) == 8, "CommandHeader size is incorrect");
union HandleDescriptorHeader { union HandleDescriptorHeader {
u32_le raw_high; u32_le raw_high;
BitField<0, 1, u32_le> send_current_pid; BitField<0, 1, u32> send_current_pid;
BitField<1, 4, u32_le> num_handles_to_copy; BitField<1, 4, u32> num_handles_to_copy;
BitField<5, 4, u32_le> num_handles_to_move; BitField<5, 4, u32> num_handles_to_move;
}; };
static_assert(sizeof(HandleDescriptorHeader) == 4, "HandleDescriptorHeader size is incorrect"); static_assert(sizeof(HandleDescriptorHeader) == 4, "HandleDescriptorHeader size is incorrect");
struct BufferDescriptorX { struct BufferDescriptorX {
union { union {
BitField<0, 6, u32_le> counter_bits_0_5; BitField<0, 6, u32> counter_bits_0_5;
BitField<6, 3, u32_le> address_bits_36_38; BitField<6, 3, u32> address_bits_36_38;
BitField<9, 3, u32_le> counter_bits_9_11; BitField<9, 3, u32> counter_bits_9_11;
BitField<12, 4, u32_le> address_bits_32_35; BitField<12, 4, u32> address_bits_32_35;
BitField<16, 16, u32_le> size; BitField<16, 16, u32> size;
}; };
u32_le address_bits_0_31; u32_le address_bits_0_31;
@ -103,10 +103,10 @@ struct BufferDescriptorABW {
u32_le address_bits_0_31; u32_le address_bits_0_31;
union { union {
BitField<0, 2, u32_le> flags; BitField<0, 2, u32> flags;
BitField<2, 3, u32_le> address_bits_36_38; BitField<2, 3, u32> address_bits_36_38;
BitField<24, 4, u32_le> size_bits_32_35; BitField<24, 4, u32> size_bits_32_35;
BitField<28, 4, u32_le> address_bits_32_35; BitField<28, 4, u32> address_bits_32_35;
}; };
VAddr Address() const { VAddr Address() const {
@ -128,8 +128,8 @@ struct BufferDescriptorC {
u32_le address_bits_0_31; u32_le address_bits_0_31;
union { union {
BitField<0, 16, u32_le> address_bits_32_47; BitField<0, 16, u32> address_bits_32_47;
BitField<16, 16, u32_le> size; BitField<16, 16, u32> size;
}; };
VAddr Address() const { VAddr Address() const {
@ -167,8 +167,8 @@ struct DomainMessageHeader {
struct { struct {
union { union {
BitField<0, 8, CommandType> command; BitField<0, 8, CommandType> command;
BitField<8, 8, u32_le> input_object_count; BitField<8, 8, u32> input_object_count;
BitField<16, 16, u32_le> size; BitField<16, 16, u32> size;
}; };
u32_le object_id; u32_le object_id;
INSERT_PADDING_WORDS(2); INSERT_PADDING_WORDS(2);

View File

@ -41,20 +41,20 @@ private:
struct PadState { struct PadState {
union { union {
u32_le raw{}; u32_le raw{};
BitField<0, 1, u32_le> a; BitField<0, 1, u32> a;
BitField<1, 1, u32_le> b; BitField<1, 1, u32> b;
BitField<2, 1, u32_le> x; BitField<2, 1, u32> x;
BitField<3, 1, u32_le> y; BitField<3, 1, u32> y;
BitField<4, 1, u32_le> l; BitField<4, 1, u32> l;
BitField<5, 1, u32_le> r; BitField<5, 1, u32> r;
BitField<6, 1, u32_le> zl; BitField<6, 1, u32> zl;
BitField<7, 1, u32_le> zr; BitField<7, 1, u32> zr;
BitField<8, 1, u32_le> plus; BitField<8, 1, u32> plus;
BitField<9, 1, u32_le> minus; BitField<9, 1, u32> minus;
BitField<10, 1, u32_le> d_left; BitField<10, 1, u32> d_left;
BitField<11, 1, u32_le> d_up; BitField<11, 1, u32> d_up;
BitField<12, 1, u32_le> d_right; BitField<12, 1, u32> d_right;
BitField<13, 1, u32_le> d_down; BitField<13, 1, u32> d_down;
}; };
}; };
static_assert(sizeof(PadState) == 0x4, "PadState is an invalid size"); static_assert(sizeof(PadState) == 0x4, "PadState is an invalid size");
@ -62,7 +62,7 @@ private:
struct Attributes { struct Attributes {
union { union {
u32_le raw{}; u32_le raw{};
BitField<0, 1, u32_le> connected; BitField<0, 1, u32> connected;
}; };
}; };
static_assert(sizeof(Attributes) == 0x4, "Attributes is an invalid size"); static_assert(sizeof(Attributes) == 0x4, "Attributes is an invalid size");

View File

@ -39,13 +39,13 @@ public:
union { union {
u32_le raw{}; u32_le raw{};
BitField<0, 1, u32_le> pro_controller; BitField<0, 1, u32> pro_controller;
BitField<1, 1, u32_le> handheld; BitField<1, 1, u32> handheld;
BitField<2, 1, u32_le> joycon_dual; BitField<2, 1, u32> joycon_dual;
BitField<3, 1, u32_le> joycon_left; BitField<3, 1, u32> joycon_left;
BitField<4, 1, u32_le> joycon_right; BitField<4, 1, u32> joycon_right;
BitField<6, 1, u32_le> pokeball; // TODO(ogniK): Confirm when possible BitField<6, 1, u32> pokeball; // TODO(ogniK): Confirm when possible
}; };
}; };
static_assert(sizeof(NPadType) == 4, "NPadType is an invalid size"); static_assert(sizeof(NPadType) == 4, "NPadType is an invalid size");
@ -150,43 +150,43 @@ private:
union { union {
u64_le raw{}; u64_le raw{};
// Button states // Button states
BitField<0, 1, u64_le> a; BitField<0, 1, u64> a;
BitField<1, 1, u64_le> b; BitField<1, 1, u64> b;
BitField<2, 1, u64_le> x; BitField<2, 1, u64> x;
BitField<3, 1, u64_le> y; BitField<3, 1, u64> y;
BitField<4, 1, u64_le> l_stick; BitField<4, 1, u64> l_stick;
BitField<5, 1, u64_le> r_stick; BitField<5, 1, u64> r_stick;
BitField<6, 1, u64_le> l; BitField<6, 1, u64> l;
BitField<7, 1, u64_le> r; BitField<7, 1, u64> r;
BitField<8, 1, u64_le> zl; BitField<8, 1, u64> zl;
BitField<9, 1, u64_le> zr; BitField<9, 1, u64> zr;
BitField<10, 1, u64_le> plus; BitField<10, 1, u64> plus;
BitField<11, 1, u64_le> minus; BitField<11, 1, u64> minus;
// D-Pad // D-Pad
BitField<12, 1, u64_le> d_left; BitField<12, 1, u64> d_left;
BitField<13, 1, u64_le> d_up; BitField<13, 1, u64> d_up;
BitField<14, 1, u64_le> d_right; BitField<14, 1, u64> d_right;
BitField<15, 1, u64_le> d_down; BitField<15, 1, u64> d_down;
// Left JoyStick // Left JoyStick
BitField<16, 1, u64_le> l_stick_left; BitField<16, 1, u64> l_stick_left;
BitField<17, 1, u64_le> l_stick_up; BitField<17, 1, u64> l_stick_up;
BitField<18, 1, u64_le> l_stick_right; BitField<18, 1, u64> l_stick_right;
BitField<19, 1, u64_le> l_stick_down; BitField<19, 1, u64> l_stick_down;
// Right JoyStick // Right JoyStick
BitField<20, 1, u64_le> r_stick_left; BitField<20, 1, u64> r_stick_left;
BitField<21, 1, u64_le> r_stick_up; BitField<21, 1, u64> r_stick_up;
BitField<22, 1, u64_le> r_stick_right; BitField<22, 1, u64> r_stick_right;
BitField<23, 1, u64_le> r_stick_down; BitField<23, 1, u64> r_stick_down;
// Not always active? // Not always active?
BitField<24, 1, u64_le> left_sl; BitField<24, 1, u64> left_sl;
BitField<25, 1, u64_le> left_sr; BitField<25, 1, u64> left_sr;
BitField<26, 1, u64_le> right_sl; BitField<26, 1, u64> right_sl;
BitField<27, 1, u64_le> right_sr; BitField<27, 1, u64> right_sr;
}; };
}; };
static_assert(sizeof(ControllerPadState) == 8, "ControllerPadState is an invalid size"); static_assert(sizeof(ControllerPadState) == 8, "ControllerPadState is an invalid size");
@ -200,12 +200,12 @@ private:
struct ConnectionState { struct ConnectionState {
union { union {
u32_le raw{}; u32_le raw{};
BitField<0, 1, u32_le> IsConnected; BitField<0, 1, u32> IsConnected;
BitField<1, 1, u32_le> IsWired; BitField<1, 1, u32> IsWired;
BitField<2, 1, u32_le> IsLeftJoyConnected; BitField<2, 1, u32> IsLeftJoyConnected;
BitField<3, 1, u32_le> IsLeftJoyWired; BitField<3, 1, u32> IsLeftJoyWired;
BitField<4, 1, u32_le> IsRightJoyConnected; BitField<4, 1, u32> IsRightJoyConnected;
BitField<5, 1, u32_le> IsRightJoyWired; BitField<5, 1, u32> IsRightJoyWired;
}; };
}; };
static_assert(sizeof(ConnectionState) == 4, "ConnectionState is an invalid size"); static_assert(sizeof(ConnectionState) == 4, "ConnectionState is an invalid size");
@ -240,23 +240,23 @@ private:
struct NPadProperties { struct NPadProperties {
union { union {
s64_le raw{}; s64_le raw{};
BitField<11, 1, s64_le> is_vertical; BitField<11, 1, s64> is_vertical;
BitField<12, 1, s64_le> is_horizontal; BitField<12, 1, s64> is_horizontal;
BitField<13, 1, s64_le> use_plus; BitField<13, 1, s64> use_plus;
BitField<14, 1, s64_le> use_minus; BitField<14, 1, s64> use_minus;
}; };
}; };
struct NPadDevice { struct NPadDevice {
union { union {
u32_le raw{}; u32_le raw{};
BitField<0, 1, s32_le> pro_controller; BitField<0, 1, s32> pro_controller;
BitField<1, 1, s32_le> handheld; BitField<1, 1, s32> handheld;
BitField<2, 1, s32_le> handheld_left; BitField<2, 1, s32> handheld_left;
BitField<3, 1, s32_le> handheld_right; BitField<3, 1, s32> handheld_right;
BitField<4, 1, s32_le> joycon_left; BitField<4, 1, s32> joycon_left;
BitField<5, 1, s32_le> joycon_right; BitField<5, 1, s32> joycon_right;
BitField<6, 1, s32_le> pokeball; BitField<6, 1, s32> pokeball;
}; };
}; };

View File

@ -33,8 +33,8 @@ private:
struct Attributes { struct Attributes {
union { union {
u32 raw{}; u32 raw{};
BitField<0, 1, u32_le> start_touch; BitField<0, 1, u32> start_touch;
BitField<1, 1, u32_le> end_touch; BitField<1, 1, u32> end_touch;
}; };
}; };
static_assert(sizeof(Attributes) == 0x4, "Attributes is an invalid size"); static_assert(sizeof(Attributes) == 0x4, "Attributes is an invalid size");

View File

@ -42,7 +42,7 @@ private:
union { union {
BitField<0, 16, Flags> flags; BitField<0, 16, Flags> flags;
BitField<16, 8, Severity> severity; BitField<16, 8, Severity> severity;
BitField<24, 8, u32_le> verbosity; BitField<24, 8, u32> verbosity;
}; };
u32_le payload_size; u32_le payload_size;

View File

@ -19,11 +19,11 @@ public:
virtual ~nvdevice() = default; virtual ~nvdevice() = default;
union Ioctl { union Ioctl {
u32_le raw; u32_le raw;
BitField<0, 8, u32_le> cmd; BitField<0, 8, u32> cmd;
BitField<8, 8, u32_le> group; BitField<8, 8, u32> group;
BitField<16, 14, u32_le> length; BitField<16, 14, u32> length;
BitField<30, 1, u32_le> is_in; BitField<30, 1, u32> is_in;
BitField<31, 1, u32_le> is_out; BitField<31, 1, u32> is_out;
}; };
/** /**

View File

@ -1,4 +1,5 @@
add_executable(tests add_executable(tests
common/bit_field.cpp
common/param_package.cpp common/param_package.cpp
common/ring_buffer.cpp common/ring_buffer.cpp
core/arm/arm_test_common.cpp core/arm/arm_test_common.cpp

View File

@ -0,0 +1,90 @@
// Copyright 2019 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <array>
#include <cstring>
#include <type_traits>
#include <catch2/catch.hpp>
#include "common/bit_field.h"
TEST_CASE("BitField", "[common]") {
enum class TestEnum : u32 {
A = 0b10111101,
B = 0b10101110,
C = 0b00001111,
};
union LEBitField {
u32_le raw;
BitField<0, 6, u32> a;
BitField<6, 4, s32> b;
BitField<10, 8, TestEnum> c;
BitField<18, 14, u32> d;
} le_bitfield;
union BEBitField {
u32_be raw;
BitFieldBE<0, 6, u32> a;
BitFieldBE<6, 4, s32> b;
BitFieldBE<10, 8, TestEnum> c;
BitFieldBE<18, 14, u32> d;
} be_bitfield;
static_assert(sizeof(LEBitField) == sizeof(u32));
static_assert(sizeof(BEBitField) == sizeof(u32));
static_assert(std::is_trivially_copyable_v<LEBitField>);
static_assert(std::is_trivially_copyable_v<BEBitField>);
std::array<u8, 4> raw{{
0b01101100,
0b11110110,
0b10111010,
0b11101100,
}};
std::memcpy(&le_bitfield, &raw, sizeof(raw));
std::memcpy(&be_bitfield, &raw, sizeof(raw));
// bit fields: 11101100101110'10111101'1001'101100
REQUIRE(le_bitfield.raw == 0b11101100'10111010'11110110'01101100);
REQUIRE(le_bitfield.a == 0b101100);
REQUIRE(le_bitfield.b == -7); // 1001 as two's complement
REQUIRE(le_bitfield.c == TestEnum::A);
REQUIRE(le_bitfield.d == 0b11101100101110);
le_bitfield.a.Assign(0b000111);
le_bitfield.b.Assign(-1);
le_bitfield.c.Assign(TestEnum::C);
le_bitfield.d.Assign(0b01010101010101);
std::memcpy(&raw, &le_bitfield, sizeof(raw));
// bit fields: 01010101010101'00001111'1111'000111
REQUIRE(le_bitfield.raw == 0b01010101'01010100'00111111'11000111);
REQUIRE(raw == std::array<u8, 4>{{
0b11000111,
0b00111111,
0b01010100,
0b01010101,
}});
// bit fields: 01101100111101'10101110'1011'101100
REQUIRE(be_bitfield.raw == 0b01101100'11110110'10111010'11101100);
REQUIRE(be_bitfield.a == 0b101100);
REQUIRE(be_bitfield.b == -5); // 1011 as two's complement
REQUIRE(be_bitfield.c == TestEnum::B);
REQUIRE(be_bitfield.d == 0b01101100111101);
be_bitfield.a.Assign(0b000111);
be_bitfield.b.Assign(-1);
be_bitfield.c.Assign(TestEnum::C);
be_bitfield.d.Assign(0b01010101010101);
std::memcpy(&raw, &be_bitfield, sizeof(raw));
// bit fields: 01010101010101'00001111'1111'000111
REQUIRE(be_bitfield.raw == 0b01010101'01010100'00111111'11000111);
REQUIRE(raw == std::array<u8, 4>{{
0b01010101,
0b01010100,
0b00111111,
0b11000111,
}});
}