yuzu-emu
/
yuzu-mainline
Archived
1
0
Fork 0

Merge pull request #12237 from liamwhite/nce-sigtrap

nce: implement instruction emulation for misaligned memory accesses
This commit is contained in:
liamwhite 2023-12-16 11:47:35 -05:00 committed by GitHub
commit 4f600f746a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 3853 additions and 44 deletions

View File

@ -174,7 +174,8 @@ android {
"-DANDROID_ARM_NEON=true", // cryptopp requires Neon to work "-DANDROID_ARM_NEON=true", // cryptopp requires Neon to work
"-DYUZU_USE_BUNDLED_VCPKG=ON", "-DYUZU_USE_BUNDLED_VCPKG=ON",
"-DYUZU_USE_BUNDLED_FFMPEG=ON", "-DYUZU_USE_BUNDLED_FFMPEG=ON",
"-DYUZU_ENABLE_LTO=ON" "-DYUZU_ENABLE_LTO=ON",
"-DCMAKE_EXPORT_COMPILE_COMMANDS=ON"
) )
abiFilters("arm64-v8a", "x86_64") abiFilters("arm64-v8a", "x86_64")

View File

@ -953,15 +953,19 @@ if (HAS_NCE)
set(CMAKE_ASM_FLAGS "${CFLAGS} -x assembler-with-cpp") set(CMAKE_ASM_FLAGS "${CFLAGS} -x assembler-with-cpp")
target_sources(core PRIVATE target_sources(core PRIVATE
arm/nce/arm_nce_asm_definitions.h
arm/nce/arm_nce.cpp arm/nce/arm_nce.cpp
arm/nce/arm_nce.h arm/nce/arm_nce.h
arm/nce/arm_nce.s arm/nce/arm_nce.s
arm/nce/guest_context.h arm/nce/guest_context.h
arm/nce/instructions.h
arm/nce/interpreter_visitor.cpp
arm/nce/interpreter_visitor.h
arm/nce/patcher.cpp arm/nce/patcher.cpp
arm/nce/patcher.h arm/nce/patcher.h
arm/nce/instructions.h arm/nce/visitor_base.h
) )
target_link_libraries(core PRIVATE merry::oaknut) target_link_libraries(core PRIVATE merry::mcl merry::oaknut)
endif() endif()
if (ARCHITECTURE_x86_64 OR ARCHITECTURE_arm64) if (ARCHITECTURE_x86_64 OR ARCHITECTURE_arm64)

View File

@ -6,7 +6,7 @@
#include "common/signal_chain.h" #include "common/signal_chain.h"
#include "core/arm/nce/arm_nce.h" #include "core/arm/nce/arm_nce.h"
#include "core/arm/nce/guest_context.h" #include "core/arm/nce/interpreter_visitor.h"
#include "core/arm/nce/patcher.h" #include "core/arm/nce/patcher.h"
#include "core/core.h" #include "core/core.h"
#include "core/memory.h" #include "core/memory.h"
@ -21,7 +21,8 @@ namespace Core {
namespace { namespace {
struct sigaction g_orig_action; struct sigaction g_orig_bus_action;
struct sigaction g_orig_segv_action;
// Verify assembly offsets. // Verify assembly offsets.
using NativeExecutionParameters = Kernel::KThread::NativeExecutionParameters; using NativeExecutionParameters = Kernel::KThread::NativeExecutionParameters;
@ -37,6 +38,9 @@ fpsimd_context* GetFloatingPointState(mcontext_t& host_ctx) {
return reinterpret_cast<fpsimd_context*>(header); return reinterpret_cast<fpsimd_context*>(header);
} }
using namespace Common::Literals;
constexpr u32 StackSize = 32_KiB;
} // namespace } // namespace
void* ArmNce::RestoreGuestContext(void* raw_context) { void* ArmNce::RestoreGuestContext(void* raw_context) {
@ -104,19 +108,10 @@ void ArmNce::SaveGuestContext(GuestContext* guest_ctx, void* raw_context) {
host_ctx.regs[0] = guest_ctx->esr_el1.exchange(0); host_ctx.regs[0] = guest_ctx->esr_el1.exchange(0);
} }
bool ArmNce::HandleGuestFault(GuestContext* guest_ctx, void* raw_info, void* raw_context) { bool ArmNce::HandleFailedGuestFault(GuestContext* guest_ctx, void* raw_info, void* raw_context) {
auto& host_ctx = static_cast<ucontext_t*>(raw_context)->uc_mcontext; auto& host_ctx = static_cast<ucontext_t*>(raw_context)->uc_mcontext;
auto* info = static_cast<siginfo_t*>(raw_info); auto* info = static_cast<siginfo_t*>(raw_info);
// Try to handle an invalid access.
// TODO: handle accesses which split a page?
const Common::ProcessAddress addr =
(reinterpret_cast<u64>(info->si_addr) & ~Memory::YUZU_PAGEMASK);
if (guest_ctx->system->ApplicationMemory().InvalidateNCE(addr, Memory::YUZU_PAGESIZE)) {
// We handled the access successfully and are returning to guest code.
return true;
}
// We can't handle the access, so determine why we crashed. // We can't handle the access, so determine why we crashed.
const bool is_prefetch_abort = host_ctx.pc == reinterpret_cast<u64>(info->si_addr); const bool is_prefetch_abort = host_ctx.pc == reinterpret_cast<u64>(info->si_addr);
@ -143,8 +138,44 @@ bool ArmNce::HandleGuestFault(GuestContext* guest_ctx, void* raw_info, void* raw
return false; return false;
} }
void ArmNce::HandleHostFault(int sig, void* raw_info, void* raw_context) { bool ArmNce::HandleGuestAlignmentFault(GuestContext* guest_ctx, void* raw_info, void* raw_context) {
return g_orig_action.sa_sigaction(sig, static_cast<siginfo_t*>(raw_info), raw_context); auto& host_ctx = static_cast<ucontext_t*>(raw_context)->uc_mcontext;
auto* fpctx = GetFloatingPointState(host_ctx);
auto& memory = guest_ctx->system->ApplicationMemory();
// Match and execute an instruction.
auto next_pc = MatchAndExecuteOneInstruction(memory, &host_ctx, fpctx);
if (next_pc) {
host_ctx.pc = *next_pc;
return true;
}
// We couldn't handle the access.
return HandleFailedGuestFault(guest_ctx, raw_info, raw_context);
}
bool ArmNce::HandleGuestAccessFault(GuestContext* guest_ctx, void* raw_info, void* raw_context) {
auto* info = static_cast<siginfo_t*>(raw_info);
// Try to handle an invalid access.
// TODO: handle accesses which split a page?
const Common::ProcessAddress addr =
(reinterpret_cast<u64>(info->si_addr) & ~Memory::YUZU_PAGEMASK);
if (guest_ctx->system->ApplicationMemory().InvalidateNCE(addr, Memory::YUZU_PAGESIZE)) {
// We handled the access successfully and are returning to guest code.
return true;
}
// We couldn't handle the access.
return HandleFailedGuestFault(guest_ctx, raw_info, raw_context);
}
void ArmNce::HandleHostAlignmentFault(int sig, void* raw_info, void* raw_context) {
return g_orig_bus_action.sa_sigaction(sig, static_cast<siginfo_t*>(raw_info), raw_context);
}
void ArmNce::HandleHostAccessFault(int sig, void* raw_info, void* raw_context) {
return g_orig_segv_action.sa_sigaction(sig, static_cast<siginfo_t*>(raw_info), raw_context);
} }
void ArmNce::LockThread(Kernel::KThread* thread) { void ArmNce::LockThread(Kernel::KThread* thread) {
@ -225,18 +256,31 @@ ArmNce::ArmNce(System& system, bool uses_wall_clock, std::size_t core_index)
ArmNce::~ArmNce() = default; ArmNce::~ArmNce() = default;
void ArmNce::Initialize() { void ArmNce::Initialize() {
if (m_thread_id == -1) {
m_thread_id = gettid(); m_thread_id = gettid();
}
// Setup our signals // Configure signal stack.
static std::once_flag signals; if (!m_stack) {
std::call_once(signals, [] { m_stack = std::make_unique<u8[]>(StackSize);
stack_t ss{};
ss.ss_sp = m_stack.get();
ss.ss_size = StackSize;
sigaltstack(&ss, nullptr);
}
// Set up signals.
static std::once_flag flag;
std::call_once(flag, [] {
using HandlerType = decltype(sigaction::sa_sigaction); using HandlerType = decltype(sigaction::sa_sigaction);
sigset_t signal_mask; sigset_t signal_mask;
sigemptyset(&signal_mask); sigemptyset(&signal_mask);
sigaddset(&signal_mask, ReturnToRunCodeByExceptionLevelChangeSignal); sigaddset(&signal_mask, ReturnToRunCodeByExceptionLevelChangeSignal);
sigaddset(&signal_mask, BreakFromRunCodeSignal); sigaddset(&signal_mask, BreakFromRunCodeSignal);
sigaddset(&signal_mask, GuestFaultSignal); sigaddset(&signal_mask, GuestAlignmentFaultSignal);
sigaddset(&signal_mask, GuestAccessFaultSignal);
struct sigaction return_to_run_code_action {}; struct sigaction return_to_run_code_action {};
return_to_run_code_action.sa_flags = SA_SIGINFO | SA_ONSTACK; return_to_run_code_action.sa_flags = SA_SIGINFO | SA_ONSTACK;
@ -253,18 +297,19 @@ void ArmNce::Initialize() {
break_from_run_code_action.sa_mask = signal_mask; break_from_run_code_action.sa_mask = signal_mask;
Common::SigAction(BreakFromRunCodeSignal, &break_from_run_code_action, nullptr); Common::SigAction(BreakFromRunCodeSignal, &break_from_run_code_action, nullptr);
struct sigaction fault_action {}; struct sigaction alignment_fault_action {};
fault_action.sa_flags = SA_SIGINFO | SA_ONSTACK | SA_RESTART; alignment_fault_action.sa_flags = SA_SIGINFO | SA_ONSTACK;
fault_action.sa_sigaction = reinterpret_cast<HandlerType>(&ArmNce::GuestFaultSignalHandler); alignment_fault_action.sa_sigaction =
fault_action.sa_mask = signal_mask; reinterpret_cast<HandlerType>(&ArmNce::GuestAlignmentFaultSignalHandler);
Common::SigAction(GuestFaultSignal, &fault_action, &g_orig_action); alignment_fault_action.sa_mask = signal_mask;
Common::SigAction(GuestAlignmentFaultSignal, &alignment_fault_action, nullptr);
// Simplify call for g_orig_action. struct sigaction access_fault_action {};
// These fields occupy the same space in memory, so this should be a no-op in practice. access_fault_action.sa_flags = SA_SIGINFO | SA_ONSTACK | SA_RESTART;
if (!(g_orig_action.sa_flags & SA_SIGINFO)) { access_fault_action.sa_sigaction =
g_orig_action.sa_sigaction = reinterpret_cast<HandlerType>(&ArmNce::GuestAccessFaultSignalHandler);
reinterpret_cast<decltype(g_orig_action.sa_sigaction)>(g_orig_action.sa_handler); access_fault_action.sa_mask = signal_mask;
} Common::SigAction(GuestAccessFaultSignal, &access_fault_action, &g_orig_segv_action);
}); });
} }

View File

@ -61,7 +61,8 @@ private:
static void ReturnToRunCodeByExceptionLevelChangeSignalHandler(int sig, void* info, static void ReturnToRunCodeByExceptionLevelChangeSignalHandler(int sig, void* info,
void* raw_context); void* raw_context);
static void BreakFromRunCodeSignalHandler(int sig, void* info, void* raw_context); static void BreakFromRunCodeSignalHandler(int sig, void* info, void* raw_context);
static void GuestFaultSignalHandler(int sig, void* info, void* raw_context); static void GuestAlignmentFaultSignalHandler(int sig, void* info, void* raw_context);
static void GuestAccessFaultSignalHandler(int sig, void* info, void* raw_context);
static void LockThreadParameters(void* tpidr); static void LockThreadParameters(void* tpidr);
static void UnlockThreadParameters(void* tpidr); static void UnlockThreadParameters(void* tpidr);
@ -70,8 +71,11 @@ private:
// C++ implementation functions for assembly definitions. // C++ implementation functions for assembly definitions.
static void* RestoreGuestContext(void* raw_context); static void* RestoreGuestContext(void* raw_context);
static void SaveGuestContext(GuestContext* ctx, void* raw_context); static void SaveGuestContext(GuestContext* ctx, void* raw_context);
static bool HandleGuestFault(GuestContext* ctx, void* info, void* raw_context); static bool HandleFailedGuestFault(GuestContext* ctx, void* info, void* raw_context);
static void HandleHostFault(int sig, void* info, void* raw_context); static bool HandleGuestAlignmentFault(GuestContext* ctx, void* info, void* raw_context);
static bool HandleGuestAccessFault(GuestContext* ctx, void* info, void* raw_context);
static void HandleHostAlignmentFault(int sig, void* info, void* raw_context);
static void HandleHostAccessFault(int sig, void* info, void* raw_context);
public: public:
Core::System& m_system; Core::System& m_system;
@ -83,6 +87,9 @@ public:
// Core context. // Core context.
GuestContext m_guest_ctx{}; GuestContext m_guest_ctx{};
Kernel::KThread* m_running_thread{}; Kernel::KThread* m_running_thread{};
// Stack for signal processing.
std::unique_ptr<u8[]> m_stack{};
}; };
} // namespace Core } // namespace Core

View File

@ -130,11 +130,11 @@ _ZN4Core6ArmNce29BreakFromRunCodeSignalHandlerEiPvS1_:
ret ret
/* static void Core::ArmNce::GuestFaultSignalHandler(int sig, void* info, void* raw_context) */ /* static void Core::ArmNce::GuestAlignmentFaultSignalHandler(int sig, void* info, void* raw_context) */
.section .text._ZN4Core6ArmNce23GuestFaultSignalHandlerEiPvS1_, "ax", %progbits .section .text._ZN4Core6ArmNce32GuestAlignmentFaultSignalHandlerEiPvS1_, "ax", %progbits
.global _ZN4Core6ArmNce23GuestFaultSignalHandlerEiPvS1_ .global _ZN4Core6ArmNce32GuestAlignmentFaultSignalHandlerEiPvS1_
.type _ZN4Core6ArmNce23GuestFaultSignalHandlerEiPvS1_, %function .type _ZN4Core6ArmNce32GuestAlignmentFaultSignalHandlerEiPvS1_, %function
_ZN4Core6ArmNce23GuestFaultSignalHandlerEiPvS1_: _ZN4Core6ArmNce32GuestAlignmentFaultSignalHandlerEiPvS1_:
/* Check to see if we have the correct TLS magic. */ /* Check to see if we have the correct TLS magic. */
mrs x8, tpidr_el0 mrs x8, tpidr_el0
ldr w9, [x8, #(TpidrEl0TlsMagic)] ldr w9, [x8, #(TpidrEl0TlsMagic)]
@ -146,7 +146,7 @@ _ZN4Core6ArmNce23GuestFaultSignalHandlerEiPvS1_:
/* Incorrect TLS magic, so this is a host fault. */ /* Incorrect TLS magic, so this is a host fault. */
/* Tail call the handler. */ /* Tail call the handler. */
b _ZN4Core6ArmNce15HandleHostFaultEiPvS1_ b _ZN4Core6ArmNce24HandleHostAlignmentFaultEiPvS1_
1: 1:
/* Correct TLS magic, so this is a guest fault. */ /* Correct TLS magic, so this is a guest fault. */
@ -163,7 +163,53 @@ _ZN4Core6ArmNce23GuestFaultSignalHandlerEiPvS1_:
msr tpidr_el0, x3 msr tpidr_el0, x3
/* Call the handler. */ /* Call the handler. */
bl _ZN4Core6ArmNce16HandleGuestFaultEPNS_12GuestContextEPvS3_ bl _ZN4Core6ArmNce25HandleGuestAlignmentFaultEPNS_12GuestContextEPvS3_
/* If the handler returned false, we want to preserve the host tpidr_el0. */
cbz x0, 2f
/* Otherwise, restore guest tpidr_el0. */
msr tpidr_el0, x19
2:
ldr x19, [sp, #0x10]
ldp x29, x30, [sp], #0x20
ret
/* static void Core::ArmNce::GuestAccessFaultSignalHandler(int sig, void* info, void* raw_context) */
.section .text._ZN4Core6ArmNce29GuestAccessFaultSignalHandlerEiPvS1_, "ax", %progbits
.global _ZN4Core6ArmNce29GuestAccessFaultSignalHandlerEiPvS1_
.type _ZN4Core6ArmNce29GuestAccessFaultSignalHandlerEiPvS1_, %function
_ZN4Core6ArmNce29GuestAccessFaultSignalHandlerEiPvS1_:
/* Check to see if we have the correct TLS magic. */
mrs x8, tpidr_el0
ldr w9, [x8, #(TpidrEl0TlsMagic)]
LOAD_IMMEDIATE_32(w10, TlsMagic)
cmp w9, w10
b.eq 1f
/* Incorrect TLS magic, so this is a host fault. */
/* Tail call the handler. */
b _ZN4Core6ArmNce21HandleHostAccessFaultEiPvS1_
1:
/* Correct TLS magic, so this is a guest fault. */
stp x29, x30, [sp, #-0x20]!
str x19, [sp, #0x10]
mov x29, sp
/* Save the old tpidr_el0. */
mov x19, x8
/* Restore host tpidr_el0. */
ldr x0, [x8, #(TpidrEl0NativeContext)]
ldr x3, [x0, #(GuestContextHostContext + HostContextTpidrEl0)]
msr tpidr_el0, x3
/* Call the handler. */
bl _ZN4Core6ArmNce22HandleGuestAccessFaultEPNS_12GuestContextEPvS3_
/* If the handler returned false, we want to preserve the host tpidr_el0. */ /* If the handler returned false, we want to preserve the host tpidr_el0. */
cbz x0, 2f cbz x0, 2f

View File

@ -10,7 +10,8 @@
#define ReturnToRunCodeByExceptionLevelChangeSignal SIGUSR2 #define ReturnToRunCodeByExceptionLevelChangeSignal SIGUSR2
#define BreakFromRunCodeSignal SIGURG #define BreakFromRunCodeSignal SIGURG
#define GuestFaultSignal SIGSEGV #define GuestAccessFaultSignal SIGSEGV
#define GuestAlignmentFaultSignal SIGBUS
#define GuestContextSp 0xF8 #define GuestContextSp 0xF8
#define GuestContextHostContext 0x320 #define GuestContextHostContext 0x320

View File

@ -0,0 +1,825 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-FileCopyrightText: Copyright 2023 merryhime <https://mary.rs>
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/bit_cast.h"
#include "core/arm/nce/interpreter_visitor.h"
#include <dynarmic/frontend/A64/decoder/a64.h>
namespace Core {
template <u32 BitSize>
u64 SignExtendToLong(u64 value) {
u64 mask = 1ULL << (BitSize - 1);
value &= (1ULL << BitSize) - 1;
return (value ^ mask) - mask;
}
static u64 SignExtendToLong(u64 value, u64 bitsize) {
switch (bitsize) {
case 8:
return SignExtendToLong<8>(value);
case 16:
return SignExtendToLong<16>(value);
case 32:
return SignExtendToLong<32>(value);
default:
return value;
}
}
template <u64 BitSize>
u32 SignExtendToWord(u32 value) {
u32 mask = 1ULL << (BitSize - 1);
value &= (1ULL << BitSize) - 1;
return (value ^ mask) - mask;
}
static u32 SignExtendToWord(u32 value, u64 bitsize) {
switch (bitsize) {
case 8:
return SignExtendToWord<8>(value);
case 16:
return SignExtendToWord<16>(value);
default:
return value;
}
}
static u64 SignExtend(u64 value, u64 bitsize, u64 regsize) {
if (regsize == 64) {
return SignExtendToLong(value, bitsize);
} else {
return SignExtendToWord(static_cast<u32>(value), bitsize);
}
}
static u128 VectorGetElement(u128 value, u64 bitsize) {
switch (bitsize) {
case 8:
return {value[0] & ((1ULL << 8) - 1), 0};
case 16:
return {value[0] & ((1ULL << 16) - 1), 0};
case 32:
return {value[0] & ((1ULL << 32) - 1), 0};
case 64:
return {value[0], 0};
default:
return value;
}
}
u64 InterpreterVisitor::ExtendReg(size_t bitsize, Reg reg, Imm<3> option, u8 shift) {
ASSERT(shift <= 4);
ASSERT(bitsize == 32 || bitsize == 64);
u64 val = this->GetReg(reg);
size_t len;
u64 extended;
bool signed_extend;
switch (option.ZeroExtend()) {
case 0b000: { // UXTB
val &= ((1ULL << 8) - 1);
len = 8;
signed_extend = false;
break;
}
case 0b001: { // UXTH
val &= ((1ULL << 16) - 1);
len = 16;
signed_extend = false;
break;
}
case 0b010: { // UXTW
val &= ((1ULL << 32) - 1);
len = 32;
signed_extend = false;
break;
}
case 0b011: { // UXTX
len = 64;
signed_extend = false;
break;
}
case 0b100: { // SXTB
val &= ((1ULL << 8) - 1);
len = 8;
signed_extend = true;
break;
}
case 0b101: { // SXTH
val &= ((1ULL << 16) - 1);
len = 16;
signed_extend = true;
break;
}
case 0b110: { // SXTW
val &= ((1ULL << 32) - 1);
len = 32;
signed_extend = true;
break;
}
case 0b111: { // SXTX
len = 64;
signed_extend = true;
break;
}
default:
UNREACHABLE();
}
if (len < bitsize && signed_extend) {
extended = SignExtend(val, len, bitsize);
} else {
extended = val;
}
return extended << shift;
}
u128 InterpreterVisitor::GetVec(Vec v) {
return m_fpsimd_regs[static_cast<u32>(v)];
}
u64 InterpreterVisitor::GetReg(Reg r) {
return m_regs[static_cast<u32>(r)];
}
u64 InterpreterVisitor::GetSp() {
return m_sp;
}
u64 InterpreterVisitor::GetPc() {
return m_pc;
}
void InterpreterVisitor::SetVec(Vec v, u128 value) {
m_fpsimd_regs[static_cast<u32>(v)] = value;
}
void InterpreterVisitor::SetReg(Reg r, u64 value) {
m_regs[static_cast<u32>(r)] = value;
}
void InterpreterVisitor::SetSp(u64 value) {
m_sp = value;
}
bool InterpreterVisitor::Ordered(size_t size, bool L, bool o0, Reg Rn, Reg Rt) {
const auto memop = L ? MemOp::Load : MemOp::Store;
const size_t elsize = 8 << size;
const size_t datasize = elsize;
// Operation
const size_t dbytes = datasize / 8;
u64 address;
if (Rn == Reg::SP) {
address = this->GetSp();
} else {
address = this->GetReg(Rn);
}
switch (memop) {
case MemOp::Store: {
std::atomic_thread_fence(std::memory_order_seq_cst);
u64 value = this->GetReg(Rt);
m_memory.WriteBlock(address, &value, dbytes);
std::atomic_thread_fence(std::memory_order_seq_cst);
break;
}
case MemOp::Load: {
u64 value = 0;
m_memory.ReadBlock(address, &value, dbytes);
this->SetReg(Rt, value);
std::atomic_thread_fence(std::memory_order_seq_cst);
break;
}
default:
UNREACHABLE();
}
return true;
}
bool InterpreterVisitor::STLLR(Imm<2> sz, Reg Rn, Reg Rt) {
const size_t size = sz.ZeroExtend<size_t>();
const bool L = 0;
const bool o0 = 0;
return this->Ordered(size, L, o0, Rn, Rt);
}
bool InterpreterVisitor::STLR(Imm<2> sz, Reg Rn, Reg Rt) {
const size_t size = sz.ZeroExtend<size_t>();
const bool L = 0;
const bool o0 = 1;
return this->Ordered(size, L, o0, Rn, Rt);
}
bool InterpreterVisitor::LDLAR(Imm<2> sz, Reg Rn, Reg Rt) {
const size_t size = sz.ZeroExtend<size_t>();
const bool L = 1;
const bool o0 = 0;
return this->Ordered(size, L, o0, Rn, Rt);
}
bool InterpreterVisitor::LDAR(Imm<2> sz, Reg Rn, Reg Rt) {
const size_t size = sz.ZeroExtend<size_t>();
const bool L = 1;
const bool o0 = 1;
return this->Ordered(size, L, o0, Rn, Rt);
}
bool InterpreterVisitor::LDR_lit_gen(bool opc_0, Imm<19> imm19, Reg Rt) {
const size_t size = opc_0 == 0 ? 4 : 8;
const s64 offset = Dynarmic::concatenate(imm19, Imm<2>{0}).SignExtend<s64>();
const u64 address = this->GetPc() + offset;
u64 data = 0;
m_memory.ReadBlock(address, &data, size);
this->SetReg(Rt, data);
return true;
}
bool InterpreterVisitor::LDR_lit_fpsimd(Imm<2> opc, Imm<19> imm19, Vec Vt) {
if (opc == 0b11) {
// Unallocated encoding
return false;
}
const u64 size = 4 << opc.ZeroExtend();
const u64 offset = imm19.SignExtend<u64>() << 2;
const u64 address = this->GetPc() + offset;
u128 data{};
m_memory.ReadBlock(address, &data, size);
this->SetVec(Vt, data);
return true;
}
bool InterpreterVisitor::STP_LDP_gen(Imm<2> opc, bool not_postindex, bool wback, Imm<1> L,
Imm<7> imm7, Reg Rt2, Reg Rn, Reg Rt) {
if ((L == 0 && opc.Bit<0>() == 1) || opc == 0b11) {
// Unallocated encoding
return false;
}
const auto memop = L == 1 ? MemOp::Load : MemOp::Store;
if (memop == MemOp::Load && wback && (Rt == Rn || Rt2 == Rn) && Rn != Reg::R31) {
// Unpredictable instruction
return false;
}
if (memop == MemOp::Store && wback && (Rt == Rn || Rt2 == Rn) && Rn != Reg::R31) {
// Unpredictable instruction
return false;
}
if (memop == MemOp::Load && Rt == Rt2) {
// Unpredictable instruction
return false;
}
u64 address;
if (Rn == Reg::SP) {
address = this->GetSp();
} else {
address = this->GetReg(Rn);
}
const bool postindex = !not_postindex;
const bool signed_ = opc.Bit<0>() != 0;
const size_t scale = 2 + opc.Bit<1>();
const size_t datasize = 8 << scale;
const u64 offset = imm7.SignExtend<u64>() << scale;
if (!postindex) {
address += offset;
}
const size_t dbytes = datasize / 8;
switch (memop) {
case MemOp::Store: {
u64 data1 = this->GetReg(Rt);
u64 data2 = this->GetReg(Rt2);
m_memory.WriteBlock(address, &data1, dbytes);
m_memory.WriteBlock(address + dbytes, &data2, dbytes);
break;
}
case MemOp::Load: {
u64 data1 = 0, data2 = 0;
m_memory.ReadBlock(address, &data1, dbytes);
m_memory.ReadBlock(address + dbytes, &data2, dbytes);
if (signed_) {
this->SetReg(Rt, SignExtend(data1, datasize, 64));
this->SetReg(Rt2, SignExtend(data2, datasize, 64));
} else {
this->SetReg(Rt, data1);
this->SetReg(Rt2, data2);
}
break;
}
default:
UNREACHABLE();
}
if (wback) {
if (postindex) {
address += offset;
}
if (Rn == Reg::SP) {
this->SetSp(address);
} else {
this->SetReg(Rn, address);
}
}
return true;
}
bool InterpreterVisitor::STP_LDP_fpsimd(Imm<2> opc, bool not_postindex, bool wback, Imm<1> L,
Imm<7> imm7, Vec Vt2, Reg Rn, Vec Vt) {
if (opc == 0b11) {
// Unallocated encoding
return false;
}
const auto memop = L == 1 ? MemOp::Load : MemOp::Store;
if (memop == MemOp::Load && Vt == Vt2) {
// Unpredictable instruction
return false;
}
u64 address;
if (Rn == Reg::SP) {
address = this->GetSp();
} else {
address = this->GetReg(Rn);
}
const bool postindex = !not_postindex;
const size_t scale = 2 + opc.ZeroExtend<size_t>();
const size_t datasize = 8 << scale;
const u64 offset = imm7.SignExtend<u64>() << scale;
const size_t dbytes = datasize / 8;
if (!postindex) {
address += offset;
}
switch (memop) {
case MemOp::Store: {
u128 data1 = VectorGetElement(this->GetVec(Vt), datasize);
u128 data2 = VectorGetElement(this->GetVec(Vt2), datasize);
m_memory.WriteBlock(address, &data1, dbytes);
m_memory.WriteBlock(address + dbytes, &data2, dbytes);
break;
}
case MemOp::Load: {
u128 data1{}, data2{};
m_memory.ReadBlock(address, &data1, dbytes);
m_memory.ReadBlock(address + dbytes, &data2, dbytes);
this->SetVec(Vt, data1);
this->SetVec(Vt2, data2);
break;
}
default:
UNREACHABLE();
}
if (wback) {
if (postindex) {
address += offset;
}
if (Rn == Reg::SP) {
this->SetSp(address);
} else {
this->SetReg(Rn, address);
}
}
return true;
}
bool InterpreterVisitor::RegisterImmediate(bool wback, bool postindex, size_t scale, u64 offset,
Imm<2> size, Imm<2> opc, Reg Rn, Reg Rt) {
MemOp memop;
bool signed_ = false;
size_t regsize = 0;
if (opc.Bit<1>() == 0) {
memop = opc.Bit<0>() ? MemOp::Load : MemOp::Store;
regsize = size == 0b11 ? 64 : 32;
signed_ = false;
} else if (size == 0b11) {
memop = MemOp::Prefetch;
ASSERT(!opc.Bit<0>());
} else {
memop = MemOp::Load;
ASSERT(!(size == 0b10 && opc.Bit<0>() == 1));
regsize = opc.Bit<0>() ? 32 : 64;
signed_ = true;
}
if (memop == MemOp::Load && wback && Rn == Rt && Rn != Reg::R31) {
// Unpredictable instruction
return false;
}
if (memop == MemOp::Store && wback && Rn == Rt && Rn != Reg::R31) {
// Unpredictable instruction
return false;
}
u64 address;
if (Rn == Reg::SP) {
address = this->GetSp();
} else {
address = this->GetReg(Rn);
}
if (!postindex) {
address += offset;
}
const size_t datasize = 8 << scale;
switch (memop) {
case MemOp::Store: {
u64 data = this->GetReg(Rt);
m_memory.WriteBlock(address, &data, datasize / 8);
break;
}
case MemOp::Load: {
u64 data = 0;
m_memory.ReadBlock(address, &data, datasize / 8);
if (signed_) {
this->SetReg(Rt, SignExtend(data, datasize, regsize));
} else {
this->SetReg(Rt, data);
}
break;
}
case MemOp::Prefetch:
// this->Prefetch(address, Rt)
break;
}
if (wback) {
if (postindex) {
address += offset;
}
if (Rn == Reg::SP) {
this->SetSp(address);
} else {
this->SetReg(Rn, address);
}
}
return true;
}
bool InterpreterVisitor::STRx_LDRx_imm_1(Imm<2> size, Imm<2> opc, Imm<9> imm9, bool not_postindex,
Reg Rn, Reg Rt) {
const bool wback = true;
const bool postindex = !not_postindex;
const size_t scale = size.ZeroExtend<size_t>();
const u64 offset = imm9.SignExtend<u64>();
return this->RegisterImmediate(wback, postindex, scale, offset, size, opc, Rn, Rt);
}
bool InterpreterVisitor::STRx_LDRx_imm_2(Imm<2> size, Imm<2> opc, Imm<12> imm12, Reg Rn, Reg Rt) {
const bool wback = false;
const bool postindex = false;
const size_t scale = size.ZeroExtend<size_t>();
const u64 offset = imm12.ZeroExtend<u64>() << scale;
return this->RegisterImmediate(wback, postindex, scale, offset, size, opc, Rn, Rt);
}
bool InterpreterVisitor::STURx_LDURx(Imm<2> size, Imm<2> opc, Imm<9> imm9, Reg Rn, Reg Rt) {
const bool wback = false;
const bool postindex = false;
const size_t scale = size.ZeroExtend<size_t>();
const u64 offset = imm9.SignExtend<u64>();
return this->RegisterImmediate(wback, postindex, scale, offset, size, opc, Rn, Rt);
}
bool InterpreterVisitor::SIMDImmediate(bool wback, bool postindex, size_t scale, u64 offset,
MemOp memop, Reg Rn, Vec Vt) {
const size_t datasize = 8 << scale;
u64 address;
if (Rn == Reg::SP) {
address = this->GetSp();
} else {
address = this->GetReg(Rn);
}
if (!postindex) {
address += offset;
}
switch (memop) {
case MemOp::Store: {
u128 data = VectorGetElement(this->GetVec(Vt), datasize);
m_memory.WriteBlock(address, &data, datasize / 8);
break;
}
case MemOp::Load: {
u128 data{};
m_memory.ReadBlock(address, &data, datasize);
this->SetVec(Vt, data);
break;
}
default:
UNREACHABLE();
}
if (wback) {
if (postindex) {
address += offset;
}
if (Rn == Reg::SP) {
this->SetSp(address);
} else {
this->SetReg(Rn, address);
}
}
return true;
}
bool InterpreterVisitor::STR_imm_fpsimd_1(Imm<2> size, Imm<1> opc_1, Imm<9> imm9,
bool not_postindex, Reg Rn, Vec Vt) {
const size_t scale = Dynarmic::concatenate(opc_1, size).ZeroExtend<size_t>();
if (scale > 4) {
// Unallocated encoding
return false;
}
const bool wback = true;
const bool postindex = !not_postindex;
const u64 offset = imm9.SignExtend<u64>();
return this->SIMDImmediate(wback, postindex, scale, offset, MemOp::Store, Rn, Vt);
}
bool InterpreterVisitor::STR_imm_fpsimd_2(Imm<2> size, Imm<1> opc_1, Imm<12> imm12, Reg Rn,
Vec Vt) {
const size_t scale = Dynarmic::concatenate(opc_1, size).ZeroExtend<size_t>();
if (scale > 4) {
// Unallocated encoding
return false;
}
const bool wback = false;
const bool postindex = false;
const u64 offset = imm12.ZeroExtend<u64>() << scale;
return this->SIMDImmediate(wback, postindex, scale, offset, MemOp::Store, Rn, Vt);
}
bool InterpreterVisitor::LDR_imm_fpsimd_1(Imm<2> size, Imm<1> opc_1, Imm<9> imm9,
bool not_postindex, Reg Rn, Vec Vt) {
const size_t scale = Dynarmic::concatenate(opc_1, size).ZeroExtend<size_t>();
if (scale > 4) {
// Unallocated encoding
return false;
}
const bool wback = true;
const bool postindex = !not_postindex;
const u64 offset = imm9.SignExtend<u64>();
return this->SIMDImmediate(wback, postindex, scale, offset, MemOp::Load, Rn, Vt);
}
bool InterpreterVisitor::LDR_imm_fpsimd_2(Imm<2> size, Imm<1> opc_1, Imm<12> imm12, Reg Rn,
Vec Vt) {
const size_t scale = Dynarmic::concatenate(opc_1, size).ZeroExtend<size_t>();
if (scale > 4) {
// Unallocated encoding
return false;
}
const bool wback = false;
const bool postindex = false;
const u64 offset = imm12.ZeroExtend<u64>() << scale;
return this->SIMDImmediate(wback, postindex, scale, offset, MemOp::Load, Rn, Vt);
}
bool InterpreterVisitor::STUR_fpsimd(Imm<2> size, Imm<1> opc_1, Imm<9> imm9, Reg Rn, Vec Vt) {
const size_t scale = Dynarmic::concatenate(opc_1, size).ZeroExtend<size_t>();
if (scale > 4) {
// Unallocated encoding
return false;
}
const bool wback = false;
const bool postindex = false;
const u64 offset = imm9.SignExtend<u64>();
return this->SIMDImmediate(wback, postindex, scale, offset, MemOp::Store, Rn, Vt);
}
bool InterpreterVisitor::LDUR_fpsimd(Imm<2> size, Imm<1> opc_1, Imm<9> imm9, Reg Rn, Vec Vt) {
const size_t scale = Dynarmic::concatenate(opc_1, size).ZeroExtend<size_t>();
if (scale > 4) {
// Unallocated encoding
return false;
}
const bool wback = false;
const bool postindex = false;
const u64 offset = imm9.SignExtend<u64>();
return this->SIMDImmediate(wback, postindex, scale, offset, MemOp::Load, Rn, Vt);
}
bool InterpreterVisitor::RegisterOffset(size_t scale, u8 shift, Imm<2> size, Imm<1> opc_1,
Imm<1> opc_0, Reg Rm, Imm<3> option, Reg Rn, Reg Rt) {
MemOp memop;
size_t regsize = 64;
bool signed_ = false;
if (opc_1 == 0) {
memop = opc_0 == 1 ? MemOp::Load : MemOp::Store;
regsize = size == 0b11 ? 64 : 32;
signed_ = false;
} else if (size == 0b11) {
memop = MemOp::Prefetch;
if (opc_0 == 1) {
// Unallocated encoding
return false;
}
} else {
memop = MemOp::Load;
if (size == 0b10 && opc_0 == 1) {
// Unallocated encoding
return false;
}
regsize = opc_0 == 1 ? 32 : 64;
signed_ = true;
}
const size_t datasize = 8 << scale;
// Operation
const u64 offset = this->ExtendReg(64, Rm, option, shift);
u64 address;
if (Rn == Reg::SP) {
address = this->GetSp();
} else {
address = this->GetReg(Rn);
}
address += offset;
switch (memop) {
case MemOp::Store: {
u64 data = this->GetReg(Rt);
m_memory.WriteBlock(address, &data, datasize / 8);
break;
}
case MemOp::Load: {
u64 data = 0;
m_memory.ReadBlock(address, &data, datasize / 8);
if (signed_) {
this->SetReg(Rt, SignExtend(data, datasize, regsize));
} else {
this->SetReg(Rt, data);
}
break;
}
case MemOp::Prefetch:
break;
}
return true;
}
bool InterpreterVisitor::STRx_reg(Imm<2> size, Imm<1> opc_1, Reg Rm, Imm<3> option, bool S, Reg Rn,
Reg Rt) {
const Imm<1> opc_0{0};
const size_t scale = size.ZeroExtend<size_t>();
const u8 shift = S ? static_cast<u8>(scale) : 0;
if (!option.Bit<1>()) {
// Unallocated encoding
return false;
}
return this->RegisterOffset(scale, shift, size, opc_1, opc_0, Rm, option, Rn, Rt);
}
bool InterpreterVisitor::LDRx_reg(Imm<2> size, Imm<1> opc_1, Reg Rm, Imm<3> option, bool S, Reg Rn,
Reg Rt) {
const Imm<1> opc_0{1};
const size_t scale = size.ZeroExtend<size_t>();
const u8 shift = S ? static_cast<u8>(scale) : 0;
if (!option.Bit<1>()) {
// Unallocated encoding
return false;
}
return this->RegisterOffset(scale, shift, size, opc_1, opc_0, Rm, option, Rn, Rt);
}
bool InterpreterVisitor::SIMDOffset(size_t scale, u8 shift, Imm<1> opc_0, Reg Rm, Imm<3> option,
Reg Rn, Vec Vt) {
const auto memop = opc_0 == 1 ? MemOp::Load : MemOp::Store;
const size_t datasize = 8 << scale;
// Operation
const u64 offset = this->ExtendReg(64, Rm, option, shift);
u64 address;
if (Rn == Reg::SP) {
address = this->GetSp();
} else {
address = this->GetReg(Rn);
}
address += offset;
switch (memop) {
case MemOp::Store: {
u128 data = VectorGetElement(this->GetVec(Vt), datasize);
m_memory.WriteBlock(address, &data, datasize / 8);
break;
}
case MemOp::Load: {
u128 data{};
m_memory.ReadBlock(address, &data, datasize / 8);
this->SetVec(Vt, data);
break;
}
default:
UNREACHABLE();
}
return true;
}
bool InterpreterVisitor::STR_reg_fpsimd(Imm<2> size, Imm<1> opc_1, Reg Rm, Imm<3> option, bool S,
Reg Rn, Vec Vt) {
const Imm<1> opc_0{0};
const size_t scale = Dynarmic::concatenate(opc_1, size).ZeroExtend<size_t>();
if (scale > 4) {
// Unallocated encoding
return false;
}
const u8 shift = S ? static_cast<u8>(scale) : 0;
if (!option.Bit<1>()) {
// Unallocated encoding
return false;
}
return this->SIMDOffset(scale, shift, opc_0, Rm, option, Rn, Vt);
}
bool InterpreterVisitor::LDR_reg_fpsimd(Imm<2> size, Imm<1> opc_1, Reg Rm, Imm<3> option, bool S,
Reg Rn, Vec Vt) {
const Imm<1> opc_0{1};
const size_t scale = Dynarmic::concatenate(opc_1, size).ZeroExtend<size_t>();
if (scale > 4) {
// Unallocated encoding
return false;
}
const u8 shift = S ? static_cast<u8>(scale) : 0;
if (!option.Bit<1>()) {
// Unallocated encoding
return false;
}
return this->SIMDOffset(scale, shift, opc_0, Rm, option, Rn, Vt);
}
std::optional<u64> MatchAndExecuteOneInstruction(Core::Memory::Memory& memory, mcontext_t* context,
fpsimd_context* fpsimd_context) {
// Construct the interpreter.
std::span<u64, 31> regs(reinterpret_cast<u64*>(context->regs), 31);
std::span<u128, 32> vregs(reinterpret_cast<u128*>(fpsimd_context->vregs), 32);
u64& sp = *reinterpret_cast<u64*>(&context->sp);
const u64& pc = *reinterpret_cast<u64*>(&context->pc);
InterpreterVisitor visitor(memory, regs, vregs, sp, pc);
// Read the instruction at the program counter.
u32 instruction = memory.Read32(pc);
bool was_executed = false;
// Interpret the instruction.
if (auto decoder = Dynarmic::A64::Decode<VisitorBase>(instruction)) {
was_executed = decoder->get().call(visitor, instruction);
} else {
LOG_ERROR(Core_ARM, "Unallocated encoding: {:#x}", instruction);
}
if (was_executed) {
return pc + 4;
}
return std::nullopt;
}
} // namespace Core

View File

@ -0,0 +1,103 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-FileCopyrightText: Copyright 2023 merryhime <https://mary.rs>
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <signal.h>
#include <unistd.h>
#include "core/arm/nce/visitor_base.h"
namespace Core {
namespace Memory {
class Memory;
}
class InterpreterVisitor final : public VisitorBase {
public:
explicit InterpreterVisitor(Core::Memory::Memory& memory, std::span<u64, 31> regs,
std::span<u128, 32> fpsimd_regs, u64& sp, const u64& pc)
: m_memory(memory), m_regs(regs), m_fpsimd_regs(fpsimd_regs), m_sp(sp), m_pc(pc) {}
~InterpreterVisitor() override = default;
enum class MemOp {
Load,
Store,
Prefetch,
};
u128 GetVec(Vec v);
u64 GetReg(Reg r);
u64 GetSp();
u64 GetPc();
void SetVec(Vec v, u128 value);
void SetReg(Reg r, u64 value);
void SetSp(u64 value);
u64 ExtendReg(size_t bitsize, Reg reg, Imm<3> option, u8 shift);
// Loads and stores - Load/Store Exclusive
bool Ordered(size_t size, bool L, bool o0, Reg Rn, Reg Rt);
bool STLLR(Imm<2> size, Reg Rn, Reg Rt) override;
bool STLR(Imm<2> size, Reg Rn, Reg Rt) override;
bool LDLAR(Imm<2> size, Reg Rn, Reg Rt) override;
bool LDAR(Imm<2> size, Reg Rn, Reg Rt) override;
// Loads and stores - Load register (literal)
bool LDR_lit_gen(bool opc_0, Imm<19> imm19, Reg Rt) override;
bool LDR_lit_fpsimd(Imm<2> opc, Imm<19> imm19, Vec Vt) override;
// Loads and stores - Load/Store register pair
bool STP_LDP_gen(Imm<2> opc, bool not_postindex, bool wback, Imm<1> L, Imm<7> imm7, Reg Rt2,
Reg Rn, Reg Rt) override;
bool STP_LDP_fpsimd(Imm<2> opc, bool not_postindex, bool wback, Imm<1> L, Imm<7> imm7, Vec Vt2,
Reg Rn, Vec Vt) override;
// Loads and stores - Load/Store register (immediate)
bool RegisterImmediate(bool wback, bool postindex, size_t scale, u64 offset, Imm<2> size,
Imm<2> opc, Reg Rn, Reg Rt);
bool STRx_LDRx_imm_1(Imm<2> size, Imm<2> opc, Imm<9> imm9, bool not_postindex, Reg Rn,
Reg Rt) override;
bool STRx_LDRx_imm_2(Imm<2> size, Imm<2> opc, Imm<12> imm12, Reg Rn, Reg Rt) override;
bool STURx_LDURx(Imm<2> size, Imm<2> opc, Imm<9> imm9, Reg Rn, Reg Rt) override;
bool SIMDImmediate(bool wback, bool postindex, size_t scale, u64 offset, MemOp memop, Reg Rn,
Vec Vt);
bool STR_imm_fpsimd_1(Imm<2> size, Imm<1> opc_1, Imm<9> imm9, bool not_postindex, Reg Rn,
Vec Vt) override;
bool STR_imm_fpsimd_2(Imm<2> size, Imm<1> opc_1, Imm<12> imm12, Reg Rn, Vec Vt) override;
bool LDR_imm_fpsimd_1(Imm<2> size, Imm<1> opc_1, Imm<9> imm9, bool not_postindex, Reg Rn,
Vec Vt) override;
bool LDR_imm_fpsimd_2(Imm<2> size, Imm<1> opc_1, Imm<12> imm12, Reg Rn, Vec Vt) override;
bool STUR_fpsimd(Imm<2> size, Imm<1> opc_1, Imm<9> imm9, Reg Rn, Vec Vt) override;
bool LDUR_fpsimd(Imm<2> size, Imm<1> opc_1, Imm<9> imm9, Reg Rn, Vec Vt) override;
// Loads and stores - Load/Store register (register offset)
bool RegisterOffset(size_t scale, u8 shift, Imm<2> size, Imm<1> opc_1, Imm<1> opc_0, Reg Rm,
Imm<3> option, Reg Rn, Reg Rt);
bool STRx_reg(Imm<2> size, Imm<1> opc_1, Reg Rm, Imm<3> option, bool S, Reg Rn,
Reg Rt) override;
bool LDRx_reg(Imm<2> size, Imm<1> opc_1, Reg Rm, Imm<3> option, bool S, Reg Rn,
Reg Rt) override;
bool SIMDOffset(size_t scale, u8 shift, Imm<1> opc_0, Reg Rm, Imm<3> option, Reg Rn, Vec Vt);
bool STR_reg_fpsimd(Imm<2> size, Imm<1> opc_1, Reg Rm, Imm<3> option, bool S, Reg Rn,
Vec Vt) override;
bool LDR_reg_fpsimd(Imm<2> size, Imm<1> opc_1, Reg Rm, Imm<3> option, bool S, Reg Rn,
Vec Vt) override;
private:
Core::Memory::Memory& m_memory;
std::span<u64, 31> m_regs;
std::span<u128, 32> m_fpsimd_regs;
u64& m_sp;
const u64& m_pc;
};
std::optional<u64> MatchAndExecuteOneInstruction(Core::Memory::Memory& memory, mcontext_t* context,
fpsimd_context* fpsimd_context);
} // namespace Core

File diff suppressed because it is too large Load Diff